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Plant growth promoting rhizobacteria (PGPR) are the rhizosphere bacteria that may be
utilized to augment plant growth and suppress plant diseases. The objectives of this
study were to identify and characterize PGPR indigenous to cucumber rhizosphere
in Bangladesh, and to evaluate their ability to suppress Phytophthora crown rot in
cucumber. A total of 66 isolates were isolated, out of which 10 (PPB1, PPB2, PPB3,
PPB4, PPB5, PPB8, PPB9, PPB10, PPB11, and PPB12) were selected based on
their in vitro plant growth promoting attributes and antagonism of phytopathogens.
Phylogenetic analysis of 16S rRNA sequences identified these isolates as new strains
of Pseudomonas stutzeri, Bacillus subtilis, Stenotrophomonas maltophilia, and Bacillus
amyloliquefaciens. The selected isolates produced high levels (26.78-51.28 ug mL~1)
of indole-3-acetic acid, while significant acetylene reduction activities (1.79-4.9 pmole
CoHs mg~" protein h—') were observed in eight isolates. Cucumber plants grown
from seeds that were treated with these PGPR strains displayed significantly higher
levels of germination, seedling vigour, growth, and N content in root and shoot tissue
compared to non-treated control plants. All selected isolates were able to successfully
colonize the cucumber roots. Moreover, treating cucumber seeds with these isolates
significantly suppressed Phytophthora crown rot caused by Phytophthora capsici, and
characteristic morphological alterations in P capsici hyphae that grew toward PGPR
colonies were observed. Since these PGPR inoculants exhibited multiple traits beneficial
to the host plants, they may be applied in the development of new, safe, and effective
seed treatments as an alternative to chemical fungicides.

Keywords: PGPR, plant growth promotion, IAA production, biological nitrogen fixation, antagonism,
Phytophthora capsici, disease suppression

INTRODUCTION

The cucumber (Cucumis sativus) is one of the most widely grown vegetable crops in the world,
and is particularly prevalent on the Indian sub-continent. This crop is prone to massive attacks
by Phytophthora capsici that causes crown rot and blight (Kim et al., 2008; Maleki et al., 2011).
P. capsici infects susceptible hosts throughout the growing season at any growth stage, and causes
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yield losses as high as 100% (Lee et al.,, 2001). This pathogen
has a wide host range with more than 50 plant species including
Cucurbitaceae, Leguminosae, and Solanaceae (Hausbeck and
Lamour, 2004). Although fungicides can control the disease, their
use is detrimental to the surrounding environment and to the
viability and survival of beneficial rhizosphere microbes (Carson
et al., 1962; Hussain et al., 2009; Heckel, 2012). Furthermore,
the growing cost of pesticides and the consumer demand for
pesticide-free food have led to a search for substitutes for
these products. Thus, there has been a need to find effective
alternatives to costly and environmentally degrading synthetic
pesticides.

Rhizobacteria that benefit plants by stimulating growth and
suppressing disease are referred to as plant growth promoting
rhizobacteria (PGPR; Kloepper et al., 1980). PGPR have been
tested as biocontrol agents for suppression of plant diseases
(Gerhardson, 2002), and also as inducers of disease resistance
in plants (Cattelan et al., 1999; Bargabus et al., 2002; Bais et al,,
2004). In particular, strains of Pseudomonas, Stenotrophomonas,
and Bacillus have been successfully used in attempts to control
plant pathogens and increase plant growth (Bais et al., 2004;
Idris et al., 2007; Liu et al., 2007; Messiha et al., 2007; Chen
et al, 2009; El-Sayed et al., 2014). The widely recognized
mechanisms of plant growth promotion by PGPR are production
of phytohormones, diazotrophic fixation of nitrogen, and
solubilization of phosphate. Mechanisms of biocontrol action
include competition with phytopathogens for an ecological niche
or substrate, as well as production of inhibitory compounds
and hydrolytic enzymes that are often active against a broad
spectrum of phytopathogens (Zhang and Yuen, 2000; Manjula
et al., 2004; Haas and Défago, 2005; Stein, 2005; Detry et al,,
2006; Konsoula and Liakopoulou-Kyriakides, 2006; Cazorla et al.,
2007).

Many PGPR have been shown to reduce Phytophthora
crown rot occurrence on various plants. Ahmed et al. (2003)
demonstrated in vitro suppression of P. capsici by bacterial
isolates from the aerial part and rhizosphere of sweet pepper.
An endophytic bacterium isolated from black pepper stem
and roots, B. megaterium IISRBP17 suppressed P. capsici on
black pepper in greenhouse assays (Aravind et al, 2009).
Zhang et al. (2010) demonstrated that PGPR strains used
separately or in combinations had the potential to suppress
Phytophthora blight on squash in the greenhouse. Shirzad
et al. (2012) reported that some fluorescent pseudomonads
isolated from different fields of East and West Azarbaijan and
Ardebil provinces of Iran exhibited strong antifungal activity
against P. drechsleri and controlled crown and root rot of
cucumber caused by the pathogen. However, little is known
about PGPRs with the potential to suppress crown rot caused
by P. capsici on cucumber. Furthermore, the plant-growth-
promoting and biocontrol efficacy of PGPR often depend
upon the rhizosphere competence of the microbial inoculants
(Lugtenberg and Kamilova, 2009). Rhizosphere competence
refers to the survival and colonization potential of PGPR
(Bulgarelli et al., 2013), and is thought to be highest for each
PGPR strain when associated with its preferred host plant. This
to some extent explains why some PGPR strains exhibiting

promise as biocontrol agents in vitro have variable biocontrol
efficacy in the rhizosphere of a given crop under a given set
of conditions. The identification and characterization of PGPR
populations indigenous to cucumber rhizospheres is therefore
critical to discovery of strains that can be utilized to improve
growth and Phytophthora crown rot suppression in cucumber.
The objectives of the present study were to isolate bacterial strains
from the cucumber rhizosphere, to characterize these isolates on
the basis of morphological and physiological attributes as well as
by 16S rRNA sequence analysis, and to assess the plant growth
promoting effects of these isolates in vivo and their ability to
suppress Phytophthora crown rot in cucumber plants. To our
knowledge, this is the first report of PGPR reducing P. capsici
infection on cucumber.

MATERIALS AND METHODS
The Study Site

The experimental site was located at the Field Laboratory
of the Department of Plant Pathology, Bangabandhu Sheikh
Mujibur Rahman Agricultural University (BSMRAU), Gazipur,
Bangladesh. The location of the site is at 24.09° N latitude
and 90.25° E longitude with an elevation of 2-8 m. The
study area is within the Madhupur Tract agro-ecological zone
(AEZ 28). The soil used for pot experiments belongs to the
Salna series and has been classified as “swallow red brown
terrace soil” in the Bangladesh soil classification system, which
falls under the order Inceptisol (Brammer, 1978). This soil is
characterized by clay within 50 cm of the surface and is slightly
acidic in nature. The pH value, cation exchange capacity (CEC)
and electrical conductivity (EC) of bulk soil samples collected
from the study site were 6.38, 6.78 meq 100 g~! soil and
0.6 dS m™!, respectively. This soil contained 1.08% organic
carbon (OC), 1.87% organic matter (OM), 0.10% nitrogen (N),
9 ppm phosphorus (P) and 0.20 meq 100 g~! soil exchangeable
potassium (K).

Plant Material, Bacterial Isolation, and
Pathogenic Organism

Cucumber (Cucumis sativus L.) variety Baromashi (Lal Teer
Seed Company, Dhaka, Bangladesh) root samples were collected
from the study site along with rhizosphere soil. For isolation
of bacteria, 2-5 g of fresh roots were washed under running
tap water and surface sterilized in 5% NaOCI for 1 min. After
washing three times with sterilized distilled water (SDW), the
root samples were ground with a sterilized mortar and pestle.
Serial dilutions were prepared from the ground roots, and
100 .l aliquots from each dilution of 1 x 107%, 1 x 1077, and
1 x 1078 CFU mL~! were spread on potato dextrose agar (PDA)
plates and incubated for 2 days at 28 £ 2°C. Morphologically
distinct bacterial colonies were selected for further purifications.
The purified isolates were preserved temporarily in 20%
glycerol solution at —20°C. The pathogen P. capsici was
provided by Prof. W. Yuanchao, Nanjing Agricultural University,
China.

Frontiers in Microbiology | www.frontiersin.org

February 2016 | Volume 6 | Article 1360


http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive

Islam et al.

Isolation of PGPR from Cucumber Rhizosphere

Morphological and Biochemical
Characterization of Bacterial Isolates

Colony morphology, size, shape, color, and growth pattern were
recorded after 24 h of growth on PDA plates at 28 £ 2°C
as described by Somasegaran and Hoben (1994). Cell size was
observed by light microscopy. The Gram reaction was performed
as described by Vincent and Humphrey (1970). A series of
biochemical tests were conducted to characterize the isolated
bacteria using the criteria of Bergey’s Manual of Systematic
Bacteriology (Bergey et al., 1994). For the KOH solubility test,
bacteria were aseptically removed from Petri plates with an
inoculating wire loop, mixed with 3% KOH solution on a clean
slide for 1 min and observed for formation of a thread-like mass.
The motility of each isolate was tested in sulfide indole motility
(SIM) medium. Using a needle, strains were introduced into test
tubes containing SIM, and were incubated at room temperature
until the growth was evident (Kirsop and Doyle, 1991). Turbidity
away from the line of inoculation was a positive indicator of
motility. Catalase and oxidase tests were performed as described
in Hayward (1960) and Rajat et al. (2012), respectively. To
determine whether the rhizobacterial isolates are better suited
to aerobic or anaerobic environments, the citrate test was
conducted according to Simmons (1926) using Simmons citrate
agar medium. All experiments were done following complete
randomized design (CRD) with three replications for each isolate
and repeated once.

Molecular Characterization of Bacterial

Isolates
Culture DNA was obtained using the lysozyme-SDS-
phenol/chloroform method (Maniatis et al., 1982). DNA
was extracted with phenol-chloroform-isoamyl alcohol (25:24:1)
and precipitated with isopropanol. The extracted DNA was
treated with DNase-free RNase (Sigma Chemical Co., St. Louis,
MO, USA) at a final concentration of 0.2 mg/ml at 37°C for
15 min, followed by a second phenol-chloroform-isoamyl alcohol
extraction and isopropanol precipitation. Finally, the DNA pellet
was re-suspended in TE buffer (10 mM Tris-HCIL, 1 mM EDTA,
pH 8.0), stored at —20°C, and used as template DNA in PCR to
amplify the 16S rRNA for phylogenetic analysis.

16S rRNA gene amplification was performed by using
the bacterial-specific primers, 27F (5-AGAGTTTGATCCTGG
CTCAG-3') and 1492R (5-GGTTACCTTGTTACGACTT-3)
(Reysenbach et al., 1992). PCR amplifications were performed
with 1 x Ex Taq buffer (Takara Bio Inc, Japan), 0.8 mM
dNTP, 0.02 units ul~! Ex Taq polymerase, 0.4 mg ml~!
BSA, and 1.0 uM of each primer. Three independent PCR
amplifications were performed at an annealing temperature
of 55°C (40 s), an initial denaturation temperature of 94°C
(5 min), 30 amplification cycles with denaturation at 94°C
(60 s), annealing (30 s), and extension at 72°C (60 s), followed
by a final extension at 72°C (10 min). The PCR product was
purified using Wizard” PCR Preps DNA Purification System
(Promega, Madison, WI, USA). Purified double-stranded PCR
fragments were directly sequenced with Big Dye Terminator
Cycle sequencing kits (Applied Biosystems, Forster City, CA,

USA) using the manufacturer’s instructions. Sequences for each
region were edited using Chromas Lite 2.0'. The 16S rRNA
sequence of the isolate has been deposited in the GenBank
database. The BLAST search program® was used to search for
nucleotide sequence homology for the 16S region for bacteria.
Highly homologous sequences were aligned, and neighbor-
joining trees were generated using ClustalX version 2.0.11 and
MEGA version 6.06. Bootstrap replication (1000 replications)
was used as a statistical support for the nodes in the phylogenetic
trees.

Bioassays for Plant Growth Promoting
Traits

Biological Nitrogen Fixation

Nitrogenase activity of isolates was determined via the acetylene
reduction assay/ethylene production assay as described in Hardy
et al. (1968). Pure bacterial colonies were inoculated to an
airtight 30 ml vial containing 10 ml nitrogen-free basal semi-
solid medium, and were grown for 48 h at 28 + 2°C.
Following pellicle formation, the bottles were injected with
10% (v/v) acetylene gas and incubated at 28 + 2°C for
24 h. Ethylene production was measured using a G-300 Gas
Chromatograph (Model HP 6890, USA) fitted with a Flame
Ionization Detector and a Porapak-N column. Hydrogen and
oxygen were used as a carrier gas, with a flow rate of
4 kg/cm?, and the column temperature was maintained at 165°C.
The ethylene concentration calibration curve was plotted for
each trial, and the viable cell numbers (cfu) of the isolate
were determined. The rate of N, fixation was expressed as
the quantity of ethylene accumulated (wmol C,H; mg~!
protein h™!) based on the standard curve and peak-area
percentage.

Indole-3-Acetic Acid Production

For detection and quantification of indole-3-acetic acid (IAA)
production by bacterial isolates, isolated colonies were inoculated
into Jensen’s broth (Sucrose 20 g, K;HPO4 1 g L1, MgSOy4
7H,0 0.5 g L7!, NaCl 0.5 g L™!, FeSO4 0.1 g L™!, NaMoOy
0.005 g L™1, CaCO3 2 g L™!) (Bric et al., 1991) containing 2 mg
mL~! L-tryptophan. The culture was incubated at 28 4 2°C
with continuous shaking at 125 rpm for 48 h (Rahman
et al., 2010). Approximately 2 mL of culture solution was
centrifuged at 15000 rpm for 1 min, and a 1 mL aliquot
of the supernatant was mixed with 2 mL of Salkowski’s
reagent and incubated 20 min in darkness at room temperature
(150 ml concentrated H,SOy, 250 ml distilled water, 7.5 ml 0.5
M FeCl3.6H,0) as described by Gordon and Weber (1951).
IAA production was observed as the development of a pink-
red color, and the absorbance was measured at 530 nm
using a spectrophotometer. The concentration of IAA was
determined using a standard curve prepared from pure IAA
solutions (0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, and
65 ugml~1).

Uhttp://www.technelysium.com.au/chromas.html
Zhttp://blast.ncbi.nlm.nih.gov/Blast.cgi
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Preparation of Bacterial Inocula for
Cucumber Seed Treatment

Bacterial strains were cultured in 250 ml conical flasks containing
200 ml yeast peptone broth on an orbital shaker at 120 rpm
for 72 h at 28 £ 2°C. Bacterial cells were collected via
centrifugation at 15000 rpm for 1 min at 4°C, and each
pellet was washed twice with SDW. The bacterial pellets
were suspended in 0.6 ml SDW, vortexed and used for seed
treatment. Approximately 30-31 cucumber seeds were surface
sterilized in 5% NaOCI for 1 min and washed three times in
SDW. Dry seeds were immersed in each bacterial suspension,
and the preparation was stirred frequently for 5 min. The
treated seeds were spread on a petri dish and air dried
overnight at room temperature. The number of bacterial cells
per seed, determined via serial dilutions, was approximately
10 CFU/seed.

Effect of Bacterial Seed Treatment on
Germination and Vigour Index in

Cucumber

In order to determine the effect of the isolates on germination
and seedling vigour, 100 seeds inoculated with each isolate
were incubated in ten 9-cm petri dishes on two layers of
moistened filter paper. As a control treatment, seeds treated
with water instead of bacterial suspensions were also established.
In order to maintain sufficient moisture for germination, 5 ml
distilled water was added to the petri dishes every other day,
and seeds were incubated at 28 £ 2°C in a light incubator.
Germination was considered to have occurred when the radicles
were half of the seed length. The germination percentage was
recorded every 24 h for 7 days. Root and shoot length were
measured after the seventh day. The experiment was planned as
a completely randomized design with 10 replications for each
isolate.

o number of seeds germinated
Germination rate (%) = x 100

total number of seeds

Vigour index = % germination x total plant length

Effect of Bacterial Seed Treatment on
Growth and Nitrogen Content in
Cucumber Plants

In order to test the ability of isolates to promote growth
in cucumber plants, surface-sterilized cucumber seeds were
inoculated with each isolate as described above. The soil from
the study site described above was used as potting medium. After
autoclaving twice at 24 h intervals at 121°C and 15 psi for 20 min,
180 g of the sterilized soil was placed in each sterilized plastic
pot (9.5 cm X 7.0 cm size). One pre-germinated cucumber seed
was sown in each pot, and plants were grown 3 weeks in a net
house with watering on alternate days. After harvest, the fresh
weight, dry weight, and root and shoot lengths of the plants were
measured. The shoots and roots were separated and dried in an

oven at 68 = 2°C for 48 h, then ground for determination of
tissue-N concentrations (Kjeldahl, 1883).

Root Colonization

Root colonization by bacterial isolates was determined according
to the protocol of Hossain et al. (2008). Roots were harvested
from plants at 7, 14, and 21 days of growth. Root systems were
thoroughly washed with running tap water to remove adhering
soil particles, then were rinsed three times with SDW and blotted
to dryness. Roots were divided into top, middle, and bottom
regions, and were weighed and homogenized in SDW. Serial
dilutions were prepared on PDA plates, and the number of
colony-forming units (cfu) per gram root was determined after
24 h of incubation at 28 & 2°C.

Pathogenicity of P. capsici in Cucumber

For preparation of zoospore inoculum, P. capsici was cultured
on PDA plates at 18 £ 2°C for 7 days. Five-mm blocks
were then cut from the culture plates and placed in petri
dishes containing SDW. The petridishes were incubated in
darkness at room temperature for 72 h, followed by a 1-h cold
treatment at 4°C. Zoospore production was confirmed via light
microscopy. In order to test the pathogenicity of P. capsici
zoospores, cucumber seedlings were planted in pots containing
0, 500, 1000, or 1500 pl zoospores/pot. As 100% mortality
was found in case 1000 pnl zoospores/pot, two concentrations

(500 and 1000 pl) of zoospores suspension per pot were
fixed.

In Vitro Screening for Antagonism

To test antagonism of P. capsici by each isolate, the pathogen
and bacteria were inoculated 3 cm apart on the same agar plate.
Fungal growth on each plate was observed, and the zone of
inhibition, if present, was determined as described in Riungu et al.
(2008):

X-Y
% Inhibition of mycelial growth = = = 100

Where,

X = Mycelial growth of pathogen in absence of antagonists
Y = Mycelial growth of pathogen in presence of antagonists

Morphologies of hyphae in the vicinity of bacterial colonies
were observed under a light microscope (Meiji Techno: ML2600),
and images were recorded with a digital camera (Model: Canon
Digital IXUS 900 Ti). Each experiment was carried out following
CRD with three replications for each isolate and repeated
once.

Testing the Effect of Rhizobacterial Seed
Treatment on Phytophthora Crown Rot

of Cucumber

Cucumber seeds inoculated with each isolate were sown and
grown for 7 days in sterilized plastic pots as described
above. Seven-day-old seedlings were inoculated with 500 or
1000 1 zoospore suspension/pot as described in Deora et al.
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(2005). Inoculated plants were kept inside humid chambers for
48 h. Each experiment included 12 plants per treatment with
three replications. Surviving plants were counted 7 days after
inoculation. Percent disease incidences (PDI) were calculated
using the following formula:

Number of infected plants

PDI = x 100%

Total number of inoculated plants

Percent protection by PGPR was calculated using following
formula:

. A-B
% Protection = e x 100%

Where,
A = PDI in non-inoculated control plants
B = PDI in PGPR-treated plants.

Statistical Analysis

Statistical analyses were performed using SPSS (Version 17)
and Microsoft Office Excel 2007. A completely randomized
design was used for all experiments, with 3-12 replications
for each treatment. The data presented are from representative
experiments that were repeated at least twice with similar
results. Treatments were compared via ANOVA using the least
significant differences test (LSD) at 5% (P < 0.05) probability
level.

RESULTS

Strain Isolation and Biochemical and

Molecular Characterization

We obtained a total of 66 rhizobacterial strains from the interior
of cucumber roots. Ten isolates - PPB1, PPB2, PPB3, PPB4,
PPB5, PPBS, PPB9, PPB10, PPB11, and PPB12 - were selected
based on their ability to produce IAA, fix N,, and show in vitro
antagonism against various pathogens in a preliminary screening.
All isolates were rods producing fast-growing, round to irregular
colonies with raised elevations and smooth surfaces. Reddish
pigmentation was produced by PPB5, while no pigmentation
was produced by other isolates (Supplementary Table S1). All 10
isolates were motile and reacted positively to the Gram staining,
citrate, catalase and oxidase tests, but reacted negatively to the
KOH solubility test (Table 1).

Phylogenetic trees constructed from 16S rRNA sequences
showed that the selected isolates were mainly members
of genus Bacillus, Pseudomonas, and Stenotrophomonas
(Supplementary Figure S1). The sequences of the isolates PPB2,
PPB5, PPB8, PPBY, and PPB11 showed 99% similarity with
Bacillus subtilis and were submitted to GenBank under
accession numbers KJ690255, KMO008605, KMO008606,
KM092525 and KMO092527, respectively (Table 1). Isolate
PPB1 had 99% homology with Pseudomonas stutzeri and was
submitted to GenBank under accession number KJ959616.
Isolate PPB3 was identified as Stenotrophomonas maltophilia
with GenBank accession number KJ959617. Isolates PPB4,
PPB10, and PPB12 showed 99% sequence homology with

B. amyloliquefaciens and were submitted to GenBank under
accession number KMO008604, KM092526 and KMO092528,
respectively (Table 1).

Characterization for Plant Growth

Promoting Traits

The plant growth promoting characteristics viz., IAA production
and ARA were examined with the ten selected PGPR isolates.
The results of the assays are presented in Table 2. In the
presence of tryptophan, the isolated bacteria produced IAA in
concentrations between 26.78 g mL~! and 51.28 pg mL~L.
The highest and lowest amounts of IAA were produced by strain
PPB5 and PPB3, respectively (Table 2). Nitrogenese activity, as
determined by ARA, was not detected in PPB1 and PPB12 under
the conditions tested. However, the ARA values ranged from 1.79
to 4.9 wmole C,H4/mg protein/h for remaining isolates. PPB2
showed the highest activity, while the lowest was recorded for
PPB11 (Table 1). The other isolates also reduced acetylene in
significant amounts. Collectively, these results suggest that the
isolates possess a number of traits associated with plant growth
promotion.

Germination and Vigour Index

Improvement in Cucumber

The effect of rhizobacterial treatment upon seed germination
and vigour index of cucumber varied with different isolates. All
treatments had a significant effect on the germination rate and
vigour index compared to the control. The PGPR treatments
increased the germination rate of cucumber seeds by 8.07-15.32%
compared with the control, while the vigour index was increased
by 98.62-148.05% (Figure 1). In both germination rate and
vigour index, the maximum increase was obtained with the PPB9
treatment. These results suggest that rhizobacterial treatment
could improve the germination and vigour of cucumber seeds.

Plant Growth Promotion in Cucumber

All isolates significantly increased the growth of cucumber
compared to non-inoculated controls. Treatment with isolate
PPB12 produced the maximum shoot and root lengths of 18.23
and 20.47 cm, corresponding to increases of 66.02 and 65.63%
above control treatments (Figure 1). However, the maximum
shoot and root weight enhancement was observed in PPBS8-
treated plants. Treatment with isolate PPB8 produced shoot fresh
and dry weights of 5.29 and 0.60 g plant~!, which were 79.32 and
100.00% higher than those of control plants. Similarly, treatment
with isolate PPB8 produced root fresh and dry weights of 3.03 and
0.32 g plant™!, corresponding to increase of 91.77 and 128.57%
above control treatments.

N Concentration in Cucumber Plants

The N content in plant roots and shoots significantly increased
due to inoculation treatments with rhizobacterial isolates
(Figure 2). The shoot and root N content showed similar trends
in response to different treatments; hence, the N content is
reported as the total combined shoot and root N. The total N
content in PGPR-treated plants ranged from 3.66 mg g~ ! to
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TABLE 1 | Biochemical and molecular analysis of the endophytic bacterial isolates.

Strains Biochemical analysis Molecular analysis

KOH Test Gram Citrate Catalase Oxidase 1AA (ig/ml) ARA (umole CoHs mg Identification based on 16S

reaction Test Test Test protein/h) rRNA gene sequencing

PPB1 — +ve + + + 39.67 + 0.12* 0.00 + 0.00* Pseudomonas stutzeri
PPB2 - +ve + + + 41.43 £0.71 4.90 £0.23 Bacillus subtilis
PPB3 - +ve + + + 26.78 £+ 0.69 4.55 £0.38 Stenotrophomonas maltophilia
PPB4 - +ve + + + 50.18 £ 0.23 241 +£012 B. amyloliquefaciens
PPB5 - +ve + + + 51.28 £ 0.41 2.90 £0.17 B. subtilis subsp. subtilis
PPB8 - +ve + + + 44.41 £0.22 4.79 £ 0.01 B. subtilis
PPB9 - +ve + + + 41.75 £ 0.93 3.95 £0.02 B. subtilis subsp. spizizenii
PPB10 - +ve + + + 38.43 + 0.82 1.83 £ 0.01 B. amyloliquefaciens
PPB11 - +ve + + + 40.30 + 0.23 1.79 £ 0.01 B. subtilis subsp. subtilis
PPB12 - +ve + + + 29.25 £ 0.97 0.00 £ 0.00 B. amyloliquefaciens

‘—’ corresponds to negative response; ‘+ve’ and ‘+’ correspond to positive responses. *Values are the Mean + SE. The experiment was repeated twice with three

replicates for each isolate.

TABLE 2 | Comparative performance of PGPR in mycelia growth inhibition of P. capsici and Phytophthora crown rot disease suppression in cucumber

plants.
Treatments Pathogen suppression? (% P. capsici Disease suppression®(% Protection®)
mycelial growth inhibition)
500 p.l Zoospores/potd 1000 .1 Zoospores/pot

PPB1 67.16 + 0.68e* 58.33 + 0.66¢c 33.33 +£2.18b
PPB2 70.01 £+ 0.85g 69.45 + 0.80e 38.84 + 1.70c
PPB3 69.08 + 0.91f 50.00 + 1.69b 50.00 + 1.54e
PPB4 62.07 £ 0.11¢c 70.33 £ 2.37f 45.68 + 2.37d
PPB5 65.94 + 0.53d 50.00 + 0.57b 33.33 + 1.69b
PPB8 82.05 + 0.55f 83.33 + 0.56h 77.78 £ 2.259
PPB 9 90.08 + 0.46k 66.67 + 1.87d 66.67 + 2.93f
PPB10 73.08 +£ 0.83h 73.67 £1.53g 66.67 + 0.52f
PPB11 58.32 £ 0.12b 88.83 + 1.67i 86.08 &+ 2.23h
PPB12 80.53 + 0.69i 50.00 + 1.15b 33.33 + 0.43b
Control 0.00 + 0.00a 0.00 £ 0.00a 0.00 + 0.00a

*Values are the means + SE (n = 12). Data within the same column followed by different letters are significantly different.
aPathogen suppression was measured as percent inhibition of radial growth of P. capsici by antagonistic PGPR in dual plate assay.
bDisease suppression was expressed as percent protection due to treatment with PGPR relative to control (non-inoculated).
CProtection (%) = [(A — B)/A] x 100 in which, A = PDI in non-inoculated control plants and B = PDI in PGPR-treated plants.
dSeven-day-old seedlings were inoculated with 500 or 1000 ! zoospore suspension/pot.

The data presented are from representative experiments that were repeated twice with similar results.

8.25 mg g~ ! N compared with 2.57 mg g~ ! N for non-inoculated
control plants, a 42-221% increase in PGPR-treated plants over
control plants (Figure 2). The highest N content was recorded
in plants grown under PPB2 followed by PPB8, PPB3, PPB9 and
other treatments.

Root Colonization

The ability to colonize the root system is essential for
rhizobacteria to be effective plant growth promoters. The root
colonization assays showed that all the tested isolates successfully
colonized the roots of cucumber plants as tested after only 7 days
of seedling growth. The inoculated populations were even higher
on 21-day-old roots. Nevertheless, the root population densities
varied widely among the isolates (Figure 3). The largest root
populations were observed for strain PPB2, followed by PPB5 and

PPB9 (Figure 3). These results demonstrate specific interactions
between cucumber plants and the rhizobacterial isolates.

In vitro Antagonism of Phytophthora
capsici

All rhizobacterial isolates exhibited significant antagonistic
activity against P. capcisi on PDA. The largest inhibition zone
was observed with PPB9 (90.08%) followed by PPB8 (82.05%)
(Table 2). Distinct morphological alterations in P. capcisi
hyphae were also detected during dual cultures with the
rhizobacterial isolates. Hyphal features observed in the vicinity
of bacterial colonies included irregular and excessive branching,
abnormal swelling of hyphal diameters, unusually long and
pointed hyphal tips, and vacuolization leading to hyphal lysis
(Figure 4).
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FIGURE 1 | Effect of plant growth promoting rhizobacteria (PGPR) treatments on seed germination, vigour and growth characteristics of cucumber
seedlings grown in pots under axenic conditions. Error bars are SE from three replicates per same treatment. Data are presented as % increase in germination,
vigour index, shoot length, root length, shoot fresh weight, root fresh weight, shoot dry weight, and root dry weight of PGPR-treated cucumber seedlings relative to
non-treated control seedlings. The experiment was repeated twice.

mShoot N mRoot N = Total Plant N

N Content (mg g-1)
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FIGURE 2 | Effect of inoculation with PGPR strains on shoot and root N contents of cucumber plants. Error bars are SE from three replicates that received
the same treatment. Data represents total shoot and root N concentration (mg g~ '), each from 3 sets of 8-10 shoots and roots sampled following harvesting the
cucumber plants. Within each frame different letters indicate statistically significant difference between treatments (LSD test, P < 0.05). The experiment was
repeated twice.

Suppression of Phytophthora Crown Rot Compared with the control, the average disease protection
in Cucumber at 500 pl zoospore suspension ranged from 50 to
88.83% after treatment with rhizobacterial isolates, while

All the selected PGPR strains showed consistent suppression ) )
protection at 1000 pl zoospore suspension ranged from

of Phytophthora crown rot in the greenhouse experiments.
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FIGURE 3 | Population density (cfu) of different PGPR strains from roots of 7-, 14-, and 21-day-old cucumber seedlings. Error bars are SE from three
replicates per treatment. Data are presented as numbers of c.f.u. g~ fresh weight, each from three sets of 5-8 whole roots. The data presented are from
representative experiments that were repeated twice with similar results.
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FIGURE 4 | In vitro interactions of PGPR strains with P. capsici on PDA plates, including morphological alterations in P. capsici hyphae.

33.33 to 86.08% (Table 2). At both inoculum rates, DISCUSSIONS

isolate PPBI11 showed the highest disease reduction,

and the lowest disease reduction was obtained with PGPR colonizing the surface or inner part of roots play
PPB5. important beneficial roles that directly or indirectly influence
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plant growth and development (Glick et al., 1999; Gerhardt
et al,, 2009). In this study, 10 PGPR classified as Pseudomonas
stutzeri (PPB1), B. subtilis (PPB2, 5, 8, 9, and 11), S. maltophilia
(PPB3), and B. amyloliquefaciens (PPB4, 10, and 12) were
isolated from the rhizosphere of cucumber plants. All the
isolated PGPR were gram positive and motile rods, and tested
positive for the ability to utilize citrate as a carbon source.
Flagellar motility and citrate utilization are both thought
to play a significant role in competitive root colonization
and maintenance of bacteria in roots (Turnbull et al., 2001;
Weisskopf et al., 2011). These strains also tested positive
for oxidase and catalase activity. Standard microbiology
references suggest that S. maltophilia is an oxidase-negative
bacterium (Ryan et al., 2009). Recent data, however, suggest
that some S. maltophilia are oxidase-positive (Carmody
et al, 2011), and this was also the case for isolate PPB3
in this study. Our catalase test results corroborate prior
studies showing that B. subtilis, Pseudomonas stutzeri, and
B. amyloliquefaciens are catalase-positive (Merchant and
Packer, 1999; Kamboh et al., 2009). Bacillus and Pseudomonas
are the most frequently reported genera of PGPR (Laguerre
et al, 1994; Hallmann and Berg, 2006; Zahid et al, 2015).
Similarly, most isolates in this study belong to genus
Bacillus.

Treatment of cucumber seeds with the selected isolates
significantly improved seedling emergence and growth.
Several different mechanisms have been suggested for similar
observations using other PGPR strains: PGPR might indirectly
enhance seed germination and vigour index by reducing the
incidence of seed mycoflora, which can be detrimental to plant
growth (Begum et al., 2003). Duarah et al. (2011) found that
amylase activity during germination was increased in rice and
legume after inoculation with PGPR. The amylase hydrolyzes
the starch into metabolizable sugars, which provide the energy
for growth of roots and shoots in germinating seedlings (Beck
and Ziegler, 1989; Akazawa and Nishimura, 2011). One of the
most commonly reported mechanisms is the production of
phytohormones such as TAA (Patten and Glick, 2002). All the
selected isolates in this study produced IAA. Similar studies
have shown that IAA production is very common among PGPR
(Yasmin et al, 2004; Ng et al., 2012; Zahid et al, 2015). In
fact, many isolates in this study produced higher IAA than
previously reported strains (Yasmin et al., 2004; Banerjee et al.,
2010; Ng et al., 2012). This is an important mechanism of plant
growth promotion because IAA promotes root development
and uptake of nutrients (Carrillo et al, 2002). It has long
been proposed that phytohormones act to coordinate demand
and acquisition of nitrogen (Kiba et al., 2011). Therefore,
enhanced N-content found in inoculated plants could be
due to increased N-uptake by the roots caused by hormonal
effects on root morphology and activity. Nitrogen fixation may
also play a role in plant growth promotion. All the selected
isolates in this study except PPB1 and PPB12 showed acetylene
reduction activity, which is a widely accepted surrogate for
nitrogenase activity and N,-fixing potential (Andrade et al.,
1997). However, defensible proof of N-fixation needs the
application of >N as tracer of soil N or as °Nj-gas and the

demonstration of significantly changed N-isotope-labeling
in the plant biomass. Transfer of N between diazotrophic
N-fixing rhizobacteria and the roots of several crops has been
demonstrated (Islam et al., 2009; Abbasi et al., 2011; Tajini
et al, 2012; Verma et al,, 2013). It is interesting to note that
in this study all isolates, including the two that demonstrated
no acetylene reduction activity, enhanced the N content of
cucumber. This suggests that while N, fixation may be an
important mechanism of plant growth promotion, there may
also be alternate mechanisms, like hormonal interactions
and nutrient uptake or pathogen suppression, which might
be more pronounced than the contribution of nitrogen
fixation.

Results from our study indicate that PGPR strains
applied as a seed treatment significantly reduced disease
severity of Phytophthora crown rot on cucumber plants.
The fungal antagonists Pseudomonas stutzeri, B. subtilis,
B. amyloliquifaciens, and S. maltophilia were have been
shown to be effective biocontrol agents in prior studies
(Dunne et al., 2000; Zhang and Yuen, 2000; Dal Bello et al,
2002; Berg et al, 2005; Islam and Hossain, 2013; Erlacher
et al, 2014). Competitive root tip colonization by PGPR
strains might play an important role in the efficient control
of soil-borne diseases. The crucial colonization level that
must be reached has been estimated at 10°-10% cfu g~! of
root in the case of Pseudomonas sp., which protect plants
from Gaeumannomyces tritici or Pythium sp. (Haas and
Défago, 2005). Most of our selected strains were efficient
colonizers of roots, since CFU counts for tested strains were
more than 107 cfu g=! root. However, the former study
examined the root colonization by introduced bacteria under
natural field soil conditions, while our study did under
axenic conditions. In view of that, comparison between root
colonization data obtained under these two conditions may
not be accurate. Biological control of P. capsici can also
result from antibiosis by the bacteria (Nakayama et al., 1999;
Kawulka et al., 2004; Chung et al.,, 2008; Lim and Kim, 2010;
Mousivand et al., 2012; Islam and Hossain, 2013). All the
selected isolates exhibited moderate to high antagonistic activity
against P. capsici in vitro, and caused clear morphological
distortions such as abnormal branching, curling, swelling
and lysis of the hyphae at the interaction zone in dual
cultures. Excessive branching and curling accompanied by
marked ultrastructural alterations including invagination
of the hyphal membrane, disintegration or necrosis of
hyphal cell walls, accumulation of excessive lipid bodies,
enlarged and electron-dense vacuoles, and degradation of
cytoplasm were potentially due to bacterial production of
antibiotics and lytic enzymes (Deora et al, 2005; Islam and
von Tiedemann, 2011). These antibiotics and lytic enzymes
cause membrane damage and are particularly inhibitory to
zoospores of Oomycete (de Souza et al., 2003; Beneduzi et al.,
2012). Induced systemic resistance is most likely another
mechanism by which bacteria suppress P. capsici (Zhang et al.,
2010).

In the present study, we have isolated 10 new strains of
PGPR from indigenous cucumber plants. These strains possessed
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several plant growth promoting traits as well as antifungal
activity, and were found to be efficient in controlling
Phytophthora crown rot of cucumber seedlings. In vitro
and in vivo evidence suggest that the selected isolates
benefit cucumber plants via multiple modes of action
including antibiosis against phytopathogens, competitive
colonization, and plant growth promotion. This reveals the
potential of these strains for biofertilizer applications and
commercial use as biocontrol agents in the field. However,
from the estimation of a PGPR-potential to a biofertilizer
application, it requires a long way of greenhouse experiments
with pot filled with different type of soils and finally,
field experiments to find out the optimum formulations
for the inoculums. Thus, the inoculants can perform
close to its optimum potential. Future studies concerning
commercialization and field applications of integrated stable
bio-formulations as effective biocontrol strategies are in
progress.
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