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Several examples of highly modified antimicrobial peptides have been described.
While many such peptides are non-ribosomally synthesized, ribosomally synthesized
equivalents are being discovered with increased frequency. Of the latter group, the
lantibiotics continue to attract most attention. In the present review, we discuss the
implementation of in vivo and in vitro engineering systems to alter, and even enhance,
the antimicrobial activity, antibacterial spectrum and physico-chemical properties,
including heat stability, solubility, diffusion and protease resistance, of these compounds.
Additionally, we discuss the potential applications of these lantibiotics for use as
therapeutics.
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INTRODUCTION
Given that antibiotic resistance has now reached a crisis point, novel compounds and innovative
methods are urgently required to arrest the spread and development of drug-resistant infections
in both the nosocomial and community environments. Ideally, such novel substances should
exhibit distinctly different mechanisms of action to currently used chemotherapeutics in order
to decrease resistance development. Ribosomally synthesized antimicrobial peptides produced
by bacteria (bacteriocins) constitute an emerging class of natural products that have attracted
considerable interest as promising alternatives to existing antibiotics (Sahl and Bierbaum, 2008).
Within this diverse group of peptides, the lantibiotics, i.e., class I bacteriocins which contain the post-
translationally modified amino acids lanthionine and methyllanthionine, have become the focus of
many biomedical and pharmaceutical research groups due to their demonstrable high potency in
vitro, multiple modes of action and ability to destroy target cells rapidly (Cotter et al., 2005; Cavera
et al., 2015). In general, lantibiotics exhibit activity against Gram positive bacteria. Importantly, this
includes many drug resistant targets including methicillin resistant Staphylococcus aureus (MRSA),
vancomycin intermediate S. aureus (VISA), vancomycin resistant enterococci (VRE), Streptococcus
pneumoniae and Clostridium difficile, amongst others (Cotter et al., 2013). Furthermore, several
lantibiotic peptides have demonstrated excellent in vivo activities and have progressed toward clinical
evaluation for the treatment of life-threatening diseases (Dawson and Scott, 2012; Sandiford, 2015).
Indeed, these and a range of other desirable features make them suitable for use in human and
veterinary medicine and also in the pharmaceutical industry (Dischinger et al., 2014). However,
despite these promising attributes, there are a number of limitations that has prevented their
more widespread use, including instability and/or insolubility at physiological pH, low production
levels and susceptibility to proteolytic digestion. The implementation of multiple technologies,
including genome mining as well as high-throughput screening strategies in combination with in
vivo and in vitro expression systems has provided a wealth of information relating to the widespread
existence, structural diversity and functionality of lantibiotics while facilitating the identification
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FIGURE 1 | Representative structures of various single and two-component lantibiotics. Post translational modifications are indicated as follows: Abu:
2-aminobutyric acid, Ala-S-Ala: lanthionine, Abu-S-Ala: 3-methyllanthionine, Dha: dehydroalanine, Dhb: dehydrobutyrine. D-Ala residues (in lacticin 3147)
are shaded gray.

of structural regions that can be targeted to enhance their
biological and physicochemical properties. The present
review will focus on recent developments with regard to these
achievements.

LANTIBIOTICS: THE CASE FOR
THERAPEUTIC USE (IN VITRO
AND IN VIVO POTENCY)
New antimicrobials that possess novel modes of action,
particularly against drug resistant organisms so that they
can be specifically targeted for clinical applications, are
required as a matter of urgency. In this regard lantibiotics
hold considerable potential as a consequence of their unusual
structure, unique mechanisms of action and their potency
against multi-drug resistant bacteria. Today, close to 100 of
these bioactive peptides have been described, the majority of
which are produced by Gram-positive bacteria (Dischinger
et al., 2014). The common feature that links all lantibiotics is the
presence of a number of distinctive amino acids which result
from enzymatically mediated post-translational modifications,
including dehydration and cyclisation, leading to the formation

of the eponymous (methyl)lanthionine bridges. These bridges
convert the linear peptide chain into a polycyclic form giving
structure and function to the peptide. It should be noted that only
those peptides that display antimicrobial activity within the larger
family of lanthionine-containing peptides or lanthipeptides are
termed lantibiotics.

Many lantibiotics exert their antimicrobial action through
complexation with lipid II, an essential precursor of the bacterial
cell wall, either by inhibiting cell wall synthesis through
sequestration of lipid II and/or by disruption of membrane
integrity and pore formation (Breukink and de Kruijff, 2006).
Indeed, the prototypical and best studied lantibiotic nisin
performs both of these functions as a consequence of two distinct
structural domains located at the N- and C-termini (Figure 1).
It has been established that the A, B, and C rings form a
“cage-like” enclosure that facilitates binding of the pyrophosphate
moiety of lipid II, thus inhibiting cell wall synthesis (Hsu
et al., 2004) This binding enhances the ability of the C-terminal
segment, containing rings D and E, to form pores in the cell
membrane, resulting in the rapid efflux of ions and cytoplasmic
solutes (Wiedemann et al., 2001). This mechanism of action
is not common to all lantibiotics, and some of them lack the
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TABLE 1 | A Selection of Lantibiotics and their Potential Therapeutic Applications.

Lantibiotic Commercially relevant
targets

In vivo
tests

Potential applications Reference

Nisin Gram positive bacteria X Treatment of staphylococcal (including MRSA)
and enterococcal infections. Treatment of
bacterial mastitis. Oral hygiene, deodorants.
Anti-cancer

Mota-Meira et al. (2000); Brumfitt
et al. (2002); Cotter et al. (2005);
Piper et al. (2009b); Joo et al.
(2012); Kamarajan et al. (2015)

Mersacidin MRSA VRE, C. difficile X Treatment of staphylococcal (including MRSA)
and enterococcal infections. Treatment of CDAD

Niu and Neu (1991); Hoffmann
et al. (2002); Appleyard et al.
(2009)

Actagardine MRSA, VRE, C. difficile X Treatment of staphylococcal (including MRSA)
and enterococcal infections. Treatment of CDAD

Hoffmann et al. (2002)

Deoxyactagardine/NVB302 C. difficile X Treatment of C. difficile infections Dawson and Scott (2012)
Gallidermin/Epidermin Propionibacteria,

Staphylococci, Streptococci
X Skin disorders including acne, eczema, folliculitis

and impetigo
Bonelli et al. (2006)

Pinensins Yeast/fungi Antifungal/yeast Mohr et al. (2015)
Planosporicin MRSA, VRE, Streptococci X Treatment of staphylococcal (including MRSA)

and enterococcal infections including VRE
Castiglione et al. (2007)

Microbisporicin MRSA, VISA, VRE, C. difficile X Treatment of staphylococcal (including MRSA and
VISA) and enterococcal infections including VRE.
Acne

Castiglione et al. (2008)

Mutacin B-Ny266 Multi-drug resistant bacteria X Treatment of multi-drug resistant bacteria
including MRSA and VRE

Mota-Meira et al. (2000)

Lacticin 3147 Gram positive bacteria X Treatment of bacterial mastitis. staphylococcal
and enterococcal infections including VRE. Acne

Galvin et al. (1999); Lawton et al.
(2007); Piper et al. (2009b)

Salivaricin B Streptococci including S.
pyogenes and S. sobrinus

X Treatment of streptococcal infections with
emphasis on the causative agents of sore throats
(caused mainly by S. pyogenes) and dental caries
(caused in part by S. sobrinus).

Tagg (2004); Wescombe et al.
(2009)

Duramycin Increase chloride transport
and fluid secretions

X Treatment of Cystic Fibrosis, ocular diseases and
disorders

Grasemann et al. (2007); Oliynyk
et al. (2010)

ability to elicit pores or to bind lipid II or both, but can still
exhibit antimicrobial activity (Pag and Sahl, 2002). The poor
activity of lantibiotics toward Gram negative bacteria is due
to the outer membrane (OM) of the Gram negative cell wall
which acts as a barrier for the cell, restricting the access of
the peptides to the cytoplasmic membrane (Nikaido and Vaara,
1985).

Lantibiotics have been classified on the basis of their
biosynthetic pathways (Willey and van der Donk, 2007).
According to this scheme, class I lantibiotics are those modified
by two separate enzymes, a LanB (dehydratase) and LanC
(cyclase); class II are modified by a single LanM enzyme with
both dehydratase and cyclase activity. The third and fourth
classes of lanthipeptides are also modified by a single enzyme
(general nomenclature LanKC for class III and LanL for class IV;
van der Donk and Nair, 2014). Most of the class III lanthipeptides
reported thus far have no or weak antimicrobial activities, but
some have been shown to possess anti-allodynic/antinociceptive
activity (Meindl et al., 2010; Iorio et al., 2014), antiviral activity
(Férir et al., 2013) or morphogenetic activities (Willey and
Gaskell, 2011). The designation Lan is used generically to refer
to proteins associated with the biosynthesis of, or immunity
to, lantibiotics. A typical lantibiotic operon will also contain
genes encoding enzymes to carry out transport/processing
(LanT), immunity (LanI and LanFEG), proteolytic processing
(LanP) as well as the structural gene (LanA). Other enzymes,
responsible for the formation of less common residues may

also be present. Importantly, individual components of the
lantibiotic biosynthetic machinery show even greater flexibility
as demonstrated by their activity in vitro (Li et al., 2009).

ACTIVITY OF LANTIBIOTICS IN VITRO
Although lantibiotics such as nisin have been in use for decades as
safe and natural food preservatives (Delves-Broughton, 2005), the
continued escalation of multi-drug resistant bacterial infections
has led to a re-appraisal of their capacity for use against life-
threatening infections. Amultitude of studies have highlighted the
in vitro potency of lantibiotics against nosocomial pathogens (the
reader is directed to a comprehensive review: Piper et al., 2009a).
Many lantibiotics, including lacticin 3147, mutacins B-Ny266
and 1140, nisin, mersacidin, epidermin, Pep5, and planosporicin
exhibit activity against clinically-relevant targets (Table 1) such
as MRSA, VRE, Propionibacterium acne, Streptococcus mutans,
Streptococcus pyogenes, S. pneumoniae, C. difficile, Listeria, and
Bacillus species (Severina et al., 1998; Galvin et al., 1999; Mota-
Meira et al., 2000; Brumfitt et al., 2002; Rea et al., 2007; Ghobrial
et al., 2009; Piper et al., 2009b). Notably, both Pep 5 and
epidermin successfully inhibit the adhesion of staphylococcal cells
to the surfaces of siliconized catheters (Fontana et al., 2006).
Although it is the general view that lantibiotics exhibit less
potential as chemotherapeutics to combat infections with Gram-
negative organisms, lantibiotics including mutacin B-Ny266 are
selectively active against a few strains ofNeisseria andHelicobacter
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(Mota-Meira et al., 2000), while purified nisin displays activity
against Escherichia coli (Kuwano et al., 2005).

Nisin has also been shown to effectively inhibit spore outgrowth
including spores ofBacillus anthracis (Gut et al., 2008) and those of
C. difficile (Nerandzic and Donskey, 2010). Additionally, studies
have revealed that the lantibiotic gallidermin efficiently prevents
biofilm formation in both S. aureus and S. epidermidis species
(Saising et al., 2012).

Recently, an intriguing and novel (sub-)class of lantibiotics
termed pinensins were found to be highly active against many
filamentous fungi and yeasts but displayed only weak antibacterial
activity. Not only do pinensin A and pinensin B represent the
first examples of a lantibiotic fungicide, they are also the first
lantibiotics to be isolated from a Gram-negative native producer
(Mohr et al., 2015).

LANTIBIOTICS DEMONSTRATE IN VIVO
POTENCY
While the in vitro success of a chemotherapeutic agent does not
always necessarily translate to in vivo efficacy, there have been
a number of encouraging studies to suggest that this may not
be a major shortcoming of lantibiotics. For instance, mutacin
B-Ny266 was shown to be as active as vancomycin against
MRSA in vivo (Mota-Meira et al., 2005), mersacidin was able
to effectively eradicate an MRSA infection in a mouse rhinitis
model (Kruszewska et al., 2004) and Nisin F, a natural nisin
variant, was also found to successfully control S. aureus infection
in rats (De Kwaadsteniet et al., 2009). Similarly, microbsporicin
(Figure 1) (NAI-107) was evaluated for its therapeutic potential
in nosocomial infection and demonstrated efficacy against MRSA
in a rat endocarditis model (Jabes et al., 2011). The efficacy
of MU1140 (mutacin 1140) has also been investigated in vivo
(Ghobrial et al., 2009) and is currently in pre-clinical development
for the treatment of Gram positive infections. NVB302, a
derivative of deoxyactagardine B, is currently undergoing phase
I clinical trials as a therapeutic for the treatment of C. difficile
infections due to its selective targeting of this organism over the
predominantly Gram negative normal gut flora (Dawson and
Scott, 2012). Investigations into the use of lantibiotics to control
the microorganisms responsible for dental plaque, halitosis and
“sore throat” infections have also yielded promising results
(Hillman, 2002; Burton et al., 2006; Dierksen et al., 2007).

Some lantibiotics possess additional bioactivities that hold
promise for therapeutic application. A smaller subcategory of
lantibiotics, such as cinnamycin and duramycin, have been
found to influence eukaryotic metabolic functions by binding
phosphatidylethanolamine in cell membranes and, in turn,
inhibiting the enzyme phospholipase A2 (Marki et al., 1991). In
addition to this activity, duramycin demonstrated efficacy in the
treatment of cystic fibrosis by inhalation (Grasemann et al., 2007)
as a result of its ability to stimulate chloride secretion in bronchial
epithelial cells (Oliynyk et al., 2010).

Remarkably, the first instance of a lantibiotic, or indeed any
bacteriocin, to prevent the growth of cancer cells has been
confirmed. In a study by Joo and coworkers, nisin Z was shown
to be effective in the treatment of head and neck squamous

cell carcinoma (HNSCC; Joo et al., 2012). In subsequent mouse
trials involving a highly purified form of nisin Z, reduced
tumorigenesis in vivowas observed and long-term treatment with
nisin Z extended survival. In addition, nisin treatedmice exhibited
normal organ histologywith no evidence of inflammation, fibrosis
or necrosis (Kamarajan et al., 2015).

BIOENGINEERING AND SYNTHETIC
BIOLOGY- GENERATING MORE
EFFECTIVE LANTIBIOTICS
Bioengineering (engineering within the cell) and the use of
synthetic biology-based (in vitro engineering) approaches
have been important for advancing our understanding of the
fundamentals of bacteriocin activity and structure–function
relationships (these approaches are the subject of a number
of recent comprehensive reviews: Tabor, 2014; Escano and
Smith, 2015). However, there is also a steadily growing
number of engineered lantibiotic peptides that demonstrate
enhanced functionalities (activity and/or stability) which
make them more attractive from a clinical perspective (Cotter
et al., 2013). The following provides some recent examples of
bioengineered lantibiotics exhibiting enhanced pharmacological
and physicochemical properties as well as developments in
genetic systems to increase peptide yields.

Several bioengineered variants of the prototypical lantibiotic
nisin have been generated that provide excellent examples of
how lantibiotic functionality can be modulated by as little as
one residue change. The nisin Z derivatives N20K, M21K, N27K,
H31K generated by protein engineering displayed improved
solubility, particularly at alkaline pH values where the solubility of
the parent nisin is particularly reduced (Rollema et al., 1995; Yuan
et al., 2004). Furthermore, the consequences of effecting single
residue alterations at distinct locations in nisin has generated
variants that exhibit not only improved antimicrobial activity
against strains of clinical relevance (MRSA, VRE, VISA, MRSP,
and C. difficile) but has also brought about the widening of its
antimicrobial spectrum to include some Gram negative bacteria
(Field et al., 2008, 2012, 2015; Molloy et al., 2013). More dramatic
substitutions at the location of rings A andB at theN-terminal end
of nisinA revealed that the various activities of nisin can be altered
by changing the amino acid arrangement in this region of the
peptide (Rink et al., 2007). The hinge-region of nisin has also been
the subject of mutagenesis resulting in variants with enhanced
antimicrobial activity (Field et al., 2008; Healy et al., 2013) as
well as derivatives with an enhanced ability to diffuse through
complex polymers (Rouse et al., 2012). In both mutacin 1140
and nukacin ISK-1 peptides, single residue changes brought about
a significant increase in activity against several Gram positive
strains(Islam et al., 2009; Chen et al., 2013). Similarly, mutagenesis
of the mersacidin gene was ultimately successful in that several
variants were identified which exhibited enhanced activity against
a range of different targets including clinically relevant MRSA,
VRE and S. pneumoniae (Appleyard et al., 2009).

Generating enhanced variants of two-component lantibiotics
presents an even greater challenge given that two peptides are
required to work jointly in synergy. However, a lacticin 3147
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derivative with enhanced activity against a pathogenic strain of S.
aureuswas recently identified (Field et al., 2013), the first occasion
such an increase in antibacterial properties has been observed for
bioengineered two-component lantibiotics.

Synthetic biology approaches are another promising means to
provide insights into structure-stability relationships and generate
novel derivatives with improved function. Chemical synthesis
enables the limitations of the modification machinery to be
bypassed, extending the range of analogs that can be produced.
For example, deoxyactagardine B is a single peptide lantibiotic
that is rigid, compact and globular and differs from actagardine
(Figure 1) by two amino acids and the absence of a sulfoxide
bond (Boakes et al., 2010). A synthetically introduced C-terminal
modification (1, 7 diaminoheptane) produced a variant, NVB302,
that displayed greater solubility and activity compared to the
parent molecule. NVB302 is now in phase I clinical trials for
the treatment of C. difficile infections (Dawson and Scott, 2012).
It has also been established that lantibiotics are susceptible to
oxidation of the sulfur-containing lanthionine and this can lead
to sharp decreases in antimicrobial activity. In the case of lactocin
S, lanthionines were replaced with diaminopimelate to produce
several analogs, one of which revealed greater stability whilst still
retaining 100% biological activity (Ross et al., 2012).

Chemical synthesis methods were employed to produce
enhanced analogs of the lantibiotic epilancin 15X (Knerr and van
der Donk, 2012). A novel approach termed in vitromutasynthesis
has produced improved variants of the class II lantibiotic lacticin
481. Here, non-standard amino acids were introduced into
the structural peptide by organic synthesis, and subsequently
modified in vitro with purified LctM to generate derivatives
with superior specific activity against a target strain (Levengood
et al., 2009). Notably, synthetic chemistry approaches were
employed to generate hybrids of nisin and vancomycin that
demonstrated a 40-fold increase in potency compared to each
of the components separately (Arnusch et al., 2008). Similarly,
the nisin N-terminus (1–12) was synthetically modified by the
coupling of simple membrane-active lipids to create biologically
active and proteolytically stable hybrids (Koopmans et al., 2015).

Regardless of these bioengineering successes, one concern
that remains to be tackled is that of production. Indeed,
the discovery, study and application of lantibiotics is often
compromised by limited, or the absence of, production of these
peptides by the native producer, a problem which is further
compounded when working with bioengineered derivatives.
However, a number of instances have demonstrated that quite
the opposite effect can be achieved in terms of production. In the
case ofmutacin 1140 and nukacin ISK-1, single residue alterations
did not increase specific activity but instead increased peptide
production by up to fourfold (Islam et al., 2009; Chen et al.,
2013). Importantly, a recent study involving synthetic biology
approaches describes the development of a genetic system that
facilitates significant overproduction of nisin (Kong andLu, 2014).
Although heterologous expression of lantibiotic peptides (and
their bioengineered derivatives) has been demonstrated in the
Gramnegative host E. coli on several occasions (Nagao et al., 2007;
Caetano et al., 2011, 2014; Shi et al., 2012; Basi-Chipalu et al.,
2015), a recent study describes a multigene assembly strategy for

the overexpression of the two-component lantibiotic lichenicidin
in E. coli (Kuthning et al., 2015). Such systems may also help
in attaining higher yields to simplify isolation of and improve
cost-efficiency of novel derivatives that are often compromised by
limited production.

A major drawback that has yet to be overcome with respect
to therapeutic use is the sensitivity of lantibiotics to proteolytic
cleavage by intestinal enzymes. For example, nisin, pep5 and
epidermin have been shown to be susceptible to the proteases
trypsin and chymotrypsin (Jarvis and Mahoney, 1969; Bierbaum
et al., 1996). Bioengineering strategies could be employed to
replace the residues that serve as recognition sites by these and
other digestive enzymes and potentially overcome the issue of
vulnerability to proteolytic breakdown in the gastrointestinal
tract. Indeed, the recent discovery of the class II lantibiotic
pseudomycoicidin (which was found to be resistant to trypsin)
provides the perfect example for this approach. A trypsin cleavage
site which is located in the conserved lipid II binding motif, is
protected by the presence of at least one thioether ring structure.
This was confirmed by experiments with site-directed mutant
peptides where the removal of thioether forming Cys residues
resulted in the establishment of protease sensitivity (Basi-Chipalu
et al., 2015).

Lastly, it should be remarked that the efficacy of individual
lantibiotics could be further boosted through combination
with other antimicrobials or membrane-active substances. For
example, nisin displayed synergistic activity with the antibiotics
colistin and clarithromycin against Pseudomonas aeruginosa
(Giacometti et al., 2000) and with ramoplanin and other non-
β-lactam antibiotics against many strains of MRSA and VRE
(Brumfitt et al., 2002). Similarly, nisin-ceftriaxone and nisin-
cefotaxime were found to be highly synergistic against clinical
isolates of Salmonella enterica serovar Typhimurium as evident by
checkerboard test and time-kill assay (Rishi et al., 2014).

CONCLUSION
Lantibiotics possess many of the attributes essential for the
treatment of infections caused by multi-drug resistant bacteria
and their potential for use as alternatives to traditional antibiotic
therapies has been mooted for decades. While greater than 100
lantibiotic peptides have been described, not all of these have been
characterized in great depth and so many may possess traits of
commercial value. Indeed, as the number of microbial genome
sequences has increased dramatically, an even larger collection of
new lantibiotic biosynthetic gene clusters has been revealed. These
clusters can be applied directly or, the information gained from
their analysis, can be used indirectly to guide the bioengineering
of new and existing peptide structures.

Finally, although nisin remains the only lantibiotic that
is extensively exploited, its full use as a therapeutic entity
has not yet been fulfilled, in part due to its low solubility
and stability at physiological pH. It is thus notable that a
broad range of technologies have been developed for the
engineering of lantibiotics and the past decade has seen
several bioengineering studies describe the generation of peptide
derivatives including nisin with enhanced functionality in terms
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of specific activity, spectrum of activity, solubility and/or
temperature and pH stability. Critically, genetic systems are in
continuous development to increase yields of peptide that may
aid commercial viability. The further application of these systems
to enhance nisin and other lantibiotics has the potential to lead
to the development of novel derivatives for therapeutic use.
Additionally, bioengineering in combination with semi-synthesis
will expand structural diversity still further. It is thus likely
that these peptides will be only the first of many generations
of bioengineered lantibiotic and lantibiotic-like peptides. Given
these recent developments and the fact that several lantibiotics
are currently in clinical and preclinical trials reinforces our belief
that bioengineered lantibiotics can contribute to a solution to
antibiotic resistance across a broad range of bacterial pathogens.
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