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The importance of volatile organic compounds for functioning of microbes is receiving
increased research attention. However, to date very little is known on how inter-
specific bacterial interactions effect volatiles production as most studies have been
focused on volatiles produced by monocultures of well-described bacterial genera. In
this study we aimed to understand how inter-specific bacterial interactions affect the
composition, production and activity of volatiles. Four phylogenetically different bacterial
species namely: Chryseobacterium, Dyella, Janthinobacterium, and Tsukamurella were
selected. Earlier results had shown that pairwise combinations of these bacteria induced
antimicrobial activity in agar media whereas this was not the case for monocultures.
In the current study, we examined if these observations were also reflected by
the production of antimicrobial volatiles. Thus, the identity and antimicrobial activity
of volatiles produced by the bacteria were determined in monoculture as well in
pairwise combinations. Antimicrobial activity of the volatiles was assessed against
fungal, oomycetal, and bacterial model organisms. Our results revealed that inter-
specific bacterial interactions affected volatiles blend composition. Fungi and oomycetes
showed high sensitivity to bacterial volatiles whereas the effect of volatiles on bacteria
varied between no effects, growth inhibition to growth promotion depending on the
volatile blend composition. In total 35 volatile compounds were detected most of which
were sulfur-containing compounds. Two commonly produced sulfur-containing volatile
compounds (dimethyl disulfide and dimethyl trisulfide) were tested for their effect on
three target bacteria. Here, we display the importance of inter-specific interactions on
bacterial volatiles production and their antimicrobial activities.

Keywords: volatolomics, soil bacteria, Chryseobacterium, Dyella, Janthinobacterium, Tsukamurella,
inter-specific interactions, volatile activities

INTRODUCTION

Soil bacteria produce an astounding array of secondary metabolites. Gaseous secondary
metabolites, commonly known as volatile organic compounds (VOCs) are small molecules
(<300 Da) belonging to different chemical classes that can evaporate and diffuse easily through air-
and water-filled pores (Schulz and Dickschat, 2007; Penuelas et al., 2014). These physiochemical
properties make volatiles ideal metabolites for communication and antagonistic interactions
between soil microorganisms living at a certain distance from each other. Indeed, recent
studies indicate that soil microorganisms can employ volatile compounds as info-chemicals,
growth stimulants, growth inhibitors, and inhibitors of quorum-sensing (Kai et al., 2009;
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Chernin et al., 2011; Effmert et al., 2012; Kim et al., 2013).
Furthermore, rhizosphere bacteria emit volatiles that can
promote plant growth and elicit induced systemic resistance
(ISR) and induced systemic tolerance (IST) in plants (Ryu
et al., 2003, 2004). However, the role of volatiles in competitive
interactions between soil bacteria is so far poorly understood.

In the past few years the research on volatiles emitted by
bacteria received increased attention from a more applied point
of view as these compounds have intriguing properties which
are of great interest for agriculture (pathogen suppression), food
preparation (aroma), and cosmetics industry (perfume odors;
Krings and Berger, 1998; Wheatley, 2002; Beshkova et al., 2003;
Schwab et al., 2008; Deetae et al., 2009; Effmert et al., 2012;
Kanchiswamy et al., 2015).

Bacterial volatiles belong to different chemical classes like
alkenes, alcohols, ketones, terpenes, benzenoids, pyrazines, acids,
and esters. However, the composition of emitted volatiles (volatile
blend composition) may vary with cultivation conditions, in
particular with respect to the substrate composition of the growth
media (Cleason, 2006; Blom et al., 2011; Groenhagen et al., 2013;
Garbeva et al., 2014a). Other factors known to influence volatile
production are microbial physiological state, oxygen availability,
moisture, temperature and pH (Bjurman, 1999; Insam and
Seewald, 2010; Romoli et al., 2014).

The technical developments that have been made in recent
years in the field of mass spectrometry have led to the
improvement of volatile compounds detection. The details of
these developments have recently been summarized by Carter
(2014). However, the main challenge in volatolomics is the ability
to identify and quantify the entire set of emitted volatiles. The
detected volatile blends are mostly quite complex and make the
identification of biologically relevant volatiles a demanding and
challenging task (Farag et al., 2012; Tait et al., 2014).

To date more than over 1000 microbial volatiles are reported
and described in a special database for microbial VOCs called
mVOC1 (Lemfack et al., 2014). Nevertheless, this number is
rather low compared to the high diversity of bacterial taxa
in soil, suggesting a big underestimation of the actual real
number of microbial volatiles (Kai et al., 2009; Lemfack et al.,
2014). Moreover, most of the studies on microbial volatile
detection have dealt with monocultures of already well-described
bacterial genera. Thus, very little is known on how inter-specific
interactions affect the volatile production. The investigation of
volatiles production in more complex communities is of great
interest since it could help to reveal the ecological role of
these compounds. In the last years several independent studies
reported that the production of secondary metabolites by soil
bacteria can be influenced by interactions with microorganisms
in their vicinity (Garbeva et al., 2011b; Traxler et al., 2013; Tyc
et al., 2014). A high-throughput screening performed recently in
our lab revealed that interactions between soil bacterial species
have major effects in both directions: induction and suppression
of antimicrobial activity (Tyc et al., 2014).

In this study we aimed to understand how inter-specific
bacterial interactions affect the emission of volatiles and

1http://bioinformatics.charite.de/mvoc/

their activity. For this we selected four strains belonging to
different bacteria species that have been isolated from the
soil bacterial community associated with sand sedge (Carex
arenaria L.) namely Chryseobacterium sp. AD48, Dyella sp.
AD56, Janthinobacterium sp. AD80, andTsukamurella sp. AD106
(Tyc et al., 2014). In an earlier screening it was observed that
these bacteria showed induced antimicrobial activity during
interactions but not in monocultures. In the current study,
it was examined if these observations were also reflected by
the volatiles emission. To this end the effects of volatiles on
growth of fungal, oomycetal, and bacterial model organisms
produced by the bacteria in monocultures as well in pairwise
combinations were tested. Our overall hypothesis is that the blend
composition volatiles produced during interactions differs from
that of monocultures and consequently has different effect on
model target organisms.

MATERIALS AND METHODS

Bacteria and Culture Conditions
The bacterial isolates applied in this work were selected
based on a previous observations of antimicrobial activity
triggered by inter-specific interactions (Tyc et al., 2014). Four
bacterial isolates were used: Chryseobacterium sp. AD48 (Class:
Flavobacteriia) GenBank: KJ685263, Dyella sp. AD56 (Class:
Gammaproteobacteria) GenBank: KJ685269, Janthinobacterium
sp. AD80 (Class: Betaproteobacteria) GenBank: KJ685292, and
Tsukamurella sp. AD106 (Class: Actinobacteria) GenBank:
KJ685317. The bacterial isolates were pre-cultured from −80◦C
glycerol stocks on 1/10th TSBA (5.0 g L−1 NaCl, 1.0 g L−1

KH2PO4; 3 g L−1 oxoid tryptic soy broth (TSBA); 20 g L−1 Merck
Agar, pH 6.5; Garbeva and de Boer, 2009) and incubated for
3 days at 24◦C before starting the experiments.

To test the effect of bacterial volatile compounds on bacterial
growth and colony morphology three indicator bacteria were
used: Escherichia coli WA321, Staphylococcus aureus 533R4
(Meyer and Schleifer, 1978; Tyc et al., 2014) and Serratia
marcescens P87 (Garbeva et al., 2014b). All three indicator
bacteria were pre-cultured from −80◦C glycerol stocks either on
LBA media (LB-Medium Lennox, Carl Roth GmbH + Co. KG,
Netherlands, art.no. X964.2, 20 g L−1 Merck Agar; E. coliWA321
and S. aureus 533R4; Sambrook and Russell, 2001) or on 1/10th
TSBA (S. marcescens P87). The indicator organisms E. coli and
S. aureus were incubated overnight at 37◦C prior application,
S. marcescens P87 was incubated at 24◦C for 4 days prior usage.
All bacterial isolates used in this study are listed in Table 1.

Cultures and Growth Conditions of Fungi
and Oomycetes
The fungi Rhizoctonia solaniAG2.2IIIB and Fusarium culmorum
PV and the oomycete Pythium ultimum P17 were used in this
study (Garbeva et al., 2014b). The fungi and oomycete were pre-
cultured on 1/5th potato dextrose agar (PDA; 29 g L−1 Oxoid
CM 139; Fiddaman and Rossall, 1993) and incubated at 24◦C for
7 days prior usage. All fungal and oomycetal organisms are listed
in Table 1.
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TABLE 1 | Bacterial, fungal, and oomycetal organisms used in this study.

Strain Phylum/class GenBank Reference Function

Volatile producing bacteria tested

Chryseobacterium sp. AD48 Flavobacteriia KJ685263 Tyc et al., 2014 Used for volatile analysis

Dyella sp. AD56 Y-proteobacteria KJ685269 Tyc et al., 2014

Janthinobacterium sp. AD80 β-proteobacteria KJ685292 Tyc et al., 2014

Tsukamurella sp. AD106 Actinobacteria KJ685317 Tyc et al., 2014

Fungal/oomycetal test organisms

Rhizoctonia solani AG2.2IIIB Basidiomycota KT124637 Garbeva et al., 2011b Eukaryotic model organisms for growth
inhibitionPythium ultimum P17 Oomycete KT124638 Garbeva et al., 2014b

Fusarium culmorum PV Ascomycota - Garbeva et al., 2014b

Bacterial test organisms

Serratia marcescens P87 Y-proteobacteria - Garbeva et al., 2014b Bacterial model organisms for growth
inhibition and colony morphology changesEscherichia coli WA321 DSMZ 4509 Y-proteobacteria - Tyc et al., 2014

Staphylococcus aureus 533R4 Serovar 3
DSMZ 20231

Firmicutes LN681573 Meyer and Schleifer, 1978

Experimental Treatments
Ten different treatments were performed in triplicates. These
treatments were: monoculture 1 (Chryseobacterium sp. AD48),
monoculture 2 (Tsukamurella sp. AD106), monoculture 3
(Dyella sp. AD56), monoculture 4 (Janthinobacterium sp.
AD80) and pairwise interaction of the isolates: interaction
1 (Chryseobacterium sp. AD48 + Tsukamurella AD106),
interaction 2 (Dyella sp. AD56 + Janthinobacterium sp. AD80),
Control 1 (glass Petri dish with TSBA media without inoculated
bacteria, as background control in GC/MS measurement),
Control 2 (two compartment Petri dish inoculated with model
organisms without exposure to bacterial volatiles), Control 3
(top bottom Petri dish inoculated with fungal/oomycetal model
organisms without exposure to bacterial volatile compounds).
Control 4 (two compartment Petri dish inoculated with
model organisms without exposure to the tested pure volatile
compounds). The effect of the produced volatiles was tested on
fungal, oomycetal, and bacterial growth via determination of
hyphal biomass or growth inhibition assays. For the inoculation
of the experiments a single colony of each test isolate was
picked from a plate and inoculated in 20 mL 1/10th TSB
(5.0 g L−1 NaCl, 1.0 g L−1 KH2PO4; 3 g L−1 TSBA) and
incubated overnight at 24◦C, 220 rpm. On the next day the
OD600 of each isolate was measured on a GENESYSTM 20
spectrophotometer (Thermoscientific, Netherlands, Cat# 4001-
000) and a inoculation suspension for each treatment was
prepared in 20 mL of 10 mM P-Buffer (pH 6.5) containing
bacterial cells in a concentration of ∼1 × 10∧5 CFU/mL.

Volatile Trapping
Next to the inhibition experiments, bacterial volatiles emitted
in monocultures and pairwise combinations were trapped and
analyzed. For trapping of VOCs emitted by bacteria a volume
of 100 μl of inoculation suspension was spread on 1/10th TSBA
(20 mL) in glass Petri dishes designed for headspace volatile
trapping (Garbeva et al., 2014b). The Petri dishes were closed by
a lid with an outlet connected to a steel trap containing 150 mg
Tenax TA and 150 mg Carbopack B (Markes International, Ltd.,

Llantrisant, UK; Supplementary Figure S1). All treatments were
inoculated in triplicate. The volatiles were collected after 48 and
72 h of incubation and the Tenax steel traps were stored at 4◦C
until GC-Q-TOF analysis.

GC-Q-TOF Analysis
The trapped VOCs were desorbed from the traps using
an automated thermodesorption unit (Unity TD-100, Markes
International, Ltd., Llantrisant, UK) at 210◦C for 12 min (He
flow 50 mL/min) and trapped on a cold trap at −10◦C. The
trapped volatiles were introduced into the GC-QTOF (model
Agilent 7890B GC and the Agilent 7200AQTOF, Santa Clara, CA,
USA) by heating the cold trap for 3 min to 280◦C. Split ratio was
set to 1:10, and the column used was a 30 mm × 0.25 mm ID
RXI-5MS, film thickness 0.25μm (Restek 13424-6850, Bellefonte,
PA, USA). Temperature program used was as follows: 39◦C
for 2 min, from 39 to 95◦C at 3.5◦C/min, then to 165◦C at
6◦C/min, to 250◦C at 15◦C/min and finally to 300◦C at 40◦C/min,
hold 20 min. The VOCs were detected by the MS operating
at 70 eV in EI mode. Mass spectra were acquired in full-scan-
mode (30–400 AMU, 4 scans/s). Mass-spectra’s were extracted
with MassHunter Qualitative Analysis Software V B.06.00 Build
6.0.633.0 (Agilent Technologies, Santa Clara, CA, USA) using
the GC-Q-TOF qualitative analysis module. The obtained mass
spectra’s were exported as mzData files for further processing
in MZmine V2.14.2. The files were imported to MZmine
V2.14.2 (Copyright © 2005–2012 MZmine Development Team;
Katajamaa et al., 2006; Pluskal et al., 2010) and compounds
were identified via their mass spectra using deconvolution
function (Local-Maximum algorithm) in combination with two
mass-spectral-libraries: NIST 2014 V2.20 (National Institute of
Standards and Technology, USA2) andWiley 7th edition spectral
libraries and by their linear retention indexes (LRIs). The LRI
values were calculated using an alkane calibration mix before
the measurements in combination with AMDIS 2.72 (National
Institute of Standards and Technology, USA). The calculated

2http://www.nist.gov
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LRI were compared with those found in the NIST and in the
in-house NIOO LRI database. After deconvolution and mass
identification peak lists containing the mass features of each
treatment (MZ-value/Retention time and the peak intensity)
were created and exported as CSV files for statistical processing.
The whole volatolomic workflow is shown in Supplementary
Figure S2.

Bioassay for Testing the Effect of
Bacterial Volatiles on Fungal and
Oomycete Growth
To test the effect of the emitted bacterial volatiles on
fungal/oomycete growth the hyphal extension and biomass were
measured. The assays were performed in Petri dishes containing
top and bottom growth areas (Supplementary Figure S3). At the
bottom of the Petri dish, 100μl of bacterial suspensions in 10mM
phosphate buffer (pH 6.5) containing ∼1 × 10∧5 CFU/mL were
spread on 20mL 1/10th TSBA. At the lid of the Petri dish 12.5 mL
of water-agar medium (WA; 20 g L−1 MERCK agar) was added
and inoculated in the middle with a 6-mm-diameter PDA agar
plug containing fungal (R. solani, F. culmorum) or oomycete
(P. ultimum) hyphae. The plates were sealed with two layers
of parafilm and incubated at 24◦C for 5 days. In this way the
tested fungi were exposed (without direct physical contact) to the
volatiles produced by the bacteria in the bottom compartment.
On the fifth day the extension of the hyphae was measured in 4
evenly spaced directions and compared to the hyphae extension
in the control plates (fungi exposed to 1/10th TSBA growth
medium without bacteria).

Determination of Fungal and Oomycetal
Biomass
Fungal biomass was determined as described by Garbeva et al.
(2014b). The whole growth area in the lids containing water agar
and fungal hyphae was cut in ∼2 cm2 pieces and transferred to a
glass beaker containing 100 mL of sterile demi-water (H2O). The
agar was melted for ∼2.5 min in a microwave oven (temperature
increased to about 100◦C). The melted agar containing the
hyphae was filtered over a tea strainer and the remaining hyphae
were rinsed with about 150–200 mL of hot water (∼80◦C). The
hyphae were picked with tweezers from the tea strainer and
transferred to a micro centrifuge tube and stored at −20◦C
until analysis. For determination of fungal/oomycete biomass the
frozen hyphae were transferred to a glass tube with lids with
small holes and subjected to freeze-drying for 48 h (Labconco
Freezone 12 with Labconco Clear Drying Chamber nr.7867000).
The samples were stored in an exsiccator with dried silica gel for
3 h (Silica Gel Orange, 2–5 mm, indicator, Roth, art.nr.P077.2)
prior weighing the dry biomass.

Bioassay for Testing the Effect of
Bacterial Volatiles on Growth and Colony
Morphology of Target Bacteria
The assays were performed in two-compartment Petri dishes
(Greiner bio-one B.V., Alphen a/d Rijn, The Netherlands,
Cat# 635102) containing two separated compartments

(Supplementary Figure S4). In such way the growth response
of target bacteria to volatile producing bacteria could be
determined without direct physical contacts. One compartment
was supplemented with 12.5 mL TSBA and contained the
volatile producing bacteria either in monoculture or in pairwise
interactions. The second compartment contained the indicator
bacteria and was supplemented either with 12.5 mL LBA (E. coli
WA321, S. aureus 533R4) or with 12.5 mL TSBA (S. marcescens
P87). The compartment for the volatile producing bacteria was
inoculated with 100 μl bacterial suspensions master mix of
monocultures or pairwise interactions prepared with 20 mL
of 10 mM phosphate buffer (pH 6.5) containing ∼1 × 10∧5
CFU/mL. The compartment for the indicator organisms was
inoculated with four droplets (5 μL) of each indicator bacteria.
The droplets of the indicator bacteria were placed in a distance of
2 cm to each other and contained 1 × 10∧5, 1 × 10∧4, 1 × 10∧3,
and 1 × 10∧2 CFU/mL of either E. coli WA321, S. aureus
533R4, or S. marcescens P87 (Supplementary Figure S4). As
controls the first compartment of the Petri dish was kept empty.
After 4 days of incubation at 24◦C the plates were examined
and digital photographs were taken. The digital images were
analyzed using the AXIO VISION v4.8 imaging Software (Carl
Zeiss Imaging Solutions GmbH, Germany) for enumeration and
surface-area determination (in pixelˆ2) of the bacterial colonies.
All treatments were performed in triplicate.

Test of Pure Volatile Compounds on
Bacterial Growth and Colony
Morphology
The effect on growth, colony morphology and pigmentation by
pure dimethyl disulfide (DMDS; CH3S2CH3), dimethyl trisulfide
(DMTS; CH3S3CH3) and the mixture of both compounds was
tested on E. coli WA321, S. aureus 533R4 and S. marcescens
P87. The assays were performed in two-compartment Petri
dishes (Greiner bio-one B.V., Alphen a/d Rijn, The Netherlands,
Cat# 635102). Both compartments were supplemented with
either 12.5 mL LBA (assay performed with E. coli WA321 and
S. aureus 533R4) or with 12.5 mL TSBA (assay performed
with S. marcescens P87). In one compartment a filter paper
with a diameter of ∼5.5 mm (WhatmanTM filter paper
Cat# 1003-150, 6 μm pore size) was placed on the agar
surface in the middle of the compartment. Stock solutions
with a concentration of 10, 1, and 0.1 μM of the pure
volatile compounds (DMDS or DMTS) and the mixture of
both compounds (DMDS + DMTS) were prepared by serial
dilution of the pure compounds in Methanol (LiChrosolv

R© ,
Index-No: 603-001-00-X, Merck, Darmstadt, Germany). For
the test a volume of 5 μl of each of the pure volatile stock
solutions was added directly onto the filter paper resulting
in a final concentration of 50, 5, and 0.5 μM, respectively.
The other compartment was inoculated with the target bacteria
E. coli WA321, S. aureus 533R4 or S. marcescens P87 by
inoculating four spots in a distance of 2 cm from each other
containing 1 × 10∧5, 1 × 10∧4, 1 × 10∧3, and 1 × 10∧2
CFU/mL (Supplementary Figure S4). As controls bacteria
exposed to filter papers with no added volatile compounds
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were applied. The Petri dishes were sealed with a double
layer of parafilm and incubated for 4 days at 24◦C. After
incubation digital photographs were taken and the effect on
colony growth, colony morphology and pigment production
(prodigiosin) in S. marcescens P87 was examined. All digital
images were analyzed using the AXIO VISION v4.8 imaging
Software (Carl Zeiss Imaging Solutions GmbH, Germany)
for enumeration and surface-area determination (in pixelˆ2)
of the bacterial colonies. All treatments were performed in
triplicate.

Statistical Analysis
Statistical analysis on volatolomic data was performed using
the statistical analysis module of MetaboAnalyst V3.0,
www.metaboanalyst.ca (Xia et al., 2012, 2015). Prior to
statistical analysis data normalization was performed via
log-transformation. To identify significant abundant mass
features one-way-ANOVA with post hoc Tukey test (HSD-
test) was performed between the data sets. To identify
important mass features in the samples PLS-D analysis was
performed. Mass features were considered to be statistical
relevant if p-values were ≤0.05. Statistical relevant mass
features were further used for the compound identification.
Statistical analyses on fungal dry biomass and bacterial colony
sizes were performed with IBM SPSS Statistics 23 (IBM,
Somers, NY, USA) using one-way ANOVA and post hoc
Tukey test between the data sets. The 5% level was taken
as threshold for significance between control and volatile
treatments.

Determination of HCN, NH3 Emission,
and pH Values in the Agar
All bacterial strains used in this study were tested for the
emission of ammonia and HCN as well as for the ability
to change the pH- value of the growth medium where the
target organisms were inoculated. For these tests the bacteria
were inoculated in two-compartment Petri dishes (start density
∼1 × 10∧5 CFU/mL) on 12.5 mL 1/10th TSBA. The second
compartment was supplemented with 12.5 mL WA. After
4 days of growth the HCN and ammonia emission as well
the pH-value of the target organism growth medium (WA)
was determined. To test for the presence of Hydrocyanic acid
the gaseous content of the Petri dish headspace was sucked
through a Hydrocyanic acid test tube (Dräger Safety AG and
CO. KGaA, Lübeck, Germany, order number: CH25701) using
the Dräger accuro

R© gas detection pump (Dräger Safety AG and
CO. KGaA, Lübeck, Germany). Presence of Hydrocyanic acid
was determined by color change of the test tube (formation of
a red reaction product; Supplementary Figure S5). The pH of
the target organism growth medium (WA) exposed to bacterial
volatiles was determined by slightly pressing a pH test-strip VWR
PROLABO dosatest

R© (VWR international, Cat# 35309.606UK)
for 30 s into the agar surface. The pH values were determined
by color change of the test strip and compared to the color
scale on the package (Supplementary Figure S6). The ammonia
concentration was determined using the MQuantTM ammonium

test kit (Merck, Darmstadt, Germany, Cat# 110024) by placing a
reaction activated test-strip on the lid of the Petri dish directly
opposite to the bacterial culture and fixed with tape. The Petri-
dish were closed and sealed with parafilm and incubated for
2 h at 24◦C. After incubation the presence of ammonium was
determined by color change of the test strip (Supplementary
Figure S7).

RESULTS

Detected Headspace Volatile
Compounds and GC/MS-Q-TOF Analysis
GC/MS-Q-TOF based volatolomic analysis revealed a total
number of 35 compounds that were not detected in the non-
inoculated controls (Table 2). 27 compounds were obtained from
the monocultures of Chryseobacterium sp. AD48, 15 compounds
were obtained from the monocultures of Tsukamurella sp.
AD106 and 26 compounds were detected in the interactions
between these two bacteria (Table 2; Figure 1A). For the
combinations of Dyella sp. AD56 and Janthinobacterium
sp. AD80 we obtained a total number of 18 compounds,
whereas 16 compounds were detected in the monoculture of
Janthinobacterium sp. AD80 and only 13 compounds in the
monoculture of Dyella sp. AD56 (Table 2; Figure 1B). We were
able to tentatively identify 19 VOCs belonging to seven different
chemical classes including alcohols, amines, esters, indole,
thiocyanates, thioesters, and sulfides. However, a vast number
of the detected compounds (n = 16) could not be assigned
with certainty to a VOC and remained unknown. The most
prominent detected headspace VOCs were sulfur containing
compounds (such as sulfordioxide, methyl thioacetate, dimethyl
sulfoxide, etc.). Two sulfur compounds DMDS (C2H6S2)
and DMTS (C2H6S3) were produced by all bacteria (except
DMTS which was not detected for Janthinobacterium sp.
AD80).

Effect of Inter-specific Interactions on
Bacterial Volatile Blend Composition
Volatolomic analysis on monocultures and pairwise
combinations of Chryseobacterium sp. AD48 with Tsukamurella
sp. AD106 revealed that the volatile composition of the
monocultures differed from that of the mixtures (Figure 1A;
Table 2). Clear separations between controls, monocultures
and pairwise combinations of Chryseobacterium sp. AD48
with Tsukamurella sp. AD106 were obtained in PCA
score plots (Figure 1A). The volatile composition of the
pairwise combinations resembled that of the monocultures of
Chryseobacterium sp. AD48 (Figure 1A; Table 2). The indole
produced by the monoculture of Chryseobacterium sp. AD48 was
not detected in the interactions (Table 2).

The analysis on the volatiles emitted by monocultures
and pairwise combinations of Dyella sp. AD56 and
Janthinobacterium sp. AD80 revealed that the volatile
profiles of the monocultures differed from that of the
mixtures (Figure 1B; Table 2). Different PCA score plots
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TABLE 2 | Tentatively identified volatile organic compounds emitted by four bacterial strains cultivated either in monoculture or in pairwise combination.

Detected in treatment

# Compound name/chemical class RT∗ ERI∗∗ Chry Tsuk MIX Chry + Tsuk Dye Jant MIX Jant + Dye

(1) Sulfurdioxide 2.58 521 x x x x

(2) Cyclopentene 2.96 551 x x x x

(3) 2-Pentene 3.29 575 x x

(4) Unknown compound 1 3.77 612 x x x x x x

(5) Methyl isobutyrate 4.70 682 x

(6) Methyl thioacetate 4.94 700 x x x x

(7) Methyl thiocyanate 5.28 713 x x x

(8) 1-Butanol, 3-methyl- 5.69 728 x x

(9) Dimethyl disulfide 6.10 744 x x x x x x

(10) Methyl isovalerate 6.86 769 x

(11) S-methyl propanethioate 7.45 782 x x x x

(12) 1,3 Dithiethane 7.64 786 x x x x x

(13) Dimethyl sulfoxide 8.46 806 x

(14) 2,4-Dithiapentane 10.74 865 x x x x x

(15) Benzaldehyde 13.72 944 x x x x x

(16) Dimethyl trisulfide 14.33 960 x x x x x

(17) Unknown cycloalkane 16.86 1026 x x x x x x

(18) Unknown branched alkene 17.39 1040 x x x x x x

(19) Unknown sulfur containing compound 18.09 1058 x x x

(20) 1,2,4-Trithiolane 19.30 1090 x x x x x

(21) Unknown compound 2 19.70 1101

(22) Unknown compound 3 19.99 1110 x x x x x x

(23) Unknown compound 4 20.63 1131 x x

(24) Dimethyl tetrasulfide 23.64 1227 x

(25) Indole 25.82 1298 x

(26) Butylhydroxytoluene 30.28 1540 x x x x x x

(27) Unknown terpene like compound 1 32.84 1674 x x

(28) Unknown terpene like compound 2 33.46 1703 x x

(29) Unknown tetralin isomer 33.75 1710 x x

(30) Unknown aromatic isomer 34.22 1721 x x

(31) Unknown compound 5 34.34 1724 x x

(32) Unknown di-terpene 34.78 1734 x x

(33) Unknown terpene like compound 3 35.31 1746 x x

(34) Unknown compound 6 38.73 2101 x x

(35) Unknown compound 7 42.04 2360 x x

Number of detected compounds (n) 27 15 26 13 16 18

# = Compound number, Chry = Chryseobacterium, Dye = Dyella, Jant = Janthinobacterium, Tsuk = Tsukamurella, MIX Chry + Tsuk = pairwise combination of
Chryseobacterium + Tsukamurella. MIX Jant + Dye = pairwise combination of Dyella + Janthinobacterium.
X = detected.
RT∗ = Retention time, the RT value stated is the average.
ERI∗∗ = Experimental retention index value, the RI value stated is the average.

were obtained between controls, monocultures and pairwise
combinations of Dyella sp. AD56 with Janthinobacterium sp.
AD80 (Figure 1B). A higher number of volatile compounds
were detected in the pairwise combinations of these two
bacteria. However, the higher number of detected volatiles
is most probably due to the combination of the volatile
blends of these two bacterial isolates. We did not detect any
novel or different volatile compounds which production
was triggered during the pairwise interaction of these two
bacteria. Interestingly the volatile compound cyclopentene
produced by the monocultures of Dyella sp. AD56 and

Janthinobacterium sp. AD80 was not detected in the interactions
(Table 2).

Effect of Bacterial Volatiles on Fungal
and Oomycetal Growth
Volatiles produced by all treatments including monocultures and
pairwise combinations of the selected bacteria revealed strong
growth inhibition of the plant pathogenic fungi and oomycete.
The dry biomass of fungi and oomycete exposed to bacterial
volatiles was significantly reduced as compared to the controls
without bacterial volatiles (Table 3; Figures 2 and 3).
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FIGURE 1 | PCA 2D- plots of volatiles emitted by monocultures and pairwise combinations of bacteria including confidence intervals (in
semi-transparent colors). (A) Monocultures and mixtures of Tsukamurella sp. AD106 and Chryseobacterium sp. AD48 and (B) monocultures and mixtures of
Dyella sp. AD56 and Janthinobacterium sp. AD80.

Effect of Bacterial Volatiles on the
Growth and Behavior of Target Bacteria
Volatiles emitted by Chryseobacterium sp. AD48 and the mixture
of Chryseobacterium sp. AD48 and Tsukamurella sp. AD106
inhibited the growth of E. coli WA321 significantly as compared
to the control (Figure 4A). This observation is in agreement
with the observed volatolomic profile (Figure 1A) which revealed
that the volatolomic profile of the mixture is dominated by the
volatiles produced by the monoculture of Chryseobacterium sp.
AD48.

Besides growth inhibition we observed significant growth
promotion of S. aureus 533R4 when exposed to volatiles emitted
by the monocultures of Dyella sp. AD56 (Figure 4B).

Changes in colony morphology of S. marcescens P87 were
observed when exposed to volatiles emitted by Chryseobacterium
sp. AD48 and to volatiles emitted by the mixtures of Dyella sp.
AD56 with Janthinobacterium sp. AD80. The S. marcescens P87
colonies were more circular and round shaped (Supplementary
Figure S8). However, no significant effects of bacterial volatiles
on the growth of the target bacteria were also observed
(Supplementary Figure S9).

Effect of Pure Individual Volatile
Compounds on the Growth and Colony
Morphology of Target Bacteria
We applied a two-compartment Petri dish testing system
(Supplementary Figure S4) in which the model organisms could
grow without direct physical contacts to the tested pure volatile
compounds. After 4 days of growth S. marcescens P87 colonies
were small and showed a white phenotype when exposed to
50 μM of DMTS, indicating the lack of prodigiosin production

(Figure 5A). Furthermore we observed significant inhibition of
growth of S. marcescens P87, E. coli WA321 and S. aureus 533R4
when exposed to 50 μM of DMTS (Figures 5–7).

Exposure to DMDS did not reveal any significant growth
inhibiting or changes in colony morphology at all concentrations
tested (500 nM, 5 and 50 μM). The mixture of DMDS
and DMTS resulted in growth inhibition of S. marcescens
P87 and E. coli WA321 at 50 μM concentration. However,
the pigmentation in S. marcescens P87 was not affected by
the mixture of these compounds. The two lowest applied
concentrations 5 and 0.5 μM of DMTS and DMDS and

TABLE 3 | Effect of bacterial volatiles on fungal and oomycetal biomass
production (mg/dry weight of fungal/oomycetal biomass).

Treatment F. culmorum P. ultimum R. solani

Monocultures

Chryseobacterium sp.
AD48

1.63±0.25∗ 0.83±0.28∗ 1.67±0.75∗

Dyella sp. AD56 1.03±0.55∗ 1.47±0.47∗ 1.1±0.71∗

Janthinobacterium sp.
AD80

1.05±0.77∗ 0.9±0.44∗ 1.1±0.44∗

Tsukamurella sp. AD106 2.3±0.69∗ 1.47±0.12∗ 2.67±0.47∗

Interactions

Chryseobacterium sp.
AD48 + Tsukamurella sp.
AD106

1.73±0.4∗ 1.47±0.25∗ 2.53±0.37∗

Janthinobacterium sp.
AD80 + Dyella sp. AD56

1.3±1.27∗ 0.97±0.40∗ 1.23±0.15∗

Controls 5.97±2.13 4.42±0.88 5.47±1.23

Data represent mean and standard deviation of three replicates.
Asterisk indicates significant differences between the treatments and the respective
control (one-way ANOVA, post hoc Tukey test p < 0.05).
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FIGURE 2 | Effect of volatiles produced by monocultures and mixtures of Tsukamurella sp. AD106 and Chryseobacterium sp. AD48 on growth of
eukaryotic plant-pathogens. Bars represent the average values for fungal and oomycetal biomass dry weight and error bars represent standard deviation of the
mean. (A) Dry weight of Rhizoctonia solani; (B) dry weight of Pythium ultimum; (C) dry weight of Fusarium culmorum. Significant differences between treatments and
the control are indicated by different letters (one-way ANOVA, post hoc Tukey test p < 0.05).
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FIGURE 3 | Effect of volatiles produced by monocultures and mixtures of volatile emitting Dyella sp. AD56 and Janthinobacterium sp. AD80 on
growth of eukaryotic plant-pathogens. Bars represent the average values for fungal and oomycetal biomass dry weight and error bars represent standard
deviation of the mean. (A) Dry weight of R. solani; (B) dry weight of P. ultimum; (C) dry weight of F. culmorum. Significant differences between treatments and the
control are indicated by different letters (one-way ANOVA, post hoc Tukey test p < 0.05).
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FIGURE 4 | Effect of volatiles produced by monocultures and pair-wise combinations of the four selected rhizosphere bacterial strains on average
colony size of the target bacteria. (A) Mean colony size of Escherichia coli WA321 exposed to volatile compounds of Chryseobacterium sp. AD48 and
Tsukamurella sp. AD106 and the mixture of both bacteria. (B) Mean colony sizes of Staphylococcus aureus 533R4 exposed to volatile compounds of Dyella sp.
AD56, Janthinobacterium sp. AD80 and the mixture of both bacteria. Significant differences between treatments and the control are indicated by different letters
(one-way ANOVA, post hoc Tukey test p < 0.05). Data represented are the mean of three replicates, error bars represent standard deviation of the mean.

the mixture of both compounds did not reveal any effect
on colony morphology or growth of the tested bacteria
(Figures 5–7).

DISCUSSION

Bacteria coexist with many different species in a heterogeneous
and challenging soil environment (Gans et al., 2005). In this
environment inter-specific interactions between microorganisms
are ongoing and are a key factor for their spatial distribution
(Keller and Surette, 2006). To cope with the competitive
conditions, bacteria developed different survival strategies such
as the production of secondary metabolites with inhibitory
capacity (Hibbing et al., 2010; Cornforth and Foster, 2013). Most
of the studies on bacterial secondary metabolites so far were
focused on non-volatile compounds (Korpi et al., 1998; Foster

and Bell, 2012). However, bacteria do also release complex blends
of VOCs. Yet, the effect of inter-specific interactions on volatiles
production and composition is still unknown (Garbeva et al.,
2014a).

Here, we compared the volatile blends emitted by four
phylogenetically different soil-bacteria either grown in
monocultures or in pairwise combinations. Our results
revealed that the blend of volatiles emitted during pairwise
combinations differed from the volatile blends of the respective
monocultures. Yet, the volatile blend of the mixtures mostly
included volatiles compounds produced by monocultures,
although some compounds produced by the monocultures
were not detected in mixtures. For example dimethyl sulfoxide
produced by Tsukamurella sp. AD106 was not detected in the
mixture with Chryseobacterium sp. AD48. Another interesting
example is indole which was produced by the monocultures
of Chryseobacterium sp. AD48 but was not detected in the
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FIGURE 5 | Effect of dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS), and the mixture of both volatile compounds (DMDS + DMTS) on colony
development of S. marcescens. (A) Colony morphology and growth of S. marcescens P87 after 4 days of incubation. The pure volatile compounds were applied
in a concentration ranging from 500 nM to 50 μM. Control S. marcescens P87 grown without exposure to the compounds. (B) Mean colony sizes of S. marcescens
P87 exposed to volatile compounds of DMDS, DMTS, and the mixture of both volatile compounds (DMDS + DMTS). Asterisk indicates significant differences
between the treatments and the control (one-way ANOVA, post hoc Tukey test p < 0.05). Data represented are the mean of three replicates, error bars represent
standard deviation of the mean.

presence of Tsukamurella sp. AD106. Indole is a very well-
studied compound and has been reported to be produced by
about 85 different bacterial species including Chryseobacterium
sp. (Yamaguchi and Yokoe, 2000; Lee and Lee, 2010). Indole
and its derivatives [quinolones and (S)-3-hydroxytridecan-4-
one] are involved in intercellular and multispecies signaling
controlling diverse bacterial physiological properties like
sporulation, plasmid stability, biofilm formation, drug resistance
and virulence (Wang et al., 2001; Di Martino et al., 2003;
Diggle et al., 2006; Nikaido et al., 2008; Lee et al., 2009; Lee
and Lee, 2010). In addition, indole has been shown to have
inhibitory activities on fungal growth (Aspergillus niger) and
plant growth stimulating properties (Arabidopsis thaliana;
Kamath and Vaidyanathan, 1990; Blom et al., 2011). In general
indole is known to be a stable compound in the producing
bacteria, however, many non-indole producing bacteria are
able to modify and to degrade indole (Shimada et al., 2013; Lee
et al., 2015). The fact that indole was not detected during the
interaction of Chryseobacterium sp. AD48 with Tsukamurella
sp. AD106 suggests that the production of such signaling
compounds in nature depends strongly on the inter-specific
interactions. Similar result was observed for the compound

cyclopentene produced by the monocultures of Dyella sp. AD56
and Janthinobacterium sp. AD80 but not produced during the
interaction of these two bacteria. With the volatolomic methods
applied in this study we were able to detect 35 compounds
from which 19 were tentatively identified. This discrepancy
between numbers of detected and identified compounds shows
that the identification of bacterial volatiles is yet a challenging
and time demanding task, even with the use of sophisticated
programs and software for metabolomics data analysis. Hence,
the produced volatile blends are very complex and consist of a
mixture of many unknown and difficult to identify compounds
(Tait et al., 2014). Most of the VOCs that were tentatively
identified within this study (∼58%) contained sulfur (e.g.,
methyl thiocyanate, DMDS, DMTS, dimethyl tetrasulfide,
etc.). The high abundance of sulfur containing volatiles in this
study can be related to the cultivation of the tested bacteria
on 1/10th TSBA growth media. Several studies indicated that
the composition of the volatile blend greatly depends on the
growth media composition and the growth conditions (Schulz
et al., 2004; Schulz and Dickschat, 2007; Blom et al., 2011;
Garbeva et al., 2014b). The high amount of dimethyl di- and
trisulfide detected in both monocultures and interactions
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FIGURE 6 | Effect of DMDS, DMTS, and the mixture of both volatile compounds (DMDS + DMTS). (A) Colony morphology and growth of E. coli WA321
after 4 days of incubation. The pure volatile compounds were applied in a concentration ranging from 500 nM to 50 μM. Control E. coli WA321 grown without
exposure to the compounds. (B) Mean colony sizes of E. coli WA321 exposed to volatile compounds of DMDS, DMTS, and the mixture of both volatile compounds
(DMDS + DMTS). Asterisk indicates significant differences between the treatments and the control (one-way ANOVA, post hoc Tukey test p < 0.05). Data
represented are the mean of three replicates, error bars represent standard deviation of the mean.

indicate that these compounds are commonly produced. Many
studies have shown that bacterial volatiles play a major role in
soil fungistasis (Zou et al., 2007; Garbeva et al., 2011a, 2014b;
van Agtmaal et al., 2015). Indeed our results revealed that the
fungal and oomycete tested organism are sensitive to bacterial
volatiles and were inhibited significantly by all monocultures
and pairwise combinations. The observed fungal and oomycetal
growth inhibition is most probably related to sulfur containing
volatiles. Sulfur containing volatiles like dimethyl di- and
trisulfide have been shown to effect fungi and are able to inhibit
the growth of different plant pathogenic fungi (Kai et al.,
2009; Li et al., 2010; Huang et al., 2012; Wang et al., 2013;
Garbeva et al., 2014b; Kanchiswamy et al., 2015).

While many study tested the effect of bacterial volatiles on
various fungi, little is known so far on the effect of bacterial
volatiles on other bacteria. In this study E. coli WA321 was
inhibited by the volatiles emitted by Chryseobacterium sp.
AD48 and the mixture of Chryseobacterium sp. AD48 with
Tsukamurella sp. AD106. The observed growth promotion of
S. aureus 533R4 was caused by the volatiles emitted by Dyella
sp. AD56. However, this growth promotion was not observed
by the volatiles emitted during the interaction of Dyella sp.
AD56 with Janthinobacterium sp. AD80 correlating with a shift

in volatile blend composition. Interestingly volatiles emitted
by the monocultures of Chryseobacterium sp. AD48 and the
mixture of Dyella sp. AD56 with Janthinobacterium sp. AD80
induced changes in colony morphology of S. marcescens P87.Our
previous high-throughput screening for production of non-
volatile antimicrobial compounds revealed that all four bacteria
used here, showed induced antibacterial activity during pairwise
interactions as compared to monocultures (Tyc et al., 2014).
This was not observed in the present study, as we didn’t
observed novel produced volatile compounds during the pairwise
interactions. Therefore, it’s questionable if volatiles solely play
an important role as a competitive strategy between bacteria.
However, it is possible that volatiles have synergistic or additive
effect to other non-volatile antibacterial compounds (Schmidt
et al., 2015). Many bacteria are known to emit inorganic volatiles
like CO2, NH3, HCN, which also have biological activities and
can have an additive effect (Effmert et al., 2012). However, such
compounds were not detected in this study as significant volatile
compounds.

Here, we tested two commonly produced bacterial volatile
compounds for their effect on the target bacteria. The
experiments with pure DMTS revealed strong growth inhibition
on all tested bacterial model organisms, when applied in a
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FIGURE 7 | Effect of DMDS, DMTS, and the mixture of both volatile compounds (DMDS + DMTS). (A) Colony morphology and growth of S. aureus 533R4
after 4 days of incubation. The pure volatile compounds were applied in a concentration ranging from 500 nM to 50 μM. Control S. aureus 533R4 grown without
exposure to the compounds. (B) Mean colony sizes of S. aureus 533R4 exposed to volatile compounds of DMDS, DMTS, and the mixture of both volatile
compounds (DMDS + DMTS). Asterisk indicates significant differences between the treatments and the control (one-way ANOVA, post hoc Tukey test p < 0.05).
Data represented are the mean of three replicates, error bars represent standard deviation of the mean.

concentration of 50 μM. Bacterial growth suppression was
already reported for DMDS emitted by Pseudomonas strains
against the crown-gall diseases causing Agrobacterium sp.
(Dandurishvili et al., 2011; Popova et al., 2014). Dimethyl
trisulfide effected colony morphology and pigmentation in
S. marcescens P87 when applied in a concentration of 50 μM.
Volatiles exposed colonies showed reduced growth and white
coloration indicating the lack of prodigiosin production. It
is plausible that this observation is related to the inhibition
of quorum-sensing as previously reported by Morohoshi
et al. (2007), Chernin et al. (2011). However, the effective
concentration of 50μMDMTS ismost probably very high and far
away from the concentrations in which those volatile compounds
are produced in nature (Groenhagen et al., 2013) as we did not
observed this effect in the experiments where S. marcescens P87
was exposed to the volatile blend produced by bacteria. The
biological relevant concentration of volatile compounds remains
to be determined in future studies.

CONCLUSION

This work revealed that inter-specific bacterial interactions
affect volatile blend composition. This observed change is most
probably related to the combination of volatile compounds
produced by each isolate rather than triggering the production of

novel volatiles as the volatile blend was composed of the mixture
of the respective interacting bacteria. Furthermore, the loss of
production of certain compounds during pairwise interaction
suggests that the production of volatile signaling compounds
(e.g. indole) in nature is influenced by inter-specific interactions.
While fungi and oomycetes showed to be very sensitive to
bacterial volatiles the effect of volatiles on bacteria varied greatly
between no effects, growth inhibition to growth promotion
depending on the volatile blend composition.
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