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Alterations in the target proteins of fluoroquinolones, especially in GyrA and ParC,
are known to cause resistance. Here, we investigated environmental Escherichia
communities to explore the possible link between the abundance of mutations, and the
exposure to fluoroquinolones. Sediment samples were collected from a relatively pristine
lake, up and downstream from a sewage treatment plant, and from several industrially
polluted sites. The quinolone resistance-determining regions of gyrA and parC were
analyzed using amplicon sequencing of metagenomic DNA. Five non-synonymous
substitutions were present in all samples, and all of these mutations have been
previously linked to fluoroquinolone resistance in Escherichia coli. In GyrA, substitutions
S83L and D87N were on average detected at frequencies of 86 and 32%, respectively,
and 31% of all amplicons encoded both substitutions. In ParC, substitutions S80I,
E84G, and E84V were detected in 42, 0.9, and 6.0% of the amplicons, respectively,
and 6.5% encoded double substitutions. There was no significant correlation between
the level of fluoroquinolone pollution and the relative abundance of resistance mutations,
with the exception of the most polluted site, which showed the highest abundance of
said substitutions in both genes. Our results demonstrate that resistance mutations can
be common in environmental Escherichia, even in the absence of a fluoroquinolone
selective pressure.

Keywords: antimicrobial agents, mechanisms of resistance, antibiotics, microbial communities, next generation
sequencing

INTRODUCTION

Fluoroquinolones are a class of synthetic broad-spectrum antibiotics that target the type II
topoisomerases (DNA gyrase and topoisomerase IV) involved in the maintenance of DNA
topology. DNA gyrase and topoisomerase IV are both tetrameric enzymes composed of two X
and two Y subunits (X2Y2). DNA gyrase is encoded by the genes gyrA and gyrB, and topoisomerase
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IV is encoded by parC and parE. The enzymes are homologues,
and there is a considerable sequence similarity between gyrA and
parC, and between gyrB and parE. One of the main mechanisms
of fluoroquinolone resistance is amino acid substitutions in
the DNA gyrase and topoisomerase IV proteins, in particular
in GyrA and ParC (Ruiz, 2003; Hopkins et al., 2005). Several
resistance mutations have been characterized in Escherichia coli,
and the majority of these are located in the quinolone resistance-
determining region (QRDR) defined as codons 67–106 in gyrA
and 56–108 in parC (E. coli numbering). Certain single mutations
in gyrA are sufficient to generate high-level resistance to nalidixic
acid, a non-fluorinated first generation quinolone. Additional
mutations in gyrA or other type II topoisomerase genes are,
however, necessary for high-level resistance to later generations
of fluoroquinolones, such as ciprofloxacin (Hopkins et al., 2005).
Indeed, a study of 58 fluoroquinolone-resistant clinical E. coli
isolates from two hospitals in Houston, TX, USA, found that all
isolates had amino acid substitutions in GyrA and approximately
85% had additional substitutions in ParC (Morgan-Linnell
et al., 2009), confirming chromosomal mutations as the main
mechanism of clinically relevant fluoroquinolone resistance. The
frequency of resistant invasive E. coli infections in Europe in
2012 ranged from 9.7% in Iceland to 42.0% in Cyprus (ECDC,
2013). Surveillance outside of Europe is less systematic, but a
hospital in India reported that as many as 73% of uropathogenic
E. coli infections were resistant to ciprofloxacin (Mandal et al.,
2012).

Escherichia coli primarily propagate in the intestines of warm
blooded animals, but also, to a limited extent, in the environment
(Ishii and Sadowsky, 2008). Because fluoroquinolones are strictly
synthetic antibiotics, it would be reasonable to assume that
resistance mutations are not as common in environmental
E. coli isolates as they are among clinical isolates. Accordingly,
screening of environmental bacteria from an isolated cave for
antibiotic resistance showed very few isolates that were resistant
to a high concentration of ciprofloxacin (MIC >20 mg/l),
whereas resistance to other classes of antibiotics were more
common (Bhullar et al., 2012). Similarly, a recent study
from our group found that only <1–6% of bacteria isolated
from lakes with no documented history of fluoroquinolone
pollution, in Sweden and India, were ciprofloxacin-resistant
(MIC >2 mg/l) (Flach et al., 2015). A characterization of
the QRDR of gyrA from 20 environmental E. coli isolates
showed that there was considerable variability in the amino
acid sequence (Waters and Davies, 1997), and a study of 38
highly ciprofloxacin-resistant (MIC 6–128 mg/l) soil-dwelling
bacterial isolates of different species showed that nine isolates
(24%) contained amino acid substitutions in this region (D’Costa
et al., 2006). This suggests that mutations in the QRDR can
be present in environmental bacteria even in the absence of
fluoroquinolones. The methods used in previous studies have,
however, been low throughput, making the estimation of the
abundance of mutations unreliable. Previous studies have also
been dependent on the culturability of the bacteria, and often
focused on phenotypically fluoroquinolone-resistant bacteria
(Adachi et al., 2013; Zurfluh et al., 2014). The characteristics
and relative abundance of resistance mutations in the QRDRs

in environmental bacterial communities, have, thus remained
unknown.

Recently, concerns have been raised about the risks of
resistance development due to antibiotic contamination of the
external environment (Gaze et al., 2013; Pruden et al., 2013;
Wellington et al., 2013). Antibiotics, including fluoroquinolones,
can enter the environment through, for example, human
sewage and use in animal farming (Kümmerer, 2009). The
highest concentrations of fluoroquinolones detected in the
environment are, however, the result of direct discharge
from manufacturing (Larsson et al., 2007; Fick et al., 2009;
Kristiansson et al., 2011). It is therefore important to assess
the risks of the development and spread of resistant bacteria
in contaminated environments. Furthermore, because the
discharge of antibiotics may be intermittent and difficult to
detect, acquired resistance characteristics of environmental
bacteria may, given sufficient evaluation, serve as sentinels and
biomarkers for antibiotic exposure. The presence and abundance
of qnr-genes, a group of mobile fluoroquinolone resistance
genes, in microbial communities have been shown previously
to correlate with fluoroquinolone contamination of stream
sediments (Kristiansson et al., 2011). However, horizontally
transferred genes are not ubiquitous and may, therefore,
not be optimal as biomarkers. In contrast, chromosomal
resistance mutations can appear de novo and be enriched in a
population under sufficient antibiotic selective pressure. Hence,
we hypothesize that resistance mutations in gyrA and parC could
serve as biomarkers for fluoroquinolone exposure in different
environments.

The aim of the present study was to assess the abundance
of chromosomal fluoroquinolone resistance mutations in
environmental Escherichia communities and to investigate the
potential link to fluoroquinolone pollution. Using massively
parallel amplicon sequencing of metagenomic DNA, we
determined the full genetic resistance characteristics of the
QRDR of gyrA and parC in Escherichia communities without
any prior culturing of bacteria. The studied environments
included a range of selective pressures for fluoroquinolone
resistance from a highly polluted Indian stream, samples taken
up and downstream from a Swedish sewage treatment plant,
and from a remote small Swedish lake under minimal human
impact. This allowed us to investigate a possible correlation
between fluoroquinolone pollution and the abundance of
resistance mutations. Our analysis showed a high abundance of
fluoroquinolone resistance mutations in both gyrA and parC in
all investigated environments, but, interestingly, we did not find
any significant correlation with the levels of fluoroquinolones
detected.

MATERIALS AND METHODS

Sample Collection
Samples were taken from an Indian stream and a Swedish stream
both upstream (two in India, one in Sweden) and downstream
(three in India, one in Sweden) of wastewater treatment plants
(WWTPs) as described previously (Kristiansson et al., 2011).
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The Indian WWTP is situated in Patancheru near Hyderabad,
India, and at the time of sampling, it received industrial effluent
from approximately 90 pharmaceutical industries. The Swedish
WWTP is located in Skövde and receives municipal wastewater,
but with no input from pharmaceutical industries. These seven
samples have previously been analyzed for the presence of mobile
antibiotic resistance genes using metagenomic sequencing
(Kristiansson et al., 2011), and qnr genes using qPCR (Rutgersson
et al., 2014). For this study, three additional sediment samples
were collected from an upland Swedish small lake, Valbergs
öga, situated far from habitation, roads and farmland and
with no apparent inflow of water (2012-07-25, GPS coordinates
57◦51′34.2′′N 12◦04′58.2′′E). Although few places on earth
could be referred to as completely pristine, very few people,
if any, are likely to walk near this small lake in a given year.
Thus, it represents an environment at the very low end in
terms of human impact. To determine the fluoroquinolone
selective pressure at the samplings sites, the concentrations of
ciprofloxacin, difloxacin, enoxacin, enrofloxacin, lomefloxacin,
ofloxacin, pefloxacin, and norfloxacin were measured in all
samples using liquid chromatography coupled to an ion trap
mass spectrometer and electro spray interface (LC-ESI-IT-
MSMS) described previously by Kristiansson et al. (2011),
where the original chemical analysis data of all of the stream
sediment samples can be found. The Swedish lake samples
were analyzed at a different time point using the same
method. Results were expressed per gram organic matter,
rather than per total weight as some samples contained a
large proportion of inorganic material (gravel). The detection
limit was 0.02 µg/g organic matter for each measured
substance.

DNA Extraction
The total DNA was extracted from the sediment samples
and amplified using uniform whole genome amplification.
A PowerSoil

R©
DNA Isolation Kit (MO BIO Laboratories, Inc.,

Carlsbad, CA, USA) was used for the DNA extraction with
the following modification to the manufacturer’s protocol:
to complete homogenization and cell lysis, the power bead
tubes with sediment and solution C1 were incubated at 70◦C
for 10 min with a brief vortex after 5 and 10 min. The
DNA concentration was measured using a NanoDrop (Thermo
Fisher Scientific Inc., Waltham, MA, USA), and the samples
were stored at −80◦C until the whole genome amplification
of purified genomic DNA was performed. Uniform whole
genome amplification was done using the REPLI-g mini kit
(QIAGEN, Hilden, Germany). The DNA (10 ng) was denatured
by adding a denaturation buffer and incubating for 3 min
at room temperature. The denaturation was interrupted by a

neutralization buffer and a master mix containing a reaction
buffer, and DNA polymerase was added. All buffers and enzyme
mixtures were made according to the protocol. The amplification
reaction was performed by incubating the samples at 30◦C
for 16 h in a thermal cycler, after which the reaction was
stopped by heating the sample for 3 min at 65◦C. The DNA
concentration was measured using a NanoDrop, and the samples
were stored at −20◦C before the PCR amplification of the target
genes.

PCR Amplification of gyrA and parC
The software Primer3 (Rozen and Skaletsky, 2000) was used
through the web interface Primer3Plus (Untergasser et al., 2007)
to design PCR primers targeting the regions of gyrA and parC
that include all resistance mutations reported by Ruiz (2003).
To avoid placing primers in variable regions, all annotated gyrA
and parC nucleotide sequences belonging to Escherichia were
downloaded from the Pathosystems Resource Integration Center
(PATRIC) (Gillespie et al., 2011) and each gene was aligned using
MUSLCE (Edgar, 2004). Because Shigella is indistinguishable
from Escherichia in the targeted gene regions, this genus was
also added to the multiple sequence alignment. All variable
positions were given as excluded regions in Primer3, and the
portions including all resistance mutations were given as the
target regions. The product size range was set as 250–350 base
pairs (bps) so that the amplicons would, to a large extent, be
completely covered by a single 454 sequence read. The top 10
suggested primers were tested experimentally to determine the
best primer pair, producing the largest amount of amplicons of
the expected length, for each gene. The selected primers, targeted
regions, and experimental design are shown in Table 1.

All of the samples were amplified using the selected
primer pair for each gene and the set-up described in
Table 1. The following was combined in sterile 0.2 ml tubes:
1xGotaq

R©Reaction buffer, 0.2 mM dNTP Mix, 0.4 µM forward
primer, 0.4 reverse primer, 1.25 µ GoTaq

R©
DNA polymerase

(Promega, Madison, WI, USA), 50 ng template, and water up
to 25 µl. The PCR amplification used an initial denaturation
at 95◦C for 2 min, denaturation at 95◦C for 10 s, annealing
at 57◦C for 30 s, extension at 72◦C for 1 min, and a final
extension for 7 min. Each reaction was run for 40 cycles to
maximize the amount of amplicon DNA. The PCR products were
separated using 1.5% agarose gel electrophoresis and visualized
with ethidium bromide. The DNA fragment of interest was
excised from the agarose gel and placed in a microcentrifuge tube,
and the GeneJETTM gel extraction kit (Fermentas International
Inc., Vilnius, Lithuania) was used according to the enclosed
protocol to obtain the DNA amplicons. The purified amplicons
were pooled to enable sequencing in a single run, and therefore,

TABLE 1 | Selected primers with target regions and experimental setup.

Gene Target region Product size Forward primer Reverse primer Annealing
temperature

gyrA 129–439 311 bp ggtacaccgtcgcgtacttt caacgaaatcgaccgtctct 57◦C

parC 20–306 287 bp gccttgcgctacatgaattt accatcaaccagcggataac 57◦C
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each sample contained amplicons of both gyrA and parC derived
from the same sample site. The amplicons were stored at −20◦C
before sequencing.

DNA Sequencing and Bioinformatics
Analyses
The samples were sent to GATC Biotech (Konstanz, Germany)
for multiplexed massively parallel pyrosequencing (Margulies
et al., 2005) using titanium chemistry on the GS FLX+ system.
The sequencing of the Swedish lake samples was performed
on a separate time point. The resulting sequence reads were
aligned to their respective reference sequence belonging to E. coli
K-12 MG1655 (RefSeq locus tags, gyrA: b2231; parC: b3019)
using GS Amplicon Variant Analyzer from 454 (v2.5p1). The
aligned reads were exported from the software as one FASTA
alignment file per gene and sample site. To limit the risk of
interpreting sequence variability between species as resistance
mutations, reads too dissimilar to the Escherichia and Shigella
sequences were discarded after matching all reads against all
sequences annotated with the gene symbol gyrA and parC,
respectively, in the Comprehensive Microbial Resource (CMR)
(Peterson et al., 2001) using BLASTn (Altschul et al., 1990). Only
reads with a hit against a gyrA or parC sequence from either
Escherichia or Shigella, and with an E-value lower than 1× 10−100

were retained in the subsequent analysis. To compensate for the
issue of homopolymers, which are common in 454 sequencing,
any positions in the multiple sequence alignments with insertions
in the reference sequence were removed, and any remaining
deletions in the reads were substituted with the reference
sequence base of that position. The resulting gapless reads were
translated using the EMBOSS tool Transeq (reading frame 1 for
gyrA and 2 for parC) (Rice et al., 2000). The relative abundance
of non-synonymous substitutions was recorded. The relative
abundance of a certain mutation was defined as the percentage
of reads encoding that particular amino acid substitution. The
average relative abundance of mutations was defined as the
percentage of reads encoding any amino acid substitution
averaged over all samples. The computations were done for
both individual substitutions, and pairs of substitutions occurring

within the same read. The correlation between fluoroquinolone
pollution – measured as the total amount of fluoroquinolones
detected (log-transformed) – and the abundance of resistance
mutations was measured using Pearson’s correlation coefficient.

Nucleotide Sequence Accession Number
The raw sequence data have been submitted to the Short
Read Archive (SRA) under BioProject accession number
PRJNA239415.

RESULTS

The measurements of the fluoroquinolone concentrations
present in the sediments confirmed that the sampled
environments represented a range of different fluoroquinolone
selective pressures (see Supplementary Table S1). Ciprofloxacin,
enrofloxacin, and pefloxacin were detected at all Indian
sample sites, ofloxacin was detected only upstream from the
Indian WWTP, and lomefloxacin and difloxacin were detected
only at the Indian downstream sites. None of the analyzed
fluoroquinolones were detected in any of the Swedish samples.
The highest level of fluoroquinolones was detected in the Indian
downstream samples, while the upstream samples contained
moderately high levels, as reported previously (Kristiansson
et al., 2011).

A total of 35,417 reads aligned to the gyrA reference sequence
(1,453–6,339 reads per sample), and 51,933 reads aligned to
the parC reference sequence (537–15,469 reads per sample)
(Table 2). The filtering of reads dissimilar to known Escherichia
and Shigella sequences retained on average 60% of the gyrA reads
(45–91% per sample) and 78% of the parC reads (72–95% per
sample), suggesting that the parC primer pair is more specific for
the targeted genera in the sampled environments compared to
the gyrA primers. For gyrA, a total of 21,295 reads were used in
the subsequent analysis (790–3,104 reads per sample), and 40,521
reads were used for parC (509–12,006 reads per sample).

Out of all the non-synonymous substitutions detected, the
variability in codon 83 and 87 in gyrA and in codon 80 in parC
was considerably higher than at any other codon (Figure 1).

TABLE 2 | Number of reads that aligned and that was retained after quality filtering.

Country Site Sample Aligned reads Filtered reads

GyrA ParC GyrA ParC

India Downstream 1 3,051 712 2,281 658

2 1,531 3,759 790 3,425

3 2,788 537 1,753 509

Upstream 1 3,409 766 3,104 658

2 3,057 1,919 1,838 1,664

Sweden Downstream 1,453 2,079 888 1,831

Upstream 4,425 2,926 2,773 2,112

Lake 1 4,672 15,469 2,438 12,006

2 4,692 12,446 2,609 9,039

3 6,339 11,320 2,821 8,619

Sum 35,417 51, 933 21,295 40,521
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FIGURE 1 | Detected average variability over the amplicon. The average relative abundance of non-synonymous substitutions in each codon of (A) the gyrA
and (B) the parC amplicons, averaged over all samples.

Three non-synonymous mutations in gyrA were detected in all
samples and they encode the following amino acid substitutions:
S83L, D87N, and D82G (see Supplementary Table S2a). The most
common substitution, S83L, was detected in a majority of reads
in all samples (61–97%), while D87N was less abundant (1–
62%). Almost all of the D87N substitutions (97%) occurred in
reads also encoding the S83L substitution. Although the D82G
substitution was detected in all samples, it was rare (≤1%), as
were other resistance mutations detected in only some of the
samples (0–2%). Three non-synonymous mutations in parC were
detected in all samples and they encode the following amino
acid substitutions: S80I, E84G, and E84V (see Supplementary
Table S2b). S80I was the most common substitution encoded
by the parC amplicons, and was detected in 0.4–63% of the
reads in each sample. The mutations in codon 84 were far less
common, but 98% of all reads carrying substitutions in codon
84 also carried mutations encoding the S80I substitution. Other
resistance mutations in parC, which were detected in only some
of the samples, were rare (0–7%).

The differences in terms of non-synonymous mutations
between the environments were small, and there was no
obvious link between the abundance of these mutations and
the fluoroquinolone selective pressure for either gyrA or parC
(Figure 2, also see Supplementary Figures S1 and S2). Pearson’s
correlation coefficient between the log-transformed detected

amounts of total fluoroquinolones (samples with no detected
fluoroquinolones were set to the detection limit 0.02µg/g organic
matter) and the abundance of the most commonly detected
substitutions were as follows: S83L, −0.058 (p = 0.87); D87N,
0.098 (p = 0.79); and S83L+D87N in GyrA, 0.088 (p = 0.81);
S80I, −0.25 (p = 0.49); E84G, 0.54 (p = 0.10); E84V, 0.28
(p = 0.42); and S08I+E84G/V in ParC, 0.34 (p = 0.26). However,
the sample taken downstream from and closest to the discharge
site of the Indian WWTP showed the highest abundance of all
said substitutions (Figure 2, also see Supplementary Figures S1a
and S2a).

DISCUSSION

In this study, we measured the relative abundance of
chromosomal fluoroquinolone resistance mutations in
Escherichia communities residing in both uncontaminated
and severely fluoroquinolone polluted aquatic environments.
We detected a high abundance of resistance mutations in
the chromosomal target genes of fluoroquinolones, gyrA and
parC, in all sampled environments, including environments
with no fluoroquinolone pollution or known history thereof.
Interestingly, we found no association between the measured
concentrations of fluoroquinolones at the samples sites and
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FIGURE 2 | The link between fluoroquinolone pollution and mutations in the quinolone resistance determining region. Correlation between the measured
total fluoroquinolone pollution (µg/g organic matter) and the relative abundance of the most commonly detected non-synonymous substitutions in (A) gyrA and
(B) parC. Samples with no detected fluoroquinolones are indicated in the figure as 0.2 µg/g (i.e., the detection limit).

the abundance of resistance mutations, except for the most
polluted site, which showed the highest abundance of the most
commonly detected mutations. This suggests that chromosomal
mutations conferring fluoroquinolone resistance only could be
considered a potential biomarker for detecting very extensive
fluoroquinolone pollution. Additionally, the high abundance of
mutations previously linked to fluoroquinolone resistance and
the low abundance of other mutations indicate that there could
be selective advantages to carry the resistance mutations in the
sampled environments, even in the absence of fluoroquinolone
selective pressure. Note that the levels of fluoroquinolones
detected in the sediment cannot be directly compared to those
of water solutions, as some fluoroquinolones are known to
sorb to soil particles (Girardi et al., 2011). The exact amount of
bioavailable antibiotics is, therefore, unknown, but likely lower
than the detected levels.

To our best knowledge, the lowest reported minimal selective
concentration for any antibiotic and resistance mutation is
0.1 µg/l for ciprofloxacin and the S83L substitution in GyrA
(Gullberg et al., 2011). This concentration is just above the
ones found in treated Swedish sewage effluents (Lindberg
et al., 2005; Fick et al., 2011). However, the concentration
was determined through competition experiments in a
lab setting, and therefore, comparisons to environmental
conditions should be made with some caution. Although
no fluoroquinolones were detected downstream from the
Swedish sewage treatment plant in this study, bacteria leaving
the plant could theoretically have encountered selective
concentrations inside the treatment plant. In the investigated
Swedish lake, however, there are no plausible sources for
fluoroquinolone exposure, indicating that the mutations
found here are not present because of a fluoroquinolone
selection pressure. Furthermore, since there is little difference

in mutation abundance between the severely polluted sites
and the remote Swedish lake, the data implies that the
mutation abundance is not connected to fluoroquinolone
selection pressure, but is largely determined by other, unknown
factors.

In gyrA, mutations encoding the amino acid substitutions
S83L and D87N were detected in all samples, with almost all
of the D87N substitutions occurring in reads also encoding
the S83L substitution. Both substitutions have been associated
with fluoroquinolone resistance for E. coli and confer higher
levels of resistance than any other substitutions in the QRDR
(Yoshida et al., 1991). In fluoroquinolone-resistant clinical E. coli
isolates, S83 is the most frequently altered amino acid, and,
moreover, S83L is the most common substitution (Hopkins
et al., 2005). A single substitution at position 83 confers higher
resistance than at position 87, but additional mutations in gyrA
or other genes are necessary for the development of high-
level fluoroquinolone resistance. The S83L substitution alone,
however, confers the same level of resistance to ciprofloxacin
for E. coli as the combination of S83L and D87N (increased
MIC of ciprofloxacin from 0.016 to 0.38 mg/l), while the D87N
substitution alone confers slightly lower resistance (ciprofloxacin
MIC = 0.25 mg/l) (Marcusson et al., 2009; Machuca et al., 2014).
In parC, mutations causing the substitutions S80I, E84G, and
E84V were detected in all samples, and these three substitutions
have been previously linked to fluoroquinolone resistance in
E. coli. In fluoroquinolone-resistant clinical isolates, the most
commonly altered amino acid in ParC is S80 followed by E84,
and, specifically, S80I is the most common substitution (Hopkins
et al., 2005). Substitutions in ParC are often, if not always,
found together with substitutions in GyrA in fluoroquinolone-
resistant isolates (Hopkins et al., 2005; Morgan-Linnell et al.,
2009), and substitutions of S80 or E84 alone do not affect the
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susceptibility to fluoroquinolones unless GyrA is also altered
(Bagel et al., 1999). Because of the method used in this study,
it is not possible to determine to what extent the detected
mutations in gyrA and parC occur in the same bacterium, but
it is worth mentioning that a combination of the substitutions
S83L and D87N in GyrA with S80I in ParC confers a very
high resistance to ciprofloxacin (ciprofloxacin MIC = 32 mg/l)
(Marcusson et al., 2009). To set the MICs into perspective, an
Enterobacteriaceae isolate is classified as ciprofloxacin-resistant
if its MIC is higher than 1 mg/l according to the EUCAST
clinical breakpoints (EUCAST, 2014). Isolates with a MIC lower
than 0.5 mg/l are classified as sensitive. It is important to note
that fluoroquinolone resistance can be caused by a number
of different genetic mechanisms and combinations thereof. To
extrapolate a level of resistance solely from mutations in the
target genes is associated with a high level of uncertainty,
therefore, the MICs given above are only included as a rough
reference.

The only sampling site that stood out in terms of high
abundance of resistance mutations was the site closest to
downstream of the discharge site of the Indian WWTP. Here,
we observed the highest abundance of the S83L and D87N
substitutions in GyrA, the S80I, E84G, and E84V substitutions
in ParC, and, consequently, also the highest abundance of the
paired substitutions in both proteins. This is indeed the sample
site with the highest total concentration of fluoroquinolones,
which would be consistent with the hypothesis that there is a
selective advantage for resistance mutations in fluoroquinolone-
polluted environments, but only at locations with very high
concentrations of fluoroquinolones. However, some reads from
the most polluted site did not contain any mutations that
resulted in amino acid substitutions in either gyrA (1.2%)
or parC (30%), which suggests that some bacteria thriving
there may carry additional resistance factors protecting them.
Indeed, we have shown previously that mobile fluoroquinolone-
resistance genes (qnr) are highly abundant in the stream
sediment (Rutgersson et al., 2014). The qnr genes provide low
to moderate resistance to fluoroquinolones [ciprofloxacin MIC
up to 2 mg/l in E. coli transconjugants (Robicsek et al., 2006;
Flach et al., 2013)]. Given the data presented here, it is possible
that the presence of qnr genes in aquatic bacterial comminutes
constitutes a better marker of fluoroquinolone exposure than
chromosomal mutations. Or, there could be other mutations,
outside the QRDR sequenced in this study, better suited as
markers of exposure. Culturing-based methods will be required
to fully elucidate the genetic mechanisms for how bacteria have
adapted to survive the high concentrations of fluoroquinolones
here.

A contributing factor to the high abundance of fluoro-
quinolone resistance mutations in the environment could be
that there is little to no cost for the bacterium to carry these
mutations. It has previously been shown that the substitutions
S83L and D87N in GyrA and S80I in ParC occurring alone, or
all three in the same organism, do not significantly alter the
fitness of E. coli in vitro, nor do the pair of S83L in GyrA and
S80I in ParC (Marcusson et al., 2009; Machuca et al., 2014).
The pair S83L and D87N in GyrA has been shown to confer a

fitness cost (measured relative fitness 0.97) when introduced in
E. coli K-12 MG1655 (Marcusson et al., 2009), while the pair
substitution was associated with a fitness gain in E. coli ATCC
25922 (relative fitness 1.14) (Machuca et al., 2014). In contrast,
the pair of D87N in GyrA together with S80I in ParC introduce
a slight fitness gain (measured relative fitness 1.02). Competition
experiments with wild type gyrA in E. coli and mutants encoding
either the S83L or the D87N substitution have shown that a
ciprofloxacin concentration of 0.1 and 2.5 µg/l, respectively, is
sufficient for the mutants to have a selective advantage (Gullberg
et al., 2011). Furthermore, competitive in vivo studies of other
species – i.e., Neisseria gonorrhoeae in mice (Kunz et al., 2012)
and Campylobacter jejuni in chickens (Luo et al., 2005) – have
even found a fitness benefit associated with gyrA mutations
corresponding to codon 83 in E. coli. In summary, a lack of
fitness cost for these substitutions in the sampled environments
could explain why they appear to be very common even in
environments without any detectable fluoroquinolone pollutants
or any known history thereof. As we do not yet understand the
possible advantages these genotypes may have in the absence
of fluoroquinolones, and because of the limited number and
types of environments investigated in this study, we cannot
generalize to the point of claiming that resistance mutations in
gyrA and parC are common in all environmental Escherichia
communities.

The abundance of resistance mutations in the Swedish samples
stands in contrast to the frequency of fluoroquinolone-resistant
infections in Sweden. On average, the S83L substitution in GyrA
was detected in 87% of the Swedish reads, the combination
of S83L and D87N in 33%, and the S80I substitution in ParC
in 43%. In Sweden, only 11.6% of the clinical invasive E. coli
isolates tested with ciprofloxacin were resistant in 2013 (ECDC,
2014). This is far below the abundance of resistance mutations
detected in both the Swedish lake samples and the samples
taken near a sewage treatment plant. The large difference
between the abundance of fluoroquinolone resistance mutations
in the environment and the frequency of resistant E. coli
infections in Sweden is likely due to large differences between the
pathogenic E. coli strains and the strains residing in the sampled
environments. Indeed, the genome of E. coli is known to be highly
variable (Lukjancenko et al., 2010). Furthermore, competition
experiments testing the relative fitness of the resistance mutations
is typically performed under optimal growing conditions, unlike
environmental conditions. It is possible that there is a selective
advantage not linked to fluoroquinolones for these mutations in
the sampled environments. Indeed, our finding of how abundant
the resistance mutations are even in unpolluted environments
suggest that the sequence defined as wild-type for GyrA and
ParC, respectively, in E. coli is only one of a number of common
sequences within the species.

The method presented here proved useful to compare the
abundances of mutations occurring within a short genomic
region in an entire microbial community. Next generation
sequencing techniques provide a cost-effective comprehensive
approach to study entire bacterial communities without relying
on the cultivation of individual isolates. To distinguish between
resistance mutations and inter-species variability, it is important
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to design the primers as specific for the targeted taxon as possible.
If primers are not sufficiently specific, unwanted reads need to
be filtered out by matching all reads to the target sequences
and discarding reads of low resemblance. However, setting a
similarity threshold for such a filtering where you allow for within
species variability is not straight-forward. Here, we chose the
threshold based on sequence alignments of different Escherichia
and Shigella sequences and closely related genera. Additionally,
we propose that amplicon sequencing could also be used to study
resistance mutations in the ribosomal rRNA 23S gene that confer
resistance to macrolides, lincosamides, and streptogramin B
(Vester and Douthwaite, 2001). For future work in finding more
suitable markers of fluoroquinolone exposure, we propose a more
controlled experimental set up where different environments are
dosed with various concentrations of fluoroquinolones for an
extended period of time and the effect of the microbiota is studied
using metagenomic sequencing.

In this study, we show that there is a significant abundance
of fluoroquinolone resistance mutations in environmental
Escherichia communities residing both in fluoroquinolone-
polluted and pristine environments. This suggests that the
mutations are not associated with a substantial fitness cost for
the bacterium, even where there is no selective pressure for
fluoroquinolone resistance. Regardless of whether the detected
mutations are sufficient to provide clinically relevant resistance
to fluoroquinolones, they are one or two mutations closer to
obtaining a high level of resistance.
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