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After oxygen, sulfate is the most important oxidant for the oxidation of organic matter
in mangrove forest soils. As sulfate reducers are poor competitors for common electron
donors, their relative success depends mostly on the surplus of carbon that is left by
aerobic organisms due to oxygen depletion. We therefore hypothesized that sulfate-
cycling in mangrove soils is influenced by the size of net primary production, and hence
negatively affected by mangrove degradation and exploitation, as well as by carbon-
exporting waves. To test this, we compared quantitative and qualitative traits of sulfate-
reducing communities in two Saudi-Arabian mangrove stands near Jeddah, where co-
occurring differences in camel-grazing pressure and tidal exposure led to a markedly
different stand height and hence primary production. Potential sulfate reduction rates
measured in anoxic flow-through reactors in the absence and presence of additional
carbon sources were significantly higher in the samples from the non-grazed site. Near
the surface (0–2 cm depth), numbers of dsrB gene copies and culturable cells also
tended to be higher in the non-grazed sites, while these differences were not detected in
the sub-surface (4–6 cm depth). It was concluded that sulfate-reducing microbes at the
surface were indeed repressed at the low-productive site as could be expected from our
hypothesis. At both sites, sulfate reduction rates as well as numbers of the dsrB gene
copies and viable cells increased with depth suggesting repression of sulfate reduction
near the surface in both irrespective of production level. Additionally, sequence analysis
of DNA bands obtained from DGGE gels based on the dsrB gene, showed a clear
difference in dominance of sulfate-reducing genera belonging to the Deltaproteobacteria
and the Firmicutes between sampling sites and depths.
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INTRODUCTION

Mangrove forests, which are confined to tropical and subtropical
coast lines, are known to be highly productive ecosystems with
the capacity to efficiently trap suspended material from the water
column (Kristensen et al., 2008). The production of above- and
belowground litter as well as root exudates provide significant
inputs of organic carbon to mangrove soils (Alongi, 1998).
Depending on the environmental conditions, this organic carbon
is oxidized by a range of aerobic and anaerobic microorganisms
using a variety of electron acceptors, of which oxygen is the most
preferred oxidant for thermodynamic reasons (Laanbroek, 1990).
Aerobic respiration and sulfate reduction are considered to be the
major pathways of mangrove-derived carbon degradation with
a global share of 40–50% each (Kristensen et al., 2008). Oxygen
penetration in the surface of mangrove soils is often restricted to
the first 2–3mm as has been shown for soils covered by Avicennia
marina and Rhizophora apiculata (Andersen and Kristensen,
1988; Kristensen et al., 1988, 1992). Due to the presence of
oxygen, sulfate reduction is often suppressed in the upper few
millimeters of the soil, but underneath this oxic zone, sulfate
reduction generally increases with depth (Kristensen et al., 1991,
2000, 2011).

By its ability to tolerate harsh environmental conditions such
as extreme temperatures and salinity (Clough, 1993), A. marina
dominates the mangrove vegetation along the coast of the Red
Sea, where it is often found in mono-specific stands (Mandura,
1997). Many mangroves stands on the Red Sea coast have been
destroyed by overgrazing by camels (Mohamed, 1984; Saifullah
et al., 1989). Where grazing pressure is high, the growth of
mangroves is severely impacted, resulting in stunted growth and
a considerable reduction in photosynthetic biomass. As with
most mangrove tree species, annual leave litter production by
A. marina increases with tree height (Komiyama et al., 2008),
so that the carbon influx to the soil is likely to be negatively
affected by grazing, which in turn leads to lower microbial
activity. In the Vellar–Coleroon estuarine complex at the coast
of the Bay of Bengal in the state of Tamil Nadu, India, cattle-
grazing resulted also in stunted stands of A. marina, which
led to lower rates of microbial activity, especially in compacted
and dry surface soils (Alongi et al., 2005). Besides the negative
effects on carbon input, camel-grazing is also likely to decrease
oxygen input to the sub-surface soil, as trampling deteriorates
oxygen-conducting pneumatophores (Khalil, 2004). As a result,
the proportion of organic matter which is reduced by sulfate
reduction may increase.

Hence, at the surface of a mangrove forest soil with an
intrusion of oxygen that is not affected by camel-grazing, a
lower carbon input into the soil due to grazing will limit
the amount of electron donors available for sulfate-reducing
microorganisms since aerobic microorganisms will consume
these electron donors with priority. In sub-surface layers where
the intrusion of oxygen is mainly determined by the presence
of pneumatophores, deterioration of these aerial roots by camel-
trampling will stimulate sulfate reduction provided that sufficient
carbon is available. However, a lower carbon input into the
surface layer due to grazing will also lead to a lower input of

electron donors in the sub-surface layers and the positive effect
of deteriorated pneumatophores on sulfate reduction might by
nullified by the lower carbon input. For this reason, grazing
will affect the process of sulfate reduction in a non-linear and
interactive way.

At South Corniche, a coastal strip of the Red Sea 20 km
southwest of the city of Jeddah, camels irregularly graze
A. marina trees growing in a narrow zone along a beach exposed
to tidal currents. The height of the trees never exceeds 1 m, which
is notably smaller than the trees present at more sheltered, non-
grazed site about 120 km to the north. We hypothesize that the
modifying effects of camel-grazing and the occurrence of waves
affect the sulfate-reducing community both quantitatively and
qualitatively.

To test this hypothesis, soil samples were collected at these
two sites differing in their exposure to camel-grazing and tidal
currents. The grazed site has a low production, as can be inferred
from the stunted growth of the mangrove trees. Measured
edaphic factors were rather similar between the sites, except
for salinity, which was higher at the grazed site (56.0 versus
51.1 PSU). At both sites, quantitative and qualitative properties
of sulfate-reducing microbial communities were determined in
samples taken at the surface and sub-surface of the soils (i.e.,
at 0–2 cm and 4–6 cm depth). Potential sulfate reduction
rates were determined in flow-through reactor (FTR) systems
that allow the supply of nutrients to the soil while conserving
the soil structure (Roychoudhury et al., 1998; Pallud and Van
Cappellen, 2006). Numbers of viable cells were determined by
a Most Probable Number (MPN) technique (Laanbroek and
Pfennig, 1981). Quantitative PCR based on the functional dsrB
gene that codes for part of the dissimilatory sulfite reductase
enzyme was used for estimation of the size of the sulfate-reducing
community (Müller et al., 2014). Finally, denaturing gradient
gel electrophoresis (DGGE) based on the same functional gene
was applied to identify the dominant sulfate-reducing microbial
species at both sites and depths (Miletto et al., 2007).

MATERIALS AND METHODS

Study Sites
Our study was conducted with soil samples from two Avicennia
marina mangrove forests along the Red Sea coast near Jeddah,
Saudi-Arabia. One site along the coast at South Corniche
(N21◦16′06′′ and E39◦07′30′′) consisted of a current-exposed
zone with a vegetation of A. marina, which was regularly grazed
by camels, while the second site at the fringe of a sheltered creek
(N22◦19′52′′ and E39◦05′59′′) on an island near Thuwal in front
of the King Abdullah University for Science and Technology
(KAUST) campus, 120 km north of South Corniche. At both sites,
the trees grew inmonoculture on shallow soils of weathered coral.

Whereas camels irregularly grazed the mangrove trees at
South Corniche, the island near Thuwal was undisturbed. As a
result of grazing, mangrove trees in South Corniche were stunted
and never exceeded heights of 1 m. In the undisturbed stand near
Thuwal, mangrove trees were much taller with an average height
of 3.5 m (Keuskamp et al., 2013). Notwithstanding the differences
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in tree heights and exposure to tidal currents, the soils from both
mangrove stands were poor in carbon.

At both sites, replicate samples were collected along a
transect parallel to the waterfront at intermittent distances of
approximately 1 m. During sampling, soil temperatures were
within the range of 31 ± 2◦C at both sites. Edaphic properties
were also similar between both sampling sites (Table 1), with
low total organic carbon and pH slightly above neutral. At South
Corniche, salinity was somewhat higher and the soil consisted of
relatively finer particles than at Thuwal.

Determination of Sulfate Reduction Rate
Sulfate reduction rates were determined in FTRs designed to
measure rates of biogeochemical reactions, in undisturbed, water-
saturated soils, and sediments (Roychoudhury et al., 1998).
Each reactor contained a slice of soil within a Plexiglas ring
of 2 cm thickness and 4.2 cm inside diameter, with 0.2 µm
pore size PVDF (Millipore) filters and glass fiber filters (1.2 mm
PALL) at each end. The reactors were closed using POM
(polyoxymethylene) Delrin R© caps tightened with screws, whereas
O-rings prevent leakage. The soils were sampled using a hand-
operated shuttle corer, whose core liner consists of a stacking
of reactor cells (Pallud and Van Cappellen, 2006). Undisturbed
soil is thus directly collected in the stacking, with each cell
corresponding to a given depth interval. The samples were taken
from the soils that were close to the roots of the trees. After
retrieving a core, the cell stacks were taken apart and each cell was
individually closed by filters and caps. Two depth intervals were
used for further analysis, i.e., from 0–2 cm and 4–6 cm depth;
these depths are referred further as surface and sub-surface,
respectively. All experiments were run with five replicates.

In order to purge original pore water from the soil, reactors
were flushed with specific concentrations of NaCl that match
the salt concentrations measured at the two sites (Table 1) at
a constant flow rate of 1.0 ± 0.1 ml h−1 and at 21 ± 0.5◦C
for 24 h before starting the experiments. During the incubation
period, the FTRs were maintained at a constant temperature
of 30 ± 0.5◦C by placing them in a water bath. The inflow
solutions contained 4mM sodium sulfate, defined concentrations
of NaCl and no electron donor. In order to determine the effect of
additional organic carbon on sulfate reduction rates, both sodium
acetate (10mM) and sodium lactate (10mM)were supplied in the
inflow solutions. At the same time the concentration of sodium

TABLE 1 | Some characteristics of the 0–10 cm layer of Avicennia marina
forest soils collected from South Corniche and Thuwal at the Red Sea
coast near Jeddah, Saudi Arabia.

Site South Corniche Thuwal

Soil temperature (◦C) 30.1–32.5 29.2–32.7

Total organic matter (% dry solids) 0.7 0.9

pH 7.7 7.8

Salinity (PSU) 56.0 51.1

Sulfate (g/L) 1.9 1.8

Sulfur (g/L) 2.5 2.7

Mean particle size (DV50a) 73.0 136.0

aAs volume-based mean diameter.

sulfate was increased to 24 mM to meet the extra reductive
potential in the inflow solution caused by the added acetate and
lactate. Reactors supplemented with sulfate only will further be
referred to as non-amended; reactors receiving both exogenous
carbon and extra sulfate will be referred to as amended.

Inflow solutions and tubing were purged with argon before
and during the FTR experiments to maintain anoxic conditions.
Inflow solutions were introduced at a constant flow rate of
1.0 ± 0.1 ml h−1 using a peristaltic pump. Collection tubes pre-
filled with 2 ml zinc acetate (10%) to trap sulfide, were changed
at indicated fixed time intervals and then stored at –18◦C prior
to chemical analyses. All incubations were performed in the
dark to eliminate the possibility of oxygen production through
photosynthesis.

Steady state sulfate reduction rates were calculated as follows:

Sulfate reduction rates = (Cin − Cout) × Q/V

Where, Cin is the sulfate input concentration, Cout is the steady
state sulfate concentration in the outflow,Q is the volumetric flow
rate, and V is the volume of the soil slice in the reactor.

Enumeration of Sulfate-Reducing
Microorganisms
Densities of viable sulfate-reducing microorganisms were
enumerated using a MPN assay. Soil was re-suspended in
phosphate-buffered saline (PBS, per liter of milli-Q water: 8 g
NaCl, 0.2 g KCl, 1.44 g Na2HPO4, 0.24 g KH2PO4; pH 7.4)
in a soil to buffer ratio of 1:6. Slurries were shaken for 2 h.
Homogenates were immediately used for inoculation of MPN
dilution series in microtiter plates (BRAND, 8 × 12 wells of
250 µl). Tenfold serial dilutions of soil were made in a minimal
salt-water medium prepared according to Widdel and Bak
(1992). Na2SO4 (20 mM) was provided as the electron acceptor
to select for sulfate reducers. A mix of acetate, propionate, and
lactate (15 mM each) served as electron donors. The reducing
agent in the MPN medium was sodium thioglycolate (0.5 mM).
FeSO4 (0.2 mM) served as an indicator of sulfate reduction;
the formation of a black FeS precipitate was indicative for
sulfide formation by active sulfate reducers; black wells were
counted as positive. The microtiter plates were sealed with an
adhesive foil (SecurSeal R©, Simport, Beloeil, QC, Canada) and
put in anaerobic incubation bags (Anaerocult R© A mini, Merck,
Darmstadt, Germany). In the bags, a citric acid-based catalyst
was used to create an oxygen-free N2/CO2 atmosphere. The
atmosphere became anoxic within 1 h after sealing the bags, as
shown by an indicator strip (Anaerotest R©, Merck, Darmstadt,
Germany). Cultures were incubated at 30◦C for 3 months. After
counting the number of positive wells per dilution, the MPN and
confidence limits were calculated using standard MPN tables
(Rowe et al., 1977).

DNA Extraction and PCR Amplification of
dsr Gene Fragments
DNA was purified using the DNA Clean and Concentrator kit
(Zymo Research, Orange, CA, USA). The quantity and quality
of the extracted DNA were analyzed by spectrophotometry
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using an ND-1000 spectrophotometer (NanoDrop Technologies,
Wilmington, DE, USA) and by agarose gel electrophoresis. The
genomic DNA was stored at –20◦C for further analyses.

A nested PCR approach was used to increase the sensitivity
of the amplification. The first PCR amplification step yielding
a ca. 1900 bp long dsrAB fragment was performed using the
primers DRS1Fmix (equimolar mixture of DSR1F, DSR1Fa,
and DSR1Fb) and DRS4Rmix (equimolar mixture of DSR4R,
DSR4Ra, DSR4Rb, and DSR4Rc) as described by Loy et al. (2004).
The first-step PCR mixture comprised 25 µl of 2x Premix F
(Epicentre Biotechnologies, Madison, WI, USA), 25 pmol of the
each primer, 1 unit of Taq polymerase (Invitrogen), and 50 ng
of genomic DNA as template, in a total volume of 50 µl. The
following PCR conditions were used: 5 min at 94◦C; 30 cycles,
with 1 cycle consisting of 94◦C for 30 s, 55◦C for 30 s, and 72◦C
for 90 s, and a final extension at 72◦C for 10 min. Subsequently,
a 350 bp fragment of the dsrB gene was amplified in the second
step using primers DSRp2060F (Geets et al., 2006) and DSR4R.
Five microliters of 1/100-diluted PCR product from the first step
was used as template in the subsequent nested amplification. The
second-step PCR was carried out using a touchdown protocol
with an initial incubation of 5min at 94◦C, then 20 cycles of 1 min
at 94◦C, 1 min at the annealing temperature, and 1 min at 72◦C,
followed by a final incubation of 10 min at 72◦C. The annealing
temperature was lowered from 65◦C to 55◦C over the first 11
cycles, after which it was maintained for a further 14 cycles at
55◦C. The yield and quality of the PCR products were examined
on 1% (wt/vol) agarose gel stained with GelRedTM Nucleic Acid
Gel Stain.

DGGE of dsrB Gene Fragments
Denaturing gradient gel electrophoresis was performed
essentially as described by Muyzer et al. (1993). PCR products
were separated on a 1.5 mm thick, vertical gel containing
8% (w/v) polyacrylamide (37.5:1 acrylamide:bisacrylamide)
and a linear gradient of the denaturants urea and formamide,
increasing from 25 to 75%. Hundred percent of denaturant is
defined as 7 M urea plus 40% v/v formamide. The gels were
loaded with 8–10 µl of PCR product, depending on the band
intensity of the PCR product after electrophoresis on 1.5%
agarose gels. Before loading, the PCR products were mixed with
loading buffer (0.25 µl loading buffer per µl of PCR product).
The loading buffer contained 50% Glycerol, 50 mM Tris/HCl pH
7.5, 5 mM EDTA and 0.05% bromophenol blue. Electrophoresis
was performed in a buffer containing 40 mM Tris, 40 mM acetic
acid, 1 mM EDTA (pH 7.6; 0.5x Tris–acetate–EDTA buffer) for
16 h at 100 V. Gels were stained for 1 h in water containing 0.5µg
ml−1 ethidium bromide. Images were recorded with a CCD
camera mounted on the AutoChemiTM Darkroom (UVP Inc.
Upland, CA, USA). Bands of interest were isolated from the gel
using a sterile tip and the DNA containing acrylamide fragments
were incubated overnight at room temperature in sterile PCR
water to allow DNA diffusion out of the polyacrylamide matrix.
The solution was directly used for further amplifications. Excised
bands were re-amplified using the cycling previously described
(primer set DSRp2060F-GC/DSR4R, 20 cycles), and re-run on
DGGE to confirm their identity and purity prior to purification

and then purified using the Gel Recovery Kit (Zymoclean,
Orange, CA, USA) and subjected to sequencing at Macrogen,
Amsterdam, The Netherlands (http://www.macrogen.com).

Real-Time PCR Amplification
Real-time PCR amplification for sulfate-reducing prokaryotes
targeting the dsrB gene was performed in a total volume of 20 µl
with primer pair DSRp2060F and DSR4R (Geets et al., 2006) on
a Rotor-Gene 6000 thermal cycling system (Corbett Research,
Sydney, NSW, Australia). Each PCR mixture contained 3 µl
diluted (to 1 ng/µl) DNA template, 10 µl AbsoluteTM QPCR
SYBR Green Mix (Thermo Scientific, Epsom, UK), 0.4 µl each
primer (10 µM) and 1 µl Bovine Serum Albumin (BSA; 20 mM)
made using a CAS-1200 pipetting robot (Corbett Research,
Sydney, NSW, Australia). The thermo profile was the following:
10 s at 95◦C for initial denaturation, 45 cycles of 20 s at 95◦oC, 30 s
at 56◦C and 45 s at 72◦C. The fluorescence was obtained at 84◦C
for each cycle. Amelting curve was performed from 55◦C to 99◦C
to confirm PCR product specificity for the reaction. Standard
curves were constructed with serial dilutions of known amounts
of dsrB gene, which were amplified with dsr4R/dsr2060F primers
from pure cultures of Desulfovibrio desulfuricans, Desulfobulbus
propionicus, Desulfobacter latus, and Desulfococcus multivorans.
Serial dilutions covered a range of 7 orders of magnitude (102–
109) of template copies per assay. In order to get specific products
and avoid inhibition, dilution series were made of the soil DNA
solution to test for inhibition and set a 100-fold dilution as the
final template. The amplification efficiency ranged from 98 to
104% with R2 values greater than 0.99.

Phylogenetic Analysis
Partial dsrB sequences were compared to sequences stored in
the GenBank database for preliminary identification using the
BLAST algorithm. Subsequently, the concatenated sequences
were aligned and a phylogenetic tree was plotted using MEGA
6.06 software (Tamura et al., 2013). Partial dsrB nucleotide
sequences determined in this study have been submitted to
the EMBL database under the accession numbers KF493653 to
KF493576.

Analytical Methods
Sulfate concentrations were measured by ion chromatography
using a Dionex DX120 (Water, Milford, MA, USA) with an
IonPac ICE-AS6 column and Anion-ICE Micro Membrane II
suppressor.

Statistical Analyses
Data were analyzed in R 3.1.1 and were fitted to mixed linear
models with treatment, sampling site and depth as fixed factors
and core stack as random factor using nlme 3.1-118 (Nakagawa
and Schielzeth, 2013; Pinheiro et al., 2014). Residuals were tested
for heteroscedacity using Bartlett’s test and for normality using
the Shapiro–Wilk test. In case of violation of either of these
assumptions, this was solved through transformation of the
response variable. Treatment effects were tested for significance
using ANOVA with type II sum of squares using car 2.0–
22 (Fox and Weisberg, 2011). Adjusted R2 for mixed models
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FIGURE 1 | Rates of sulfate reduction measured in flow-through reactors (FTRs) containing non-carbon-amended Avicennia marina mangrove soil
samples collected from the surface (A,B) or sub-surface (C,D) from South Corniche (A,C) and Thuwal (B,D) at the Red Sea coast near the city of
Jeddah, Saudi Arabia. The soils were supplied with 10 mM sulfate.

were calculated using the method of Nakagawa and Schielzeth
(2013).

A principal component analysis (PCA) was performed using
the PAST software package version 2.17c (Hammer et al., 2001).
The same software package was also used for the determination
of Shannon’s index of diversity.

RESULTS

Sulfate Reduction Rates
Sulfate reduction rates based on differences in sulfate
concentrations in the inflow and the outflow of the FTRs,
declined in the first days of the measurement in the non-
carbon-amended, surface samples from South Corniche and
reached a steady state after 4 days (Figure 1A). In the non-
carbon-amended samples of the sub-surface layer of this
sampling site, sulfate reduction started declining after 3 days,
while rates slightly increased again after 6 days (Figure 1C).
In the non-carbon-amended samples from Thuwal, both
from the surface and the sub-surface, sulfate reduction rates
increased until day 3, after which they declined to a steady
state (Figures 1B,D). The steady state sulfate reduction
rates as measured from day 4 onward are summarized in
Table 2. Steady state reduction rates of non-amended samples
were significantly (p < 0.001, Supplementary Table S1)
higher in cores from Thuwal than from South Corniche.
The sulfate reduction rates measured in the non-amended
samples from the surface layers were significantly (p < 0.001,
Supplementary Table S1) lower than the rates observed in
non-carbon-amended samples from the sub-surface layers.

A significant, interactive effect of sampling site and depth was
also observed.

Amendment with 10 mM acetate and 10 mM lactate to
the medium increased the sulfate reduction rates on average
by factor of 5.4 (factor range: from 3.5 for the surface
samples from Thuwal to 6.8 for the surface samples from
South Corniche). In the carbon-amended surface and sub-
surface samples from South Corniche, sulfate reduction rates
reached steady state almost directly after the start of the
measurements (Figures 2A,C). In the carbon-amended samples
from Thuwal, steady states in sulfate reduction rates were
only reached after 3 days in both surface and sub-surface
samples (Figures 2B,D). The steady state sulfate reduction rates
were measured from day 4 and are summarized in Table 2.
The sulfate reduction rates measured in the carbon-amended
samples from Thuwal were significantly higher (p < 0.001,

TABLE 2 | Average rates of steady state sulfate reduction measured in
Avicennia marina mangrove soils from South Corniche and Thuwal at the
Red Sea coast near Jeddah, Saudi Arabia.

Site Depth
layer (cm)

Steady state sulfate reduction rates
(nmol cm−3 h−1)a

Non-amended Carbon-amended

South Corniche 0–2 42 (9) 245 (10)

4–6 69 (12) 369 (6)

Thuwal 0–2 84 (14) 243 (61)

4–6 93 (5) 421 (75)

aAverages were calculated using data from five replicates after sulfate
concentrations in the outflow reached (near) constant values. Standard deviations
are indicated in brackets.
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FIGURE 2 | Rates of sulfate reduction measured in FTRs containing carbon-amended Avicennia marina mangrove soil samples collected from the
surface (A,B) or sub-surface (C,D) from South Corniche (A,C) and Thuwal (B,D) at the Red Sea coast near the city of Jeddah, Saudi Arabia. The soils
were supplied with 10 mM acetate, 10 mM lactate, and 24 mM sulfate.

Supplementary Table S2) than the rates observed in carbon-
amended samples from South Corniche. Similarly to the non-
carbon-amended samples, the rates in the carbon-amended
samples were significantly (p < 0.001, Supplementary Table
S2) higher in the sub-surface layer than in the surface layer.
A significant, interactive effect of sampling site and depth was
observed again.

Bacterial and Gene Numbers
In the samples, the copy numbers of the dsrB gene were in the
order of 108 per g soil (Table 3). Copy numbers of the dsrB
gene were significantly (p < 0.001, Supplementary Table S1)
affected by sampling depth with the highest numbers in the sub-
surface layers. Gene copy numbers at the surface were higher
at Thuwal than at South Corniche, however, this difference was
not significant because of the variation in numbers between
replicates.

The abundances of culturable sulfate-reducing
microorganisms at the two mangrove stands, as determined

TABLE 3 | First dsrB gene copy numbers (qPCR) and then most probable
numbers (MPN) observed in mangrove soils from South Corniche and
Thuwal at the Red Sea coast near Jeddah, Saudi Arabia.

Site Depth
layer (cm)

qPCR (gene copies
g−1 soil)a

MPN (cm−3 soil)a

South Corniche 0–2 2.4 × 108 (0.3 × 108) 2.7 × 105 (1.9 × 105)

4–6 9.4 × 108 (6.5 × 108) 4.4 × 106 (2.7 × 106)

Thuwal 0–2 6.9 × 108 (1.1 × 108) 6.5 × 105 (2.5 × 105)

4–6 7.6 × 108 (0.6 × 108) 3.3 × 106 (2.9 × 106)

aAverages of 10 replicates. Standard deviations are indicated in brackets.

by MPN enumerations in microtiter plates, are also presented in
Table 3. The MPN counts showed that microorganisms capable
of sulfate reduction were present at high numbers at both sites. As
with dsrB gene copy numbers, MPN numbers were significantly
(p < 0.001) affected by sampling depth with the highest numbers
in the sub-surface layers (Table 2, Supplementary Table S1). The
MPN numbers from the surface were higher at Thuwal than
at South Corniche, however, this difference was not significant
because of the variation in numbers between replicates.

Community Structure Based on DGGE
Denaturing gradient gel electrophoresis based on PCR of the
dsrB gene was used to identify differences in the dominant
sulfate-reducing species between sampling sites and depths. All
sequences excised from the DGGE bands were found to belong to
sulfate-reducing bacteria within the phylum Proteobacteria (class
Deltaproteobacteria) or from the phylum Firmicutes (Figure 3).
The bacterial families were unevenly distributed over the different
sampling units (Table 4). The differences in diversity between
both sampling sites as shown in Table 4 is reflected in the
calculated Shannon diversity indices: 1.055 and 1.004 for the
surface and sub-surface layers of South Corniche, respectively,
and 1.519 and 1.708 for the surface and sub-surface layers of
Thuwal, respectively. The distinct position of the sub-surface
layer from Thuwal was also clear from a PCA of the retrieved
sequences on the level of bacterial families (Figure 4). The first
component, which explained 55% of the variance among the
samples, separates the sub-surface layer of Thuwal from the
other sampling units. The second component explaining 35%
of the variance divides the surface layers from the sub-surface
layers. The ordination of the sub-surface layer of Thuwal was
largely determined by the presence of a relatively large number of
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FIGURE 3 | Neighbor-joining DSR phylogenetic tree showing the affiliation of sequences obtained from DGGE-excised bands of sulfate-reducing
bacteria obtained in soil samples from the South Corniche and Thuwal mangrove stands. Phylogenetic and molecular evolutionary analyses were
conducted using MEGA version 6.06 (Tamura et al., 2013). Archaeoglobus fulgidus (M95624) was used as the out-group reference.

bands belonging to the Syntrophaceae, whereas the ordinations
of the surface layer of Thuwal and the sub-surface layer of
South Corniche coincided with relatively large numbers of bands
that fit with the Desulfohalobiaceae and the Desulfobacteraceae,
respectively.

In the DGGE gels, a total of 15 different bands were
observed, of which 11 bands could be assigned to genera with
known physiological abilities (Table 5). Most of the genera
were exclusively found at one of the sampling sites. Only the
genus Desulfopila, which belongs to the Desulfobulbaceae, and
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TABLE 4 | Distribution of dsrB sequences representing sulfate-reducing
bacterial families over the different sampling units.

Bacterial families Surface Sub-surface

South
Corniche

Thuwal South
Corniche

Thuwal

Desulfobacteraceae 3 4 8 1

Desulfobulbaceae 2 2 1 3

Desulfohalobiaceae 2 5 0 1

Desulfomicrobiaceae 0 0 0 1

Desulfovibrionaceae 1 2 0 3

Syntrophaceae 0 2 3 7

Syntrophobacteriaceae 0 0 0 1

Firmicutes 0 2 3 4

an unknown genus of the Desulfovibrionaceae were detected
at both sites. In contrast to the almost exclusive distribution
of the genera over the sampling sites, most of the genera
were observed at both the surface and the sub-surface layers.
Exceptions were the genera Desulfobacter, Desulfosarcina (both
Desulfobacteraceae), and Desulfonauticus (Desulfohalobiaceae)
that were only detected at the surface layer of South Corniche.
The genusDesulfobacterium (Desulfobacteraceae) and the genera
Desulfobacca and Desulfomonile (both Syntrophaceae) were only
found in the sub-surface layers of South Corniche and Thuwal,
respectively.

DISCUSSION

At least for the surface layer, the results support our hypothesis
that factors such as camel-grazing and waves affect the sulfate-
reducing microbial community. Independent from the absence
or presence of amended carbon, the steady state sulfate reduction
rates determined in the FTRs were significantly lower in soil

samples from the exposed and grazed site at South Corniche
than in samples from the sheltered and non-grazed site at
Thuwal. Assuming that these rates reflected the size of the sulfate-
reducing community that is active in situ, it can be concluded
that the environmental conditions at the sheltered and grazed
site had a negative effect on the size of sulfate reduction in
the sampled soils. We infer that this must result from a lower
availability of electron donors at this site, as the alternative, an
increase in oxygen flux through grazing seems highly unlikely.
In non-carbon-amended reactors, steady state sulfate reduction
rates were significantly larger in the sub-surface layers than
in the surface layers, which meant that the amount of carbon
available for sulfate reduction was larger in the deeper anoxic
layers. This might have been due to the absence of competition
for carbon with aerobic microorganisms. Not only steady state
sulfate reduction rates, but also the numbers of dsrB gene copies
and viable sulfate-reducing cells increased significantly with
depth. However, a significant effect of sampling site on these
numbers was not observed. Whereas numbers in the surface
samples were higher at the sheltered, non-grazed site, numbers
in the sub-surface samples were higher at the exposed, grazed
site. Although rates and numbers followed generally the same
trends between grazed and non-grazed and between surface and
sub-surface, lower rates but higher numbers were observed in
the sub-surface layer of the grazed site when compared to the
sub-surface layer of the non-grazed site. This demonstrates that
rates and numbers of dsrB gene copies and viable cells are not
necessarily coupled.

Stimulating or Inhibiting Effects
Howarth et al. (1995) and Sherman et al. (1998) showed that
rates of sulfate reduction not only depends on organic matter
input, but also on physical processes that affect mixing and
irrigation of surface sediments. The sheltered site at Thuwal
might experience less mixing than the tidal currents-exposed

FIGURE 4 | PCA ordination biplot of sampling sites and depths based on dsrB sequence distribution. Percentages at the axes explain the amount of
variation explained by the axes.
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TABLE 5 | Distribution and potential electron donor range of sulfate-reducing, bacterial genera detected in Avicennia marina forest soils along the Red
Sea Coast of Saudi Arabia.

Family Genus Sampling site and depth Potential electron
donors based on

literature data

Reference

South Corniche Thuwal

surface sub-
surface

surface sub-
surface

Desulfobacteraceae Desulfobacter + Acetate and ethanol Widdel, 1987

Desulfobacterium + Methanol, glutarate,
glutamate, phenol,

aniline, nicotinate, indole

Cravo-Laureau et al., 2004

Desulfosarcina + H2, fatty acids, ethanol,
phenyl-substituted

organic acids

Widdel, 1980; Rabus et al.,
2006

Unknown + +
Unknown + +

Desulfobulbaceae Desulfobulbus + + H2, ethanol, propionate,
lactate

Widdel and Pfennig, 1982;
Rabus et al., 2006

Desulfopila + + + Lactate, alcohols Suzuki et al., 2007

Desulfohalobiaceae Desulfonauticus + + H2 Audiffrin et al., 2003

Desulfovibrionaceae Desulfovibrio + H2, methanol, ethanol,
lactate, glycerol, glycine,
alanine, choline, furfural

Rabus et al., 2006

unknown + + +
Syntrophaceae Desulfobacca + Acetate and ethanol Oude Elferink et al., 1999;

Rabus et al., 2006

Desulfomonile + H2, phenyl-substituted
organic acids, 3- or

4-anisate

Rabus et al., 2006

unknown + +
Syntrophobacteraceae Syntrophobacter + + Propionate Boone and Bryant, 1980;

Harmsen et al., 1993

Firmicutes Desulfotomaculum + + Methanol, ethanol, alanine Widdel and Pfennig, 1977

Presence of genera is based presence on DGGE gels. Bold: Relatively poorly oxidizable electron donors.

site at South Corniche. Our observation that the development
of sulfate reduction rates during the first days of incubation was
markedly different between the sites may be related to the scale
of mixing at both sites. While the rates in the samples collected at
South Corniche were already high from the start of the incubation
on, the samples from Thuwal showed an initial phase of three
or more days with increasing sulfate reduction rates before they
stabilized. This phase cannot be attributed to electron donor
availability, as a similar lag phase was also observed when external
carbon was provided. Rather, the initial lag phase points to
induction of activity or growth of a partly inactive community
of sulfate-reducing microorganisms. Flushing of soil cores with
the salt solution containing sulfate with or without electron
donors can have several effects. It may bring microorganisms and
substrate together, which can lead to increasing sulfate-reducing
activities. The fact that the increase in sulfate reduction rates
occurred more or less to the same extent in the absence and in
the presence of additional carbon makes this explanation less
likely for the observed increase in activity in the Thuwal soils.
Yet, the release of a growth- or activity-stimulating factor other
than the carbon and electron donor source upon flushing can
still explain the observed phenomenon of the initial increase in

activities in the Thuwal soil. Conversely, a growth- or activity-
suppressing factor may be washed out from the reactors upon
flooding with mineral medium. An elimination of oxygen in the
soils is thereby less probable as the initial increase also occurs in
the permanently anoxic sub-surface layer. A reduction of sulfide
is also not very likely, unless the initial sulfide concentration
is equal between layers, but different between the Thuwal and
South Cornice sites. This possibility cannot be excluded as sulfide
concentrations have not been measured in either site. Finally,
inhibitory compounds such as tannins (Scalbert, 1991; Maie
et al., 2008) may inhibit sulfate reduction in the absence of a
good flushing. As significant amounts of tannins are leached
from decomposing Avicennia leaf material (Hai and Yakupitiyage,
2005), the higher plant biomass, the absence of grazing by camels,
and the lower export of carbon due to a diminished tide effect,
may have led to higher tannin concentrations at the Thuwal
sites.

Sulfate Reduction Rates in Perspective
Depth-integrated sulfate reduction rates in different A. marina
forests ranged from 2 to 319 mMol S m−2 d−1 representing
20–85% of total carbon mineralization (Kristensen et al., 1992;
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Alongi et al., 2000, 2005). An observation of lower sulfate
reduction rates in cattle-grazed mangrove forest compared
to more pristine forest in the same region (Alongi et al.,
2005) confirms our observation of lower rates in the camel-
grazed A. marina stand at the Red Sea coast. The depth of
soil layers with the highest sulfate reduction rate depended
on local conditions, and may reach 600 nmol S cm−3 d−1

(Kristensen et al., 1992; Alongi et al., 2000, 2005; Kristensen
and Alongi, 2006). Exceptionally high rates of 6000 nmol S
cm−3 d−1 have been observed during the wet monsoon season
(Alongi et al., 2005). A sulfate reduction rate of 600 nmol
S cm−3 d−1 is approximately three times lower than the
steady state rates measured in our FTRs. However, it should
be kept in mind that our rate measurements were only meant
for comparison between sampling depths and sites, not for
determining in situ rates. Although the reactors contained
structurally undisturbed soils, the continuous flow of sulfate-
rich medium through the soils will have a positive effect
on the electron donor availability in these naturally carbon-
limited soils as was observed with the increase in activity when
easily degradable carbon is added in the form of acetate and
lactate.

Occurrence of Sulfate Reducing Genera
in Mangrove Soils
Sulfate-reducing community compositions in mangrove forest
soils have rarely been studied. From the genera that emerged
in our analyses,Desulfovibrio,Desulfotomaculum,Desulfosarcina,
and Desulfococcus species had previously been isolated from
mangroves in Goa, India, on media containing lactate, acetate,
propionate, butyrate, or benzoate (Bharathi et al., 1991). Varon-
Lopez et al. (2014) analyzed the composition of sulfate-reducing
communities in mangrove forests in São Paulo State, Brazil, that
were mainly composed of Avicennia schaueriana, Laguncularia
racemosa, and Rhizophora mangle (Andreote et al., 2012) and
that were polluted to different degrees. Pollution had an effect
on the composition of the communities that comprised two
major taxonomic groups affiliated with Deltaproteobacteria; one
related to the order Desulfobacterales and another to the order
Desulfovibrionales. Since mixed samples had been collected over
a depth of 30 cm, this study could not disclose an effect of
depth on the distribution of taxonomic groups. Mixing of the
soil over such a depth may also explain why genes copy numbers
determined by Varon-Lopez et al. (2014) were approximately
three orders of magnitude lower than gene numbers at the
Red Sea coast that were determined in the upper 6 cm of the
soil.

Distribution of Potential Physiological
Abilities
It might be expected that organic carbon recalcitrance increases
with soil depth, due to a higher average age and larger fraction
of root material, which is highly refractory in comparison
to leaf litter (Middleton and McKee, 2001). Hence, sulfate-
reducing microorganisms that are able to use recalcitrant
carbon sources as electron acceptors may preferentially be

found in the sub-surface layers. Of the four detected genera,
which are capable of decomposing more complex carbon
compounds, two were exclusively found in sub-surface layers
[i.e., Desulfobacterium (Desulfobacteraceae) and Desulfomonile
(Syntrophaceae)], and two were detected exclusively in
surface layers [i.e., Desulfosarcina (Desulfobacteraceae) and
Desulfovibrio (Desulfovibrionaceae)]. Hence, no clear pattern
emerges from the distribution of physiological abilities over the
sampling depths.

A similar non-specific distribution is found with regard
to the ability to use H2 as electron donor for the reduction
of sulfate. A number of these genera (see Table 4) can
use H2 as electron donor for the reduction of sulfate and
could therefore function as hydrogen-consuming partners in
fermentative microbial communities (Muyzer and Stams, 2008).
However, establishing the occurrence of interspecies H2 transfer
in mangrove soils requires further research since the distribution
of genera with the ability to use H2 as electron donor for sulfate
reduction does not seem to be determined by sampling site or
depth.

Potential dsrB Gene Bias
All sequences derived from the mangrove soil samples
were either affiliated with the phylum Proteobacteria (class
Deltaproteobacteria) or with the phylum Firmicutes. Sequences
affiliated with sulfate-reducing microorganisms from other
bacterial phyla such as Thermodesulfobacteria and Nitrospirae
(with Thermodesulfovibrio species) or from the archaeal phyla
Euryarchaeota (with Archaeoglobus fulgidus) and Crenarchaeota
(with Caldivirga maguilingensis) were not detected. This could
mean that sulfate-reducing bacteria other than Proteobacteria
and Firmicutes are not present in mangrove soils, or that the
primers used for detecting the dsrB gene have a bias toward
these phyla. Generally, studies applying the dsrB gene in a range
of ecosystems detected only sulfate-reducing bacteria that are
affiliated with the phyla Proteobacteria or Firmicutes (Foti
et al., 2007; Kjeldsen et al., 2007; Miletto et al., 2010; Pester
et al., 2010, 2012; Varon-Lopez et al., 2014), except for studies
related to active deep-sea hydrothermal vent chimney structures
(Nakagawa et al., 2004) and non-sulfidic, mobile tropical
deltaic muds (Madrid et al., 2006) that detected sequences of
thermophilic, sulfate-reducing prokaryotes. The absence of such
more extreme conditions may be the reason why sulfate-reducing
bacteria of the phylum Thermodesulfobacteria and the genus
Thermodesulfovibrio and sulfate-reducing archaea of the genera
Archaeoglobus and Caldivirga have not been found in mangrove
soils.

Since our study was primarily meant to detect quantitative
differences in sulfate reduction between grazed and non-grazed
mangrove sites, we did not analyze the community composition
of the sulfate-reducing microorganisms extensively by extended
clone or amplicon libraries, but scanned the communities by
DGGE coupled to PCR that was based on the dsrB gene. Although
a DGGE analysis will not expose the total diversity of sulfate-
reducing microbes as may be expected from the other molecular
analyses mentioned, it will give insight in possible differences in
dominant genera.
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CONCLUSION

Lower levels of steady state sulfate reduction rates, lower
numbers of the sulfate reduction-specific dsrB genes and lower
quantities of culturable sulfate-reducing microorganisms in the
surface layer from South Corniche compared to the upper
layer from Thuwal suggested that sulfate reduction is less
important at the first few millimeters of the grazed site.
Such a repression of sulfate reduction may have different
causes. Grazing of mangrove by camels leading to stunted
trees with consequently repressed primary production will lead
to a lower input of carbon into the soil at South Corniche.
With an unchanged supply of oxygen and a priority use of
carbon by aerobic microorganisms, less carbon will be available
to the sulfate-reducing community. However, other potential
mechanisms affecting sulfate reduction rates differentially at
the grazed and non-grazed sites should also be considered.
Export of carbon by tidal currents will be more intense
at the exposed site at South Corniche, and hence could
intensify a potential carbon shortage for the sulfate-reducing
microorganisms at this site. In addition, the activity of sulfate-
reducing microorganisms at the exposed site might be repressed
by more intensive mixing due to tidal currents leading to
larger oxygen availabilities. Deterioration of pneumatophores
at the grazed sites may have decreased oxygen availability in
the sub-surface layer leading to more electrons and carbon
available for the sulfate-reducing community. Although numbers
of genes and viable cells were larger in the sub-surface layer
of the grazed site compared to this layer of the non-grazed
site, steady state sulfate reduction rates were lower. Hence, we
are not able to draw conclusions on the effect of deteriorated
pneumatophores on the characteristics of the sulfate-reducing
community.

On the other hand, a larger input of carbon from local primary
production into the soil and a diminished export of produced
carbon at the non-grazed and sheltered site at Thuwal may
lead to accumulation of compounds such as tannins that can
inhibit the activity of carbon-degrading microbes. Longer lag-
times in sulfate reduction as observed after starting the FTRs
with soils from Thuwal may be the result of leaching of inhibiting
compounds such as tannins from the reactors.

In summary, the observed effects cannot with certainty be
ascribed to the absence or presence of camel-grazing, since the
sites do not only differ by this characteristic, but also by other
traits such as the degree of exposure to tidal currents. All the

characteristics at the grazed site, i.e., low primary production due
to camel-grazing and the high exposure to tidal currents, will all
lead to a lower input of carbon into the soil. This lower input
of carbon and electrons will repress the size of sulfate reduction
in the presence of a more superior electron-consuming aerobic
community. This repression of sulfate reduction is reflected by
trends of lower rates and numbers at the exposed, grazed site
compared to the sheltered, non-grazed site.
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