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Algal biofuels and valuable co-products are being produced in both open and closed
cultivation systems. Growing algae in open pond systems may be a more economical
alternative, but this approach allows environmental microorganisms to colonize the
pond and potentially infect or outcompete the algal “crop.” In this study, we monitored
the microbial community of an outdoor, open raceway pond inoculated with a high
lipid-producing alkaliphilic alga, Chlorella vulgaris BA050. The strain C. vulgaris BA050
was previously isolated from Soap Lake, Washington, a system characterized by a
high pH (∼9.8). An outdoor raceway pond (200 L) was inoculated with C. vulgaris
and monitored for 10 days and then the culture was transferred to a 2,000 L
raceway pond and cultivated for an additional 6 days. Community DNA samples
were collected over the 16-day period in conjunction with water chemistry analyses
and cell counts. Universal primers for the SSU rRNA gene sequences for Eukarya,
Bacteria, and Archaea were used for barcoded pyrosequence determination. The
environmental parameters that most closely correlated with C. vulgaris abundance
were pH and phosphate. Community analyses indicated that the pond system
remained dominated by the Chlorella population (93% of eukaryotic sequences), but
was also colonized by other microorganisms. Bacterial sequence diversity increased
over time while archaeal sequence diversity declined over the same time period.
Using SparCC co-occurrence network analysis, a positive correlation was observed
between C. vulgaris and Pseudomonas sp. throughout the experiment, which may
suggest a symbiotic relationship between the two organisms. The putative relationship
coupled with high pH may have contributed to the success of C. vulgaris. The
characterization of the microbial community dynamics of an alkaliphilic open pond
system provides significant insight into open pond systems that could be used to control
photoautotrophic biomass productivity in an open, non-sterile environment.
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INTRODUCTION

The cultivation of algal biomass has many industrial applications
ranging from health-care products to biodiesel (Fields et al.,
2014). As the number of applications and subsequent demand
for biomass increases, a challenge will be to exponentially
increase production cost-effectively. The use of alkaliphilic
photoautotrophs may help overcome some of the constraints
associated with large-scale biomass production in open systems
due to limited niche accessibility caused by higher pH values.
Algal production of triacylglycerol (TAG) and other lipids are of
substantial interest because of being biodiesel precursors that can
be transesterified into fatty acid methyl esters (FAMEs; Sheehan
et al., 1998; Dismukes et al., 2008; Scott et al., 2010). Many studies
have screened algal species for biodiesel applications based on
high lipid content (Sheehan et al., 1998; Dismukes et al., 2008;
Griffiths and Harrison, 2009; Scott et al., 2010; Griffiths et al.,
2011), and Chlorella vulgaris has been identified as one such
species (Li et al., 2008; Griffiths et al., 2011; Duong et al., 2012).

Many studies on C. vulgaris and other species have been
conducted in closed photobioreactors (PBRs) whose overall costs
are considered a major constraint in the scale-up of algal biodiesel
production (Smith et al., 2010; Kazamia et al., 2012a; Chisti,
2013; Shurin et al., 2013). However, in an effort to scale up
production at lower capital investments, open pond systems
have been shown to be a viable alternative (Smith et al., 2010).
These open systems are, however, prone to colonization by
environmental microbes spanning all three domains, and may
contain hundreds of distinct taxa whose relative abundances vary
by orders of magnitude (Fulbright et al., 2014). By employing
parameters from “extreme” environments observed in natural
systems, such as high pH, unwanted colonization (e.g., invasion)
may be limited (Georgianna and Mayfield, 2012; Wang et al.,
2013; Selvaratnam et al., 2014). In addition, alkaline systems
favor higher dissolved inorganic carbon (DIC) from atmospheric
CO2 thereby providing increased carbon delivery for primary
producers. Moreover, some of the highest primary production
rates have been reported for microbial, alkaline systems (Melack
and Kilham, 1974; Hem, 1985).

Bacterial colonization has benefits and drawbacks for biomass
production that are determined by the system’s community
structure and composition. Numerous studies have documented
positive, symbiotic relationships between algal taxa and bacteria
(Croft et al., 2005; Watanabe et al., 2005; Sapp et al., 2007;
Xie et al., 2013). Specifically, different species of Pseudomonas
have been observed living in association with algae, including
C. vulgaris (Sapp et al., 2007). The physical association, in
which the bacteria live in the exopolymeric substances (EPS) or
“phycosphere” of the alga, has been shown to increase C. vulgaris
growth (Guo and Tong, 2013). The alga not only benefits from
exchange of growth promoting and antibacterial metabolites in
the niche space of the phycosphere, but also via the exclusion of
potential opportunistic pathogens (Kazamia et al., 2012a,b; Smith
and Crews, 2013). Additional work has shown symbiosis to be
critical for adaptation to thermal stress resulting in higher algal
biomass (Xie et al., 2013). These mutual positive relationships
may have benefits for biotechnological applications offering the

potential to artificially select microbial consortia that promote
the growth of desired species (Kazamia et al., 2012a, 2014; Ortiz-
Marquez et al., 2012; Natrah et al., 2013; Santos and Reis, 2014).

In the described study, we utilized pyrosequencing to
monitor fluctuations in the community structure of an outdoor
raceway pond inoculated with C. vulgaris during scale-up from
200 to 2,000 L. The results indicated that the inoculated
algal population could maintain predominance under alkaline
conditions, and that bacterial diversity increased while archaeal
diversity decreased over time. In addition, particular populations
could be correlated with C. vulgaris.

MATERIALS AND METHODS

Site Description and Raceway Pond
Conditions
Outdoor ponds were located in Logan, Utah (July 2011)
approximately 40 km west of the northern arm of the Great
Salt Lake (GSL). The 200 L oblong pond manufactured by
Separations Engineering Inc. was lined with fiberglass and
equipped with a paddle wheel promoting gas exchange with
ambient air (Separatons Engineering Inc., San Diego, CA, USA).
Initially, a 200 L raceway was inoculated with C. vulgaris (10%
v/v), maintained at a culture depth of 13 cm, and monitored for
10 days. On day 10, the entire culture was transferred into an
adjacent 2,000 L raceway and maintained at a culture depth of
20 cm for the remaining 6 days of the experiment. The 2,000 L
raceways were constructed of cinder blocks stacked two high with
46 mil EPDM rubber pond liner creating the pond. Marine board
was used to divide the pond into a circulating raceway with a
paddlewheel providing circulation. The ponds were inoculated
with Chlorella vulgaris BA050 that was previously isolated from
Soap Lake, Washington, which is characterized by growth at high
pH (∼9.8) (Dimitriu et al., 2008). The isolate was maintained
on agar plates and was streak isolated during each subsequent
plating every 2 months. The 18S rRNA gene sequences obtained
from isolated DNA confirmed the presence of a single eukaryotic
microorganism. A single 200 L raceway was inoculated with a
20 L culture (10% volume) that had been previously cultivated
in shaker flasks bubbled with 1% CO2. A more saline version
of Bold’s Basal Medium, consistent with the salinity of seawater
(35 ppt), at pH 8.7 was prepared under non-sterile conditions
with the addition of dry salts and concentrated solutions (Nichols
and Bold, 1965). Inoculation resulted in a cell density of 3.6E+6
cells/mL with the addition of sufficient medium to bring the
total volume to 200 L. The pH was not controlled in the pond.
Unfiltered tap water was added each day to replace measured
evaporative loss. After 10 days, repeatingmethods from the initial
inoculation, the 2,000 L pond was inoculated by transferring
200 L (10%) of culture from the first pond (200 L).

Sample Collection
Samples were collected twice daily for cell density ascertained by
OD750 and direct cell counts via optical microscopy (cells/mL).
Additionally, 500mL samples were collected and frozen at−80◦C
for DNA extraction and 454 sequencing.
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DNA Extraction and Sequencing
DNA Extraction
Samples were slowly thawed at 4◦C and microbial biomass
was collected via filtration through 0.22 µm polyethersulfone
membrane filters. The solids were then suspended in theMOBIO
PowerMaxTM Soil DNA Isolation Kit PowerBead Solution, and
the cells were lysed via three cycles of liquid nitrogen freeze–thaw
and ground with a mortar and pestle aided by sterile sand (Zhou
et al., 1996) (MOBIO Laboratories Inc., Carlsbad, CA, USA). The
DNA was cleaned and concentrated with the Wizard

R©
SV Gel

and PCRClean-Up System (Promega Corporation, Madison,WI,
USA) according to the manufacturer’s protocol.

Bar-Coded Pyrosequencing
Pyrosequencing was utilized to characterize the microbial
population of the ponds. PCR was used to increase the DNA
concentration needed for pyrosequencing analysis. Each
sample was labeled with a unique 10 nucleotide-barcode for
multiplexing. The SSU rRNA gene sequences for Eukarya and
Bacteria were amplified via 25 cycles of PCR with the following
barcoded primers; 7F (5′-ACCTGGTTGATCCTGCCAG-3′)
and 591R (5′-GGAGCTGGAATTACCG-3′) for Eukarya and
FD1 (5′-AGAGTTTGATCCTGGCTCAG-3′) and 529R (5′-
CGCGGCTGCTGGCAC-3′), which targeted the V1–V3 region
of Bacteria (Bowen De León et al., 2012). Archaeal sequences
were amplified separately from Bacteria using a nested approach
with non-barcoded 21F (5′-TTCYGGTTGATCCYGCCRGA-
3′) and 1492R (5′-CGGTT ACCTTGTTACGACTT-3′) for
20 cycles followed by an additional 20 cycles with barcoded
751F (5′-CCGACGGTGAGRGRYGAA-3′) and 1204R (5′-
TTMGGGGCATRCNKACCT-3′) (Baker et al., 2003; Barnhart
et al., 2013). PCR products of the correct size were confirmed
using a 1% agarose gel. Products were cut from the gel
and pooled using an Ultrafree-DNA gel extraction column
(Millipore Corporation, Bedford, MA, USA). The gel extract
was cleaned and concentrated using the Wizard

R©
SV Gel and

PCR Clean-Up System, and dsDNA was quantified with a
Qubit fluorometer (Invitrogen, Carlsbad, CA, USA). Adaptors
for 454 sequencing were ligated to the amplicons and were
pyrosequenced on a 454 GS-Junior (454 Life Sciences, Branford,
CT, USA). Roche’s image analysis separated sequences by
barcode. Sequences were trimmed to one standard deviation
below the mean length or removed if shorter. Employing
the Phred score filter, 15% of the nucleotides were allowed
to be below Q27, and removed if primer errors or Ns were
observed.

Bioinformatic Sequence and Community
Analysis
Data analysis was performed using the Quantitative Insights
into Microbial Ecology (QIIME) software package, version 1.4.0
(Caporaso et al., 2010b). Parameter settings for demultiplexing
were at a default level of 200 and 1000 bp in length. Metadata
files were prepared according to a QIIME compatible template
taking into account environmental sampling data on pH,
temperature, and ionic concentrations. Libraries were split

according to barcode for each of the respective domains (Archaea,
Bacteria, and Eukarya). Sequences were then concatenated for
data normalization needed in downstream analysis. Operational
taxonomic units (OTUs) were assigned using the closed reference
OTU picking protocol. Clusters were referenced against the Silva
108 database and pre-clustered at 97% identity using UCLUST
(Edgar, 2010).

Sequence reads that matched a Silva reference sequence
at 97% identity were clustered within an OTU defined by
a reference sequence. OTU assignment (and all subsequent
steps) was performed for the combined Archaea, Bacteria and
Eukarya reads. The singleton OTUs were discarded. The centroid
sequence in every cluster was selected to represent the cluster
and aligned with the Silva core set using PyNAST (Caporaso
et al., 2010a). Chimeric sequences, identified with Chimera Slayer
(Haas et al., 2011) and reads that failed to align with PyNAST
were excluded from subsequent analyses. PyNAST (v1.1) was
used for sequence alignment and filtering through QIIME using
default parameters.

Taxonomic assignments were additionally assigned using
the retrained RDP Classifier (Wang et al., 2007) on the Silva
108 database for phylogenetic resolution at the genus level.
Taxonomic summary for Archaea, Bacteria, and Eukarya was
plotted to the genus level with a given relative abundance
based on diversity and distribution pattern per domain. Taxa
distribution was also summarized by time (sample day). The

TABLE 1 | Water chemistry over the course of the pond run.

(mg/L) Day 1
(200 L)

Day 3
(200 L)

Day 7
(200 L)

Day 8
(200 L)

Day 11
(2,000 L)

Day 16
(2,000 L)

F- 0.05 42.9 71.6 0.6 71.6 225.7

Cl- 8092 1405 1294 2460 1114 537

NO3
− 13.02 60.14 40.98 8.68 210.24 191.50

SO4
− 427.20 277.44 275.52 345.60 300.48 335.04

PO4
− 10.56 0.96 b.d. 0.29 9.60 6.72

P 5.92 2.85 1.46 1.14 5.26 2.90

Ca 52.4 22.1 14.8 12.4 41.6 20.3

K 198 226 262 213 302 382

Mg 93.1 116.0 110.0 97.9 144.0 178.0

Na 4734 5316 5527 4740 6211 7483

S 157 150 148 135 175 219

pH 8.24 9.77 10.41 10.69 8.39 10.02

Values are in mg/L. b.d. stands for below detection. Volume of pond indicated by
200 or 2,000 L.

TABLE 2 | 454 pyrosequencing statistics.

Number of samples 18

Number of OTUs 2,074

Number of total sequences 161,731

Minimum sequences/sample 303

Maximum sequences/sample 22,256

Sequences/sample 8,985

Standard deviation 5,626

Even sampling depth 3,068
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FIGURE 1 | Total relative abundances of (A) archaeal and (B) bacterial taxa by order (as order, genus, or unknown) with >2% relative abundance over
the 16 day sample period.

biodiversity analysis downstream between samples was derived
using UniFrac (Lozupone and Knight, 2005) that took into
account the phylogenetic structure of the algal pond microbial
communities. Taxonomic richness was calculated by a rarefaction
analysis based upon OTU tables that were rarefied at an even
sampling threshold value. Richness was measured on the basis of
the Chao index (Chao et al., 2010).

The co-occurrence of community members was illustrated in
a heat-map using the R vegan package version 2.0-10 (Oksanen,

2011). Due to the fact that some taxa had a 0% relative abundance
at certain time points, 0.1 was added to all values in order to be
log transformed. In an effort to enhance the visual distribution
of taxa, log transformed values were cubed and resulting values
plotted (log(relative abundance + 0.1)3). A SparCC analysis was
subsequently used to construct community correlation networks
by estimating linear correlation values between log transformed
abundances based on the absolute number of sequences for an
OTU rather than a relative abundance (Friedman and Alm, 2012;
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FIGURE 2 | Cell concentration (log cells/mL) and the relative abundance of C. vulgaris over 16-day sample period. The transfer from the 200 to 2,000 L
raceway is indicated by the vertical line.

FIGURE 3 | Chao diversity for each domain plotted over time. Archaea started with high diversity but quickly declined. Eukarya maintained a steady diversity
level composed almost entirely of C. vulgaris. Bacterial diversity steadily increased with time.

Berry and Widder, 2014). The key advantage of this analysis
was that, for instance, the ratio of the fractions of two OTUs
was independent of the fluctuations in other OTUs included in
the analysis (i.e., subcompositional coherence) (Friedman and
Alm, 2012). Archaeal taxa were not included in this analysis
due to the sharp decline in relative abundance between days 1
and 3 and near absence by the end of the pond experiment. We
observed that the drastic decline in Archaeal relative abundance
would have produced deceptive relationships in the network
model.

Statistical Analysis
A principal coordinate analysis (PCA) was used to reduce
dimensionality and give structure to the water chemistry
variables obtained from each time point (Legendre and

Gallagher, 2001). In order to incorporate taxonomic data,
we used the direct-gradient ordination technique, Canonical
Correspondence Analysis (CCA), which concurrently showed
pond taxa, time points, and water chemistry (Hall and Smol,
1992). This kind of ordination is appropriate when assessing
community dynamics because it does not use Euclidean based
metrics that assume linear trends in community change.
Not only does the ordination show environmental factors
influencing community change, but results suggest potential
interactions between taxa (Amaral-Zettler et al., 2010). The
first two axes, CCA1 and CCA2, typically account for the
majority of observed variation. All axes are constrained
to present a linear combination of the water chemistry
that maximizes the dispersion of taxa (Hall and Smol,
1992).
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FIGURE 4 | Canonical Correspondence Analysis (CCA) plotting chemical variables that correlated with variation in Archaeal taxa (with >2% relative
abundance) and sample points. Archaea generally lacked long term survivability in the pond. CCA1 = 81.8% and CCA2 = 57.3%.

RESULTS AND DISCUSSION

Environmental Variables
Water chemistry was monitored daily over the course of the
experiment and fluctuations were used to draw correlations to
community structure (Table 1).

The nitrate concentration was lowest on day 8 as C. vulgaris
achieved stationary phase in the 200 L raceway. Changes in
fluoride and chloride anion concentrations at this time may have
been due to the use of tap water to compensate for evaporative
loss. Nitrogen concentrations recover on day 10 when the culture
is transferred to the 2,000 L raceway and combined with new
media. The pH values remained high over time and may have
benefited C. vulgaris (R2 = 0.2). The decline in pH from 10.7 to
8.39 on day 11 corresponded with the transfer of the pond from
the 200 to 2,000 L raceway.

Community Composition and Interaction
The SSU rRNA for Bacteria,Archaea, and Eukaryawere amplified
and sequenced for each of the six sample days. After screening
sequences for errors (seeMaterials andMethods), 161,731 quality
gene sequences with a valid barcode were retrieved. Sequences
with a 97% identity were clustered within an OTU totaling 1,349

observed OTUs composed of 748, 249, and 352 OTUs of Bacteria,
Archaea, and Eukarya respectively for all sampled days (Table 2).

Figure 1 shows the relative abundances for the observed
archaeal and bacterial taxa.

Figure 2 shows phosphate limitation in the plateau of
C. vulgaris observed from day 3–8, emulating nutrient
conditions frequently observed in wastewater and some
natural systems. Nitrogen availability has more than doubled due
to anthropogenic inputs facilitated by the Haber–Bosch process
entering aquatic systems through precipitation, runoff, and dust
deposition (Baron et al., 2000; Wolfe et al., 2001; Fenn et al.,
2003; Gardner et al., 2008; Miller and McKnight, 2012; Brahney
et al., 2015). Thus, phytoplankton is typically phosphorus
limited giving a competitive advantage to taxa that can quickly
scavenge phosphorus (Baron et al., 2000; Wolfe et al., 2001; Elser
et al., 2009). In addition, some C. vulgaris strains have been
shown to accumulate polyphosphate (Aitchison and Butt, 1973).
Considering that nitrogen inputs are nearly unavoidable in the
majority of open systems, most communities will be phosphorus
limited, the effects of which are pertinent to endeavors such
as commercial algae production in open systems. Moreover,
photoautotrophs that have the ability to accumulate and/or
scavenge phosphorus will be more competitive in open, mixed
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FIGURE 5 | Canonical Correspondence Analysis plotting chemical variables that correlated with variation in Bacterial taxa (with >2% relative
abundance) and sample points. Bacteria generally trended with an increase nitrate toward end of the experiment, possibly due to an increase in nitrifying taxa.
Pseudomonas sp. was associated with the early time points (day 1 and 3). CCA1 = 60% and CCA2 = 8%.

systems in which low phosphate levels can be used. Combined,
these attributes reduce the need for higher levels of phosphorus
and/or the use of low-quality phosphorus.

Effects of phosphorus limitation on C. vulgaris did not
appear to detrimentally affect ability to compete and grow
under the tested conditions as it was observed to be the single
dominant Eukaryote during the 16-day experiment. Figure 2
shows that C. vulgaris recovered from phosphorus limitation
upon transfer to the 2,000 L pond, and throughout the pond
experiment it was the dominant eukaryotic taxon and did
not decline below 93% of eukaryotic relative abundance. The
other 7% was composed of pine pollen, insects, and fungi.
While it is difficult to ascertain physiology from phylogeny,
sequences indicative of Psuedomonas were inversely correlated
to high phosphate levels (Istvánovics, 2008). Organisms from
this genus can be phosphate-accumulating and/or grow under
low-phosphate conditions (Sidat et al., 1999). It is likely that
phosphate-accumulating bacterial populations would be selected
as overall P levels are depleted. As expectations for inexpensive
biomass and feedstock become greater, we will need improved
insight into biological responses to low-level and low-quality
phosphorus.

Other organisms propagated in the pond but did not
appear to have a detrimental effect on the alga population.
Several halophilic archaeal taxa were observed in the first
three time points, especially day 1 leading to the greatest
observed diversity that declined over time (Figure 3). In
addition to the Archaea, several bacteria were present in the
first sample. The high archaeal and bacterial diversity did not
appear to have a negative effect on C. vulgaris, which was the
predominant eukaryote, andminimal fluctuation was observed in
the eukaryotic diversity. As the Archaeal taxa diversity declined,
the bacterial diversity increased (Figure 3). It is not known if
the decline in archaeal populations was related to the increase in
bacterial populations or an independent process, such as lower
salinity.

The transitory presence of halophilic taxa could have been
due to suboptimal conditions in the ponds. These halophilic
microorganisms have an optimal pH range from 6.8 to 9, NaCl
concentration between 3.4 and 5.1 M, and generally require at
least 0.85 to 3.4 M in order to maintain osmotic pressure for cell
integrity and prevent lysis (DasSarma and DasSarma, 2006; Oren,
2006; Bowers and Wiegel, 2011; Cui et al., 2012). Their presence
in the ponds could potentially be due to the proximity of the pond
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FIGURE 6 | Heat map showing taxa with greater than 2% relative abundance at each sampling time point. Taxa co-occurrence and each time points were
correlated and clustered according to relatedness as shown in the dendogram.

to the GSL that is 40 km to the west and characterized by high
salinity and a neutral pH (Post, 1977; Oren, 1994, 2006; Baxter
et al., 2005; Tazi et al., 2014). Wind dispersal and precipitation
events may have been responsible for the presence of these
populations in the pond. We observed numerous haloarchaeal
genera including Halorubellus, Haloquadrata, Halalkalicoccus,
Candidatus, Halomonas, Halobacterium, and Haloarcula and
the halobacterial genera Devosia, Aliihoeflea, Halomonas sp.,

Seohicola, Eruthromicrobium, Aquiflexum, and Rhodobacterales
which have also been found in GSL samples (Post, 1977; Oren,
1994, 2006; Baxter et al., 2005; Tazi et al., 2014). However,
another possibility is that these taxa were already present in
the salts used to make the medium. The vast majority of these
taxa subsisted for only the first two time points (Figure 3).
It is unknown if the detected sequences were indicative of
populations that survived for a given time in the test pond or
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FIGURE 7 | SparCC network map showing significant (p < 0.05) of 122 Interactions with a 0.85 correlation between different OTUs incorporating all
time points. Green lines are indicative of positive interactions while red lines are negative.

simply were static and/or dead cells that were transported to the
ponds.

In contrast to the halophilic microorganisms, C. vulgaris has
been shown to be inhibited by concentrations greater than 1 M
NaCl and showed substantial declines in cell concentration at
0.5 M (Alyabyev et al., 2007). The highest recorded salinity in
the ponds was 0.7 M with an average 0.2 M. Thus, the success
of C. vulgaris in the ponds further supports that salinity was
below the presumptive optima of the halophiles. The changes
in archaeal and bacterial community structure did not appear
detrimental to C. vulgaris and a high relative abundance (>93%)
was observed throughout the course of the pond experiment.
A decrease in cell number was observed immediately after pond
transfer and was likely due to dilution of cells during the transfer
of the 200 L inoculum to the 2,000 L pond; however the relative
abundance of C. vulgaris remained consistent (94–95% relative
abundance).

Correlation of Environmental Variables
and Community Structure
Environmental factors could have also played a role in the success
ofC. vulgaris.We observed high pH values which ranged between
8.2 and 10.7 (Table 1), which may have prevented other algal taxa
from successfully colonizing the pond. This finding demonstrates
that the cultivation of a single algal strain in an open alkaline
pond without the addition of antibiotics or herbicides can be
successful (Lundquist et al., 2010; Smith et al., 2010; Smith and
Crews, 2013; McBride et al., 2014).

Using CCA, the most significant water chemistry variables
correlated with fluctuations in archaeal taxa were plotted in
Figure 4. Taxa and time points were correlated to pH, nitrate,
and phosphate (vectors in Figure 4), and the temporal variation
in archaeal taxa was observed as the pH increased on day
8 and 16 most likely as a consequence of photosynthesis.
Not only does CCA provide insight into the environmental

factors influencing the community structure, but it also suggests
potential interactions occurring between taxa. The appearance
and subsequent decline of plotted taxa was the most influential
variable on discrepancies between the time points. For instance,
day 8 is more similar to day 16 than other time points due to the
loss of three archaeal taxa from day 7 to 8. As discussed, the low
levels of salinity were an influential factor associated to the rapid
decline of halophilic taxa.

Figure 4 also shows that Methanococcus maripaludis was
most associated with the variation in CCA1 as it was the only
detectable archaeal taxa remaining at the last time point on day
16. M. maripauldis was detected on days 1, 3, 8, and 16, but
not detected on days 7 and 11. While known Methanococci are
strict anaerobes, there could be micro-anaerobic niches in the
raceway pond related to biomass turnover. It is also possible
that the sequences are detected at later time points due to PCR
biases. Recent research has shown M. maripauldis can survive
in anaerobic biofilms (Brileya et al., 2013); and therefore, it is
possible that a small population was able to survive within a
biofilm matrix on the walls of the raceway or paddle wheel. Its
sporadic appearance may also be the result of collection methods
that could have disturbed the biofilm or biofilm detachment.
CCA2 was most influenced by nitrate and phosphate, which
explained 38.4% of the variation in archaeal taxa.

We also applied the same CCA metrics for the bacterial
taxa to visualize variance in taxa and time points as correlating
with changes in chemical variables (Figure 5). CCA1 was
predominately influenced by increased nitrate concentrations
accounting for about 57.2% of the variance in bacterial taxa
distribution. The first two time points were correlated with the
initial halophilic bacterial taxa that were unable to maintain
a population due to low salinity, aerobic conditions, and/or
increasing pH (Post, 1977; Oren, 1994, 2006; Baxter et al.,
2005; Tazi et al., 2014). The decrease in phosphate contributed
approximately 30.5% of the observed variation in CCA2 and
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correlated with the increase in some of the most abundant
taxa at day 16 [for example Flavobacteriales (R2 = 0.3) and
Proteobacteria (R2 = 0.35)].

Correlations Between Community
Members
The distribution of community member occurrence is shown in
Figure 6, illustrating the persistent C. vulgaris population. The
upper dendogram clusters taxa by percent relative abundance
and frequency of co-occurrence. As observed via CCA, the
time points are grouped by declining archaeal sequences with
the exception of Methanococcus at day 8 and 16. Post-
transfer to 2,000 L, several bacterial OTUs clustered with
day 11 and 16. Flavobacterium and Erythromicrobium are
common groundwater/tap water organisms that were likely
introduced during volume scale-up, but it is not known if
the co-occurrence is direct or indirect. In addition, sequences
indicative of Loktanella and Roseicyclus correlated with Chlorella
on day 8, 11, and 16 during cultivation scale-up. Sequences
indicative of Algoriphagus correlated with Chlorella during
the 200 L cultivation but declined during the 2,000 L
cultivation.

However, co-occurrence does not infer a statistical correlation
between taxa. In order to investigate possible correlations we
used SparCC to construct community correlation networks.
Figure 7 shows a community network map of correlations
between community members (excluding archaea due to their
general absence after day 3) (Friedman and Alm, 2012). The
most salient of these relationships is the positive 0.85 correlation
between C. vulgaris and Pseudomonas sp. (p < 0.05). No other
bacteria correlated with C. vulgaris, which was the predominant
eukaryote. Previous studies have observed different species of
Pseudomonas living in association with algae including C. vulgaris
(Sapp et al., 2007). A symbiotic relationship between these
organisms was described by Guo and Tong (2013) finding
that Pseudomonas sp. fostered the growth of C. vulgaris. When
in co-culture with Pseudomonas sp., the cell concentration of
C. vulgaris was 1.4 times greater than that of axenic cultures
under the same conditions. Scanning electron microscope (SEM)
images revealed that the bacteria were living in the EPS or
“phycosphere” of C. vulgaris (Guo and Tong, 2013).

The phycosphere, coined by Bell and Mitchell in 1972, is
often colonized by bacteria (Bell and Mitchell, 1972; Sapp et al.,
2007; Goecke et al., 2013). This specific niche facilitates a tight
exchange of oxygen, carbon, andmetabolites minimizing dilution
(Sapp et al., 2008; Bruckner et al., 2011; Gärdes et al., 2012;
Paul et al., 2012; Martin et al., 2014). Bacteria can provide
the alga with sources of growth promoters (e.g., indole-3-acetic
acid), and essential vitamins (e.g., cobalamin), while discouraging
colonization by other potentially harmful microorganisms with

antimicrobial metabolites (Gonzalez and Bashan, 2000; Croft
et al., 2005, 2006). In return, bacteria have immediate access
to algal exudates that can be a key source of fixed carbon
(Bell and Mitchell, 1972; Sapp et al., 2007; Goecke et al., 2013).
The correlation of Pseudomonas populations with C. vulgaris
throughout the course of the pond experiment, even following
the transfer to the larger raceway, may have contributed to
the predominance of the algal culture under open conditions
(Figure 7). The results suggest that symbiotic-associations could
have relevant industrial applications that could result in increased
biomass yields (Imase et al., 2008; Natrah et al., 2013). Further
work is needed to discern the mechanism(s) of interactions that
impact algal biomass and/or lipid accumulation in addition to
confirmation of a direct and/or indirect relationship between
these two organisms under the tested growth conditions.

CONCLUSION

Ourwork demonstrated that the cultivation of a single algal strain
in an open pond without the addition of antibiotics or herbicides
can be successful. The use of high pH systems and alkaline
adapted algal taxa could be a successful strategy for overcoming
some of the constraints associated with large-scale biomass
production in open systems. Furthermore, certain phycosphere
associations could enhance biomass yields and deter colonization
by detrimental populations. Further work is needed to determine
the longevity and stability of open, outdoor cultivation systems
for the production of algal biomass and/or biomolecules.
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