AUTHOR=Grande Rossella , Di Marcantonio Maria C. , Robuffo Iole , Pompilio Arianna , Celia Christian , Di Marzio Luisa , Paolino Donatella , Codagnone Marilina , Muraro Raffaella , Stoodley Paul , Hall-Stoodley Luanne , Mincione Gabriella TITLE=Helicobacter pylori ATCC 43629/NCTC 11639 Outer Membrane Vesicles (OMVs) from Biofilm and Planktonic Phase Associated with Extracellular DNA (eDNA) JOURNAL=Frontiers in Microbiology VOLUME=Volume 6 - 2015 YEAR=2015 URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2015.01369 DOI=10.3389/fmicb.2015.01369 ISSN=1664-302X ABSTRACT=Helicobacter pylori persistence is associated to its capability of developing biofilms as a response to environmental stress and changes. Extracellular DNA (eDNA) is a component of H. pylori biofilm matrix but the lack of DNase I activity supports the hypothesis that eDNA might be protected by other extracellular polymeric substances and/or Outer Membrane Vesicles (OMVs), which bleb from the bacteria surface during growth. The aim of the present study was to both identify the eDNA presence on OMVs segregated from H. pylori biofilm (bOMVs) and its planktonic phase (pOMVs) and to characterize the physical-chemical properties of bOMVs and pOMVs. The presence of eDNA in bOMVs and pOMVs was carried out using a DNase I-gold complex and Transmission Electron Microscope analysis (TEM). bOMVs and pOMVs were further isolated and physical-chemical characterized using the dynamic light scattering (DLS) analysis. The eDNA associated to OMVs was detected and quantified by using PicoGreen assay and spectrophotometer, while its extraction was performed through a DNA Kit. The TEM images showed that the eDNA was mainly isolated and identified on OMVs-membrane surface; while the PicoGreen staining showed a 4-fold increase of dsDNA in bOMVs compared to pOMVs. The eDNA extracted from OMVs was visualized by using gel electrophoresis. The DLS analysis demonstrated that H. pylori generate vesicles, both in its planktonic and biofilm phenotypes, with sizes in the nanometer scales and a broad size distribution. The DLS aggregation study of H. pylori OMVs demonstrated that eDNA may play a role in the OMVs aggregation, particularly for biofilm phenotype. The eDNA associated with vesicle membrane can affect the DNase I activity on H. pylori biofilms. OMVs derived from H. pylori ATCC 43629/NCTC 11639, particularly its biofilm phenotype, may play a structural role by preventing eDNA degradation by nucleases and provide a bridging function between eDNA strands.