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Epigenetic modifications are stable alterations in gene expression that do not involve
mutations of the genetic sequence itself. It has become increasingly clear that
epigenetic factors contribute to the outcome of chronic hepatitis B virus (HBV)
infection by affecting cellular and virion gene expression, viral replication and the
development of hepatocellular carcinoma. HBV persists in the nucleus of infected
hepatocytes as a stable non-integrated covalently closed circular DNA (cccDNA)
which functions as a minichromosome. There are two major forms of HBV epigenetic
regulation: posttranslational modification of histone proteins associated with the
cccDNA minichromosome and DNA methylation of viral and host genomes. This review
explores how HBV can interphase with host epigenetic regulation in order to evade
host defences and to promote its own survival and persistence. We focus on the effect
of cccDNA bound-histone modifications and the methylation status of HBV DNA in
regulating viral replication. Investigation of HBV epigenetic control has important clinical
correlates with regards to the development of potential therapeutic regimens that will
successfully eradicate HBV infection and deal with HBV reactivation in those undergoing
treatment with demethylating agents.
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INTRODUCTION

Hepatitis B virus (HBV) is a highly transmissible pathogen infecting humans for more than
1500 years (Zhou and Holmes, 2007). Despite the availability of a prophylactic vaccine for more
than three decades now, HBV continues to pose one of the most prevalent health problems with
about 240 million people worldwide chronically infected and accounting for over 600,000 deaths
per year (WHO, 2015). Current therapeutic regimens include pegylated-IFN-α (PegIFN-α) and
nucleos(t)ide analogs (NAs). Both types of antiviral treatment are not capable of eliminating the
virus and do not establish long-term control of infection after treatment withdrawal in the majority
of patients.

HBV is the prototype of the hepadnaviridae family and has evolved a distinctive and successful
replication strategy, which allows its indefinite persistence in the liver of the infected host. Upon
infection of the hepatocyte, the HBV genome translocates to the nucleus, where its relaxed circular,
partially double stranded DNA is converted into a covalently closed circular DNA (cccDNA)
molecule. The cccDNA is the template for the synthesis of six co-terminal mRNA transcripts
(Tuttleman et al., 1986; Seeger andMason, 2000). One of the transcripts, termed pre-genomic RNA
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(pgRNA), is the template for genome replication and encodes for
the core and polymerase proteins. Translation of the transcripts
occurs in the cytoplasm and the encapsidation of the pgRNA
into core particles follows (Levrero et al., 2009). Inside the core
particle, the viral polymerase directs the synthesis of the minus
DNA strand of the genome by reverse transcription of the pgRNA
template, which then serves as the template for plus DNA strand
synthesis. Mature core particles containing DNA genomes are
then enveloped and released or cycled back to the nucleus to
replenish the cccDNA pool (Tuttleman et al., 1986). Persistent
infection of HBV relies on the stable maintenance and proper
function of the cccDNA pool in the nucleus of the infected
hepatocytes. Variable levels of cccDNA can be found in different
phases of the natural history of chronic HBV patients. In HBeAg-
negative patients or inactive carriers, cccDNA transcription is
about 10-fold lower than that in HBeAg-positive patients, while
cccDNA levels can be detected in cases with absent or very
low viral replication (Werle-Lapostolle et al., 2004; Liu et al.,
2013).

Amongst the smallest of all known virus genomes, the
3.2 kb HBV genome contains four partially overlapping open
reading frames (ORFs). HBV transcription is regulated by
its four promoters and by cis-acting viral elements including
two enhancers (enhancer I and enhancer II) and a negative
regulatory region that depend on host transcription factors for
their function (Moolla et al., 2002). Additionally, a number of
epigenetic modifications have been identified which regulate viral
replication and viral gene expression. Non-integrated nuclear
HBV DNA associates with histones combined with HBcAg to
form stable cccDNA minichromosomes (Bock et al., 2001).
Chromatin condensation of cccDNA is a critical step for the
regulation of viral gene expression because it determines the
accessibility of DNA to the regulatory transcription factors.
The acetylation status of cccDNA bound histones controls
HBV replication in a fashion identical to that seen in human
genes; hypoacetylation correlates with low viral replication and
hyperacetylation leads to increased HBV replication (Pollicino
et al., 2006). In addition, both viral and host DNA are known to
be targets for methylation in chronic HBV infection suggesting
dual effects of methylation as potentially both protective and
harmful for the host (Guo et al., 2009; Vivekanandan et al.,
2009; Kaur et al., 2010). This review will provide an overview of
how epigenetic factors, including genomic DNAmethylation and
histone modifications, contribute in HBV persistence and HBV-
induced cancer as well as their possible therapeutic implications
in chronic HBV infection.

CHROMATIN ORGANIZATION AND
EPIGENETIC MODIFICATIONS

A number of epigenetic modifications have been recently
identified that control viral replication in chronic HBV infection.
Chromatin condensation of cccDNA is a critical step in the
regulation of viral gene expression because it determines the
accessibility of DNA to the regulatory transcription factors. It
can be modulated through a variety of mechanisms, including

posttranslational covalent modifications of histone tails, ATP-
dependent chromatin remodeling events and recruitment of
repressor factors on methylated DNA. Methylation is another
common cellular defence mechanism in mammalian cells
known to silence invading foreign DNA and viral genomes.
It permits binding of protein complexes with chromatin-
modulating properties and strictly depends on where the methyl
group is located. Many host and viral promoters are enriched
for CpG dinucleotides and methylation of cytidine leads to
gene inactivation. Generally, DNA methylation at the promoter
region leads to repression of gene expression, because the 5-
methyl-cytosine interferes with the recognition and binding of
transcriptional factors, to diminish mRNA transcription (Bird,
2002).

HISTONE ACETYLATION

Histone modifications are all reversible and mainly localized
at the amino-terminal histone tails. They include acetylation,
methylation, phosphorylation, sumoylation, ubiquitination,
ADP-ribosylation, deamination, and the non-covalent proline
isomerization (histone H3) (Liu et al., 2012). To further increase
the complexity, many of these modifications occur multiple
times at the same residue of a histone tail and they influence gene
expression patterns by two different mechanisms: (1) histone
acetylation, which alters chromatin packaging allowing access
to transcriptional machinery; and (2) by histone methylation,
which generates interactions with chromatin-associated proteins.

Several enzymes catalyze these processes, including histone
acetyltransferases (HATs), histone deacetylases (HDACs),
histone methylatransfecrases (HMTs), and histone demethylases
(HDMTs). HATs and HDACs regulate transcription by selectively
acetylating or deacetylating the ε-amino group of lysine residues
in histone tails. Histone acetylation induced by HATs promotes
chromatin opening and associates with gene transcription while
histone hypoacetylation induced by HDACs diminishes the
accessibility of the nucleosomal DNA to transcription factors
and is associated with gene silencing (Berger et al., 2009).

DNA METHYLATION

DNAmethylation occurs at the 5-methyl cytosine predominantly
in the context of CpG dinucleotides with S-adenosyl methionine
as the methyl donor (Bird, 2002). CpG dinucleotides are
often found accumulated in conserved regulatory regions
(CpG islands) demonstrating their functional importance. The
mammalian DNA methylation machinery consists of the DNA
methyltransferases (DNMTs), which are responsible for the
enzymatic addition of methyl groups, and the methyl-CpG-
binding proteins (MBPs), which identify the methylation
pattern (Egger et al., 2004). The DNMT family includes
DNMT1, DNMT2, DNMT3A, DNMT3B, and DNMT3A.
DNMT1 maintains the methylation pattern during cell division
and methylates hemimethylated CpG islands. DNMT3A and
DNMT3B can methylate unmethylated and hemimethylated
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CpG islands while DNMT2 lacks methyltransferase capabilities
but plays a role in methylation of structural RNA (Jurkowska and
Jeltsch, 2010).

DNA hypomethylation signifies one of the major DNA
methylation states and refers to a relative situation that
indicates a decrease from the “normal” methylation level.
Hypomethylation in transcriptional regulatory regions generally
induces gene silencing, either directly, by blocking the binding of
transcription factors to their recognition sequences or indirectly,
by preventing transcription factors from accessing their target
sites through the attachment of MBPs. In turn, methyl-CpG
binding domain proteins can recruit histone-modifying and
chromatin remodeling complexes, such as HMTs and HDACs, to
methylated sites resulting in histone methylation of certain amino
acids in a histone (Lopez-Serra and Esteller, 2008). HMTs catalyze
the transfer of methyl groups to histones and thus they regulate
DNA methylation through chromatin-dependent transcription
control. Histone methylation can cause transcription repression
or activation depending on the target sites and thus serves in both
epigenetic gene activation and silencing.

ACETYLATION OF THE cccDNA
MINICHROMOSOME

Hepatitis B virus cccDNA is formed by histone and non-histone
proteins. Hypoacetylation of the cccDNA-associated H3 and H4
histones and the recruitment of the cellular acetyltransferases

p300/CREB-binding protein (CBP) and HDAC1 onto cccDNA
have been associated with low HBV replication both in vivo
and in vitro (Pollicino et al., 2006). In addition, the presence
of class I/II histone deacetylase inhibitors (valproic acid and
trichostatin (TSA)) has been shown to induce an increase in HBV
replication and the upregulation of cccDNA-bound H4 histones
in a HepG2 cell based model (Pollicino et al., 2006) (Figure 1;
Table 1). However, another study that used duck hepatitis B virus
(DHBV) in vitro showed that a number of HDAC inhibitors,
including TSA, suppressed cccDNA transcription and reduced
HBV replication in a dose-response manner (Yan et al., 2012;
Liu et al., 2013). Therefore it can be assumed that a cellular
function sensitive to HDAC inhibitors is required for HBV RNA
transcription.

HBV replication is known to be strongly inhibited by
the administration of IFN-α, a type I IFN, that engages the
IFN-α/β receptor complex to modulate the transcription of
the IFN-stimulating genes (ISGs) via the Jak/Stat signaling
pathway. Recently it has been shown in HBV-replicating cells
and in HBV-infected chimeric uPA/SCID mice that IFN-α
inhibits cccDNA-driven transcription by targeting the epigenetic
control of cccDNA with the involvement of the chromatin
remodeling Polycomb Repressive Complex 2 (Belloni et al.,
2012). In response to IFN-α, cccDNA-bound histones become
hypoacetylated and both components of the transcriptional
repressor complex, YY1 and Ezh2, and the HDAC1 and hSirt are
actively recruited onto cccDNA (Belloni et al., 2012). However,
another study, using a DHBV cell based model demonstrated

FIGURE 1 | Schematic representation of the chromatin changes on cccDNA in relation to viral replication. The acetylation status of cccDNA-bound
histones and the recruitment of chromatin modifying enzymes onto cccDNA change in response to IFNα treatment and HBx status. In high viral replication of the wild
type virus or in the absence of IFNα treatment, cccDNA-bound histones are hyperacetylated, cccDNA-associated chromatin is in an open configuration and pgRNA
is actively transcribed. In cells replicating an HBx mutant and in IFNα-treated cells, cccDNA-bound histones are hypoacetylated, the recruitment of the p300
acetyltransferase is severely impaired, whereas the recruitment of the histone deacetylases (HDACs) hSirt1 and HDAC1 as well as the polycomb protein enhancer of
zeste homolog 2 (Ezh2) is increased. In the absence of HBx, hypoacetylation is accompanied by the recruitment of heterochromatin protein 1 factors (HP1) and SET
domain, bifurcated 1(SETDB1). Modified from Belloni et al. (2009).
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TABLE 1 | An outline of the main research findings on the (A) methylation
and (B) acetylation mechanisms involved in HBV infection.

Reference

(A) Findings on HBV DNA methylation

Methylation of integrated HBV DNA. Chen et al., 1988

HBx induces DNMT activity and
hypermethylation of tumor suppressor gene
promoters via DNMT3A1 and DNMT3A2
methylation.

Park et al., 2007

Island II methylation correlates with low or no
HBsAg production. cccDNA methylation
correlates with viral gene expression levels.

Vivekanandan et al., 2008a

Methylation of integrated and non-integrated
liver HBV DNA in islands I (60%) and II (50%).
Unmethylated serum HBV DNA.

Vivekanandan et al., 2008b

cccDNA methylation correlates with
HBeAg-positivity in CHB patients and impairs
virion productivity.

Guo et al., 2009

HBV DNA is unmethylated in early
carcinogenesis and highly methylated in cancer.
Methylation of HBcAg and HBsAg genes
inhibits their expression.

Fernandez et al., 2009

HBx recruits DNMT3A and induces the
methylation and transcriptional silencing of IL-4
receptor and metallothionein-1F.

Zheng et al., 2009

HBx expression correlates with DNMT1 and
DNMT3A and hypermethylation of the p16INK4A

promoter in CHB patients.

Zhu et al., 2010

cccDNA methylation is associated with HBV
viremia and aging in cirrhotic CHB patients.

Kim et al., 2011

HBV DNA methylation correlates with
decreased viral replication and gene
expression.

Vivekanandan et al., 2009

Increased expression of DNMT3
down-regulates viral protein and pgRNA
production.
HBV induces DNMT overexpression and
correlates with methylation of host CpG islands.

Vivekanandan et al., 2010

HBV DNA methylation in CHB implicates island
I in14%, island II 0.6% and island III 3.7% of
cases.
HBV DNA is unmethylated in CHB and highly
methylated in HBV-related cancer.

Kaur et al., 2010

HBV DNA is unmethylated in occult HBV.
CpG island I methylation correlates with HCC
development.

HBV CpG island distribution differs between
HBV genotypes.

Zhang et al., 2013

HBx induces the hypermethylation of the uPA
promoter (via the recruitment of DNMT3A2)
leading to liver regeneration impairment.

Park et al., 2013

(Continued)

that IFN-α reduced the acetylation of cccDNA-bound H3K9 and
H3K27 histone residues but failed to induce cccDNA-bound
H3K9me3 and H3K27me2 demethylases (Liu et al., 2013). In
addition, HDAC inhibitors blocked DHBV cccDNA transcription
but did not affect the long-lasting IFNα-induced suppression of
cccDNA transcription (Liu et al., 2013). It is possible that the
reduced acetylation of H3K9 and H3K27 by IFN-α is catalyzed
by HDACs that are not susceptible to the HDAC inhibitors

TABLE 1 | Continued

Reference

(B) Findings on the acetylation of the cccDNA minichromosome

Low HBV replication correlates with cccDNA
hypoacetylation and the recruitment of
p300/CBP and HDAC1.
Histone deacetylase inhibitors restore HBV
replication.

Pollicino et al., 2006

HBx recruitment onto cccDNA correlates with
HBV replication and acetyltransferase
upregulation.
In the absence of HBx, HBV decreased
replication correlates with cccDNA
hypoacetylation; p300 inhibition; reduced
pgRNA, and deacetylase increase.

Belloni et al., 2009

IFN-α treatment reduces DHBV acetylation of
cccDNA-bound H3K9 and H3K27 histones but
has no effect on cccDNA-bound H3K9me3 and
H3K27me2 demethylases.
HDAC inhibitors block DHBV cccDNA
transcription but not the long-lasting
IFN-α-induced suppression of cccDNA.

Liu et al., 2013

IFN-α inhibits viral transcription by cccDNA
hypoacetylation through active recruitment onto
cccDNA of HDAC and of the transcriptional
repressor complex.

Belloni et al., 2012

IL6 induces cccDNA hypoacetylation and
silencing by reducing the binding of
transcription factors (HNF1α, HNF4α, and
STAT3) onto cccDNA.

Palumbo et al., 2015

HBx recruitment onto cccDNA activates HBV
transcription by counteracting
chromatin-mediated transcriptional repression
established by SETDB1, HP1 and H3K9me3.

Riviere et al., 2015

IFN-α represses HBV by reducing active PTMs
in cccDNA and that this effect can be
recapitulated with the C646 agent (inhibits
p300/CBP)
The repressive mark H3K27me3 is
underrepresented in cccDNA

Tropberger et al., 2015

DNMT, DNA methyltransferase; uPA, urokinase-type plasminogen activator; CBP,
CREB-binding protein; pgRNA, pregenomic RNA; cccDNA, covalently closed
circular DNA; DHBV, duck hepatitis B virus; HDAC, histone deacetylase; HNF1α,
hepatocyte nuclear factor 1α; HNF4α, hepatocyte nuclear factor 4α; SETDB1,
SET domain, bifurcated 1; HP1, heterochromatin protein 1 factors; and PTM,
posttranslational covalent modifications.

used in the DHBV study or that this reduction is due to the
disruption of a dynamic acetylation and deacetylation of histone
H3 through preventing the recruitment of HATs onto DHBV
cccDNA (Figure 1) (Liu et al., 2013). Interestingly, a recent
study demonstrated that IFN-α represses HBV by reducing active
PTMs on the cccDNA minichromosome and that this effect can
be recapitulated with treatment with a small epigenetic agent,
C646, which specifically inhibits p300/CBP HATs (Tropberger
et al., 2015). Nevertheless, these findings suggest that IFN-α
induces a persistent condition of “active epigenetic control” of
cccDNA, involving all HBV transcripts that may contribute to
the persistent, yet reversible, “off-therapy” inhibition of HBV
replication. Contrary to IFN-α, treatment with IL6, another
activator of the intracellular Jak/Stat signaling pathway, reduces
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cccDNA acetylation and transcription but without affecting
cccDNA chromatinization (Palumbo et al., 2015). Instead IL6
has been shown to inhibit cccDNA transcription by reducing the
binding of essential transcription factors HNF1α and HNF4α to
cccDNA and by redistributing STAT3 binding from the cccDNA
to IL6 cellular target genes (Palumbo et al., 2015).

HBx, a pleiotropic regulatory protein, acts as a promiscuous
transactivator of viral and cellular promoters and is found in the
cytoplasm and the nucleus of infected hepatocytes (Cougot et al.,
2007). HBx activates the transcription of host genes by interacting
directly with nuclear transcription factors or by activating various
signal transduction pathways in the cytoplasm. In addition to
its trans- and cis-activating roles, HBx protein has been proven
to be a potent epigenetic modifying factor in liver tissue. It has
been reported to modify chromatin dynamics in vivo by favoring
the transcription of a number of CREB-regulated genes via the
recruitment of the cellular acetyltransferases CBP and p300 to
their promoters (Cougot et al., 2007). HBx is reported to activate
HBV transcription by its recruitment onto cccDNA, through
recruitment of PCAF/GCN5, p300 and CBP acetyltransferases
onto cccDNA and through the inhibition of cellular factors
involved in chromatin regulation, such as PP1/HDAC1 complex
(Belloni et al., 2009; Riviere et al., 2015). On the contrary, in
the absence of HBx, HBV replication was suppressed and this
decrease correlated with the rapid hypoacetylation of cccDNA-
bound histones, the severe impairment of the p300 recruitment
and the reduced transcription of pgRNA from cccDNA, whereas
the recruitment of the HDACs hSirt1 and HDAC1 preceded
(Belloni et al., 2009). Notably, the IFN-α-induced cccDNA
repression through hSirt andHDAC1 up-regulation was reported
to be HBx independent (Belloni et al., 2012). A recent study
showed that in the absence of HBx, HBV silencing associated not
only with the deacetylation of histones but also with deposition
of repressive chromatin markers (H3K9me2 and H3K9me3),
the recruitment of heterochromatin protein 1 factors and the
recruitment of SET domain, bifurcated 1 (SETDB1) histone
methylatransferases that methylate H3K9 histone (Riviere et al.,
2015). Interestingly, SETDB1 has been shown to be an oncogene
and is significantly associated with HCC disease progression
(Wong et al., 2015).

HBV DNA METHYLATION

In chronic HBV infection, viral DNA methylation has been
identified as a novel host defence mechanism, leading to
the downregulation of viral gene expression. However, the
association of HBV DNA methylation with the methylation of
host genes and the development of cancer imply a harmful effect
on the host. HBV DNA can be methylated in human tissues
in both non-integrated forms (Vivekanandan et al., 2008b) and
following integration into the human tissue (Chen et al., 1988).

NON-INTEGRATED HBV GENOME

The HBV genome contains three predicted CpG islands
overlapping the start site of the S gene (island I); the region

encompassing enhancer I, the X gene promoter (island II); and
the region harboring the Sp1 promoter and the start codon of
the P gene (island III) (Figure 2) (Vivekanandan et al., 2008b;
Kaur et al., 2010). Kaur and his group in France reported a
14% methylation frequency in CpG island I, 0.6% methylation
in island II and 3.7% in island III in CHB patients (Kaur et al.,
2010). However, a computation study, reported that 50% of the
HBV sequences examined lacked island I, while islands II and III
were more conserved across genotypes (Zhang et al., 2013). The
authors argued that conflicting results between HBVmethylation
studies are due to different HBV genotypes examined. High viral
mutation frequencies and high viral replication rates in CHB
infection can lead to a great degree of variability in CpG island
distribution throughout the viral genome (Zhang et al., 2013).

The methylation status of island II has been greatly associated
with reduced viral gene expression and replication as compared
with islands I and III (Table 1). High methylation levels on
island II were correlated with absent or low levels of HBsAg
production while hypermethylation patterns were also reported
in occult HBV cases and in HBsAg negative patients with HCC
(Vivekanandan et al., 2008b; Kaur et al., 2010). In addition
to transcriptionally regulatory genes, island II overlaps with
the transcriptional control region of HBV cccDNA. Findings
on the role of cccDNA methylation in HBV replication are
controversial. Studies from several groups in Asia reported
cccDNA methylation in human tissue and further showed that
it impairs the cccDNA’s replication capability and viral gene
expression (Guo et al., 2009; Vivekanandan et al., 2009; Kim
et al., 2011). However, the study of Guo et al. (2009) included
patients with a serum HBV DNA load of more than 103
copies/ml, whilst Vivekandam and his group included liver
cancer tissue; neither study made any correlation between
cccDNA methylation and viral load, while both studies did
not mention the presence of fibrosis. A third study from Kaur
et al. (2010) included a small number of liver cirrhosis patients
(n = 12), in which cccDNA methylation was associated with
serum viremia. Contrary to these reports, a study from France,
demonstrated that the HBV genome, including island II, is
rarely targeted for DNA methylation in liver samples from CHB
patients (Kaur et al., 2010). A Korean study of cirrhotic patients,
reported that increased cccDNA methylation is associated with
older age (Kim et al., 2011). The authors postulated that
considering that perinatal transmission is the main mode of
HBV infection and the stability of cccDNA, it is possible that
methylated cccDNA may be passed to daughter cells after mitotic
division, and additional methylation of replenished cccDNA
may increase methylation frequency of the cccDNA population
in chronic HBV infection (Kim et al., 2011). Furthermore,
CpG island II is in close proximity to the core gene promoter
and enhancer II and its hypermethylation can suppress Pre-
C/C gene transcription, and consequently HBeAg expression
in CHB patients (Guo et al., 2009). HBeAg seroconversion
is attributed to hotspot mutations in the precore/BCP region
(A1762T/G1764A, G1896A, G1899A) that abrogate or reduce
HBeAg secretion (Jammeh et al., 2008). However, in the absence
of these mutations cccDNA methylation density was reported to
be significantly higher in liver cells of HBeAg(−) patients than in
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FIGURE 2 | Schematic representation of the open reading frames (ORFs) of pre-core/core, polymerase (P), surface (S), and X proteins with the
genome in open configuration; the four promoters, cp, sp1, sp2, and xp, as well as the main regulatory elements, enhancers I and II (Enh I and Enh
II), are indicated. The positions of the three predicted CpG islands within the HBV genome are shown as shaded boxes. Nucleotide numbering is based on the
EcoRI restriction site as position 1.

HBeAg(+) patients (Guo et al., 2009). Interestingly, within the
same HBeAg(+) patient group, the ratio of RC-DNA/cccDNA
was lower in the cccDNA methylation positive samples than in
the cccDNA methylation negative samples (Guo et al., 2009).
It is therefore possible that, increased cccDNA methylation
correlates with HBeAg clearance possibly via suppressing pre-
C/C transcription, which in turn can lead to suppressed viral
productivity.

The specific roles of the DNMTs involved in the HBV
methylation processes have not been clearly identified yet.
Transfection studies reported that DNMT1, DNMT2 and
DNMT3 expression is up-regulated in response to HBV, leading
to viral methylation, decreased HBV gene expression, viral
replication, and host DNA methylation (Vivekanandan et al.,
2008a, 2010; Liu et al., 2009). Co-transfection experiments with
HBV and DNMT3 were shown to increase cccDNA methylation
and to down-regulation of viral protein and pgRNA production
(Vivekanandan et al., 2010).

In addition, to stimulate transcription by modifying
chromatin dynamics HBx protein has been shown to silence
the expression of some genes by increasing the total DNMT
activity of the host. Park et al. (2013) reported that HBx induced
the upregulation of DNMT1, DNMT3A1 and DNMT3A2,
and selectively facilitated the regional hypermethylation of
the promoters of certain tumor suppressor genes through
de novomethylation via DNMT3A1 and DNMT3A2 recruitment
(Vivekanandan et al., 2010). In addition, Zheng and his group
demonstrated that HBx regulated epigenetic modifications by
its physical interaction with DNMT3A, either by promoting
DNMT3A recruitment to the promoters of some genes, such
as MT1F and IL-4, and thus inducing their hypermethylation
and downregulation, or by preventing DNMT3A recruitment
to specific genomic loci and thus activating the transcription
of genes, such as CDH6 and IGFBP3 (Zheng et al., 2009).
Fernadez and his group showed that most of the HBV genomes,
although more methylated than the pre-malignant lesions,
retained unmethylated the HBV gp3 gene, which codes for
HBx (Fernandez et al., 2009). A recent study showed that
the HBx protein impairs the expression of urokinase-type

plasminogen (uPA), a serine protease essential for the activation
of the hepatocyte growth factor (HGF) that activates hepatic
regeneration (Park et al., 2013). HBx-induced uPA inhibition
is regulated epigenetically by the hypermethylation of the uPA
promoter (Park et al., 2013). In particular, in HBx-expressing
cells, the CpG region of the uPA promoter was found to be 99.7%
methylated resulting in the hypoactivation of pro-HGF and
eventually hampering liver regeneration (Park et al., 2013).

HBV INTEGRATION AND
HEPATOCARCINOGENESIS

HCC is the third most common cause of cancer globally and
chronic HBV patients have 100-fold greater risk of developing
hepatocellular cancer. Ninety percept of HBV-associated liver
cancers show integration of the HBV genome within the human
genome (Fernandez et al., 2009). The development of HCC in
HBV infection involves two major mechanisms: (1) the viral
integration in the host’s genome causes cis-effects that inactivate
tumor-suppressor genes and activate oncogenes and (2) the
expression of trans-activating HBV proteins, such as the HBx
and the PreS2 activators, which disrupt the signal transduction
pathways and alter the expression of the infected hepatocyte
(Schluter et al., 1994; Park et al., 2013).

Similarly to other oncoviruses (HPV16 and HPV18), the
HBV genome, is almost unmethylated in the early stages
of carcinogenesis while it becomes more methylated in the
established HCC (Fernandez et al., 2009). Hepatitis C virus
(HCV) contributes to carcinogenesis by inducing regional
hypermethylation of CpG islands in the promoter regions
of multiple genes (Calvisi et al., 2007). In HBV-induced
carcinogenesis, HBx can accelerate hepatocarcinogenesis
epigenetically by promoting hypermethylation of tumor
suppressor genes by modulating DNMT1 and DNMT3A
expression (Park et al., 2013). Moreover, HBx was reported to
induce hypermethylation of the E-cathedrin promoter via the
activation of DNMT1 in vitro (Lee et al., 2005). In addition to
DNMT expression, high HBx expression has been correlated
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with the hypermethylation of the promoter of the major tumor
suppressor gene p16INK4A and the subsequent reduction in p16
protein expression in non-cancerous tissue but not in HCC tissue
suggesting that HBx plays an important role in the early stages of
HBV associated HCC (Zhu et al., 2007).

HCC has been associated with high methylation of CpG island
I which overlaps with the HBsAg gene starting site (Kaur et al.,
2010). Another study, confirmed the progressive presence of
hypermethylation at the HBV gp2 locus that encodes for S viral
proteins in primary liver tumors (Fernandez et al., 2009).

HBV EPIGENETIC CONTROL OF HOST’S
IMMUNE RESPONSES

Host DNMT upregulation by viruses can be a non-specific innate
response to infection. HBV has been shown to induce genome-
wide DNA methylation changes, including immunoregulatory
genes that are active against HBV (Ancey et al., 2015). In
particular, HBV replication was reported to cause the de novo
methylation and decrease of IL4, which benefits the virus since
IL4 expression inhibits HBV replication (Zheng et al., 2009). In
addition, unmethylated CpG dinucleotides have been shown to
trigger toll-like receptors expressed in hepatic cells in vitro, which
in turn can activate the NF-κB pathway that plays a key role
in the innate system’s ability to inhibit HBV replication (Liaw
et al., 2009). Nevertheless, this potentially protective effect of
DNMT upregulation may be offset over time either through viral
manipulation of the host methylation machinery or through non-
specific methylation of host CpG islands as a result of chronic
over expression of DNMTs. For example, latent viruses, such as
Epstein-Barr virus (EBV), are maintained in their latent state in
part by methylation, suggesting that some viruses have evolved
strategies to manipulate host DNMTs to their advantage. HBV
viral proteins can lead to DNMT upregulation and eventually
to methylation of the host genes, including oncogenes. A recent
study by Tropberger and his group showed that transcription and
active PTMs in cccDNA are reduced by the activation of an innate
pathway, and that this effect can be recapitulated with a small
molecule epigenetic modifying agent (Tropberger et al., 2015).

THERAPEUTIC IMPLICATIONS OF
EPIGENETIC MECHANISMS IN HBV
INFECTION

The most important goal in HBV research is the development
of therapies to eradicate HBV infection. Considering the long
half-life of the hepatocytes, the limiting factor in eliminating
infection is the clearance of the cccDNA pool from the infected
cells. Therefore, interfering with the epigenetic regulation of the
cccDNA minichromosome is the most promising therapeutic
approach. Experiments in humanized mice and cell culture
demonstrated that treatment with IFN-α induces cccDNA-
bound histone hypoacetylation and the active recruitment of
transcriptional co-repressors onto cccDNA (Belloni et al., 2012).
IFN-α administration was also shown to reduce binding of STAT1

and STAT2 transcription factors to active cccDNA (Chen et al.,
2013). Treatment with IFN and other potential cytokines that
can activate the cellular response via the epigenetic modifications
of cccDNA could mark the episome for selective eradication of
infected cells or prevent cccDNAmolecules from re-entering into
nuclei after mitosis. Epigenetic alterations could also potentially
alter cccDNA partitioning into daughter cells. Exploring the
molecular mechanisms by which IFN-α mediates epigenetic
repression of cccDNA transcriptional activity and identifying
new molecular determinants can lead to the development of a
treatment that would eradicate cccDNA molecules.

In CHB infection, viral and host DNA is a host defence
mechanism to suppress viral replication. Increased expression
of DNMTs has been reported in CHB livers that facilitates
viral genome methylation and affects protein production and
viral replication (Guo et al., 2009; Vivekanandan et al., 2010).
Furthermore, host DNA methylation has been shown to be
the main mechanism inactivating relevant genes in HCC,
suggesting a potential role of strong demethylating agents
in the treatment of HCC (Claus et al., 2005; Tong et al.,
2009). However, such potent demethylating treatment could
lead to the reactivation of HBV replication. Confirming that
methylation of non-integrated HBV genomes can regulate
viral replication and cccDNA transcription leads to several
significant clinical correlates. Dietary consideration may
potentially be important in modulating HBV replication, as
dietary deficiencies can limit the liver’s ability to methylate
HBV. Mouse experiments showed that dietary supplementation
with folate, vitamin B12, choline and betaine could lead to host
gene methylation (Waterland, 2006). These findings indicate a
potential role of methylation in the future treatment of CHB
infection.

CONCLUDING REMARKS

In the last decade our knowledge on epigenetic modifications
in viral infection has increased dramatically. DNA methylation
and histone modifications have been shown to play important
roles in regulating the expression of a variety of HBV genes and
viral replication. The holy grail of the future of HBV therapy
is the complete elimination of cccDNA of all the infected cells
in the host. The association of the cccDNA acetylation changes
with viral replication and transcription shows that the dynamic
acetylation and deacetylation of cccDNA-associated histones is
essential in cccDNA transcription. Additionally, IFN-α has been
shown to actively decay cccDNA due to acetylation modifications
but the exactmechanisms and the role of cell division in cytokine-
induced cccDNA elimination remain to be determined. DNA
methylation is also being increasingly recognized to play a role in
regulation of HBV gene expression. Both integrated and episomal
HBV DNA can be methylated in human tissues and high HBV
DNA methylation associates with HCC development. Studies on
cccDNA methylation have provided conflicting results mainly
because the content of cccDNA in the infected hepatocytes is
maintained by the de novo cccDNA synthesis and possibly due
to the different HBV genotypes and experimental approaches
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applied. HBx has been shown to play a key role in the acetylation
and methylation of cccDNA either directly by being recruited
onto the cccDNA minichromosome and indirectly by the
modulation of epigenetic-associated proteins, including DNMTs
and cccDNA-bound histones. Enhancing our understanding
of the epigenetic consequences of HBV-host interactions will

lead to the identification of novel potential therapeutic targets
for selective inhibition of cccDNA transcription and therefore
complete eradication of HBV infection. Since the epigenetic
processes are reversible they would also provide new molecular
determinants by which host and environmental factors can
regulate HBV replication and pathogenesis.

REFERENCES

Ancey, P. B., Testoni, B., Gruffaz, M., Cros, M. P., Durand, G., Le Calvez-Kelm, F.,
et al. (2015). Genomic responses to hepatitis B virus (HBV) infection in primary
human hepatocytes. Oncotarget doi: 10.18632/oncotarget.6270 [Epub ahead of
print].

Belloni, L., Allweiss, L., Guerrieri, F., Pediconi, N., Volz, T., Pollicino, T., et al.
(2012). IFN-alpha inhibits HBV transcription and replication in cell culture
and in humanized mice by targeting the epigenetic regulation of the nuclear
cccDNA minichromosome. J. Clin. Invest. 122, 529–537. doi: 10.1172/JCI58847

Belloni, L., Pollicino, T., De Nicola, F., Guerrieri, F., Raffa, G., Fanciulli, M.,
et al. (2009). Nuclear HBx binds the HBV minichromosome and modifies the
epigenetic regulation of cccDNA function. Proc. Natl. Acad. Sci. U.S.A. 106,
19975–19979. doi: 10.1073/pnas.0908365106

Berger, S. L., Kouzarides, T., Shiekhattar, R., and Shilatifard, A. (2009).
An operational definition of epigenetics. Genes Dev. 23, 781–783. doi:
10.1101/gad.1787609

Bird, A. (2002). DNAmethylation patterns and epigenetic memory. Genes Dev. 16,
6–21. doi: 10.1101/gad.947102

Bock, C. T., Schwinn, S., Locarnini, S., Fyfe, J., Manns, M. P., Trautwein, C., et al.
(2001). Structural organization of the hepatitis B virusminichromosome. J. Mol.
Biol. 307, 183–196. doi: 10.1006/jmbi.2000.4481

Calvisi, D. F., Ladu, S., Gorden, A., Farina, M., Lee, J. S., Conner, E. A., et al.
(2007). Mechanistic and prognostic significance of aberrant methylation in the
molecular pathogenesis of human hepatocellular carcinoma. J. Clin. Invest. 117,
2713–2722. doi: 10.1172/JCI31457

Chen, J. Y., Hsu, H. C., Lee, C. S., Chen, D. S., Zuckerman, A. J., and Harrison,
T. J. (1988). Detection of hepatitis B virus DNA in hepatocellular carcinoma:
methylation of integrated viral DNA. J. Virol. Methods 19, 257–263. doi:
10.1016/0166-0934(88)90020-1

Chen, J., Wu, M., Zhang, X., Zhang, W., Zhang, Z., Chen, L., et al. (2013). Hepatitis
B virus polymerase impairs interferon-alpha-induced STA T activation through
inhibition of importin-alpha5 and protein kinase C-delta. Hepatology 57, 470–
482. doi: 10.1002/hep.26064

Claus, R., Almstedt, M., and Lubbert, M. (2005). Epigenetic treatment of
hematopoietic malignancies: in vivo targets of demethylating agents. Semin.
Oncol. 32, 511–520. doi: 10.1053/j.seminoncol.2005.07.024

Cougot, D., Wu, Y., Cairo, S., Caramel, J., Renard, C. A., Levy, L., et al. (2007).
The hepatitis B virus X protein functionally interacts with CREB-binding
protein/p300 in the regulation of CREB-mediated transcription. J. Biol. Chem.
282, 4277–4287. doi: 10.1074/jbc.M606774200

Egger, G., Liang, G., Aparicio, A., and Jones, P. A. (2004). Epigenetics in
human disease and prospects for epigenetic therapy. Nature 429, 457–463. doi:
10.1038/nature02625

Fernandez, A. F., Rosales, C., Lopez-Nieva, P., Grana, O., Ballestar, E., Ropero, S.,
et al. (2009). The dynamic DNA methylomes of double-stranded DNA
viruses associated with human cancer. Genome Res. 19, 438–451. doi:
10.1101/gr.083550.108

Guo, Y., Li, Y., Mu, S., Zhang, J., and Yan, Z. (2009). Evidence that methylation of
hepatitis B virus covalently closed circular DNA in liver tissues of patients with
chronic hepatitis B modulates HBV replication. J. Med. Virol. 81, 1177–1183.
doi: 10.1002/jmv.21525

Jammeh, S., Tavner, F., Watson, R., Thomas, H. C., and Karayiannis, P. (2008).
Effect of basal core promoter and pre-core mutations on hepatitis B virus
replication. J. Gen. Virol. 89, 901–909. doi: 10.1099/vir.0.834680

Jurkowska, R. Z., and Jeltsch, A. (2010). Silencing of gene expression by targeted
DNA methylation: concepts and approaches. Methods Mol. Biol. 649, 149–161.
doi: 10.1007/978-1-60761-753-2_9

Kaur, P., Paliwal, A., Durantel, D., Hainaut, P., Scoazec, J. Y., Zoulim, F., et al.
(2010). DNA methylation of hepatitis B virus (HBV) genome associated
with the development of hepatocellular carcinoma and occult HBV infection.
J. Infect. Dis. 202, 700–704. doi: 10.1086/655398

Kim, J. W., Lee, S. H., Park, Y. S., Hwang, J. H., Jeong, S. H., Kim, N., et al.
(2011). Replicative activity of hepatitis B virus is negatively associated with
methylation of covalently closed circular DNA in advanced hepatitis B virus
infection. Intervirology 54, 316–325. doi: 10.1159/000321450

Lee, J. O., Kwun, H. J., Jung, J. K., Choi, K. H., Min, D. S., and Jang,
K. L. (2005). Hepatitis B virus X protein represses E-cadherin expression
via activation of DNA methyltransferase 1. Oncogene 24, 6617–6625. doi:
10.1038/sj.onc.1208827

Levrero, M., Pollicino, T., Petersen, J., Belloni, L., Raimondo, G., and Dandri, M.
(2009). Control of cccDNA function in hepatitis B virus infection. J. Hepatol.
51, 581–592. doi: 10.1016/j.jhep.2009.05.022

Liaw, Y. F., Gane, E., Leung, N., Zeuzem, S., Wang, Y., Lai, C. L., et al.
(2009). 2-Year GLOBE trial results: telbivudine Is superior to lamivudine
in patients with chronic hepatitis B. Gastroenterology 136, 486–495. doi:
10.1053/j.gastro.2008.10.026

Liu, F., Campagna, M., Qi, Y., Zhao, X., Guo, F., Xu, C., et al. (2013).
Alpha-interferon suppresses hepadnavirus transcription by altering epigenetic
modification of cccDNA minichromosomes. PLoS Pathog. 9:e1003613. doi:
10.1371/journal.ppat.1003613

Liu, W. R., Shi, Y. H., Peng, Y. F., and Fan, J. (2012). Epigenetics of hepatocellular
carcinoma: a new horizon. Chin. Med. J. (Engl.) 125, 2349–2360.

Liu, X., Xu, Q., Chen, W., Cao, H., Zheng, R., and Li, G. (2009). Hepatitis B
virus DNA-induced carcinogenesis of human normal liver cells by virtue of
nonmethylated CpG DNA. Oncol. Rep. 21, 941–947.

Lopez-Serra, L., and Esteller, M. (2008). Proteins that bind methylated DNA and
human cancer: reading the wrong words. Br. J. Cancer 98, 1881–1885. doi:
10.1038/sj.bjc.6604374

Moolla, N., Kew, M., and Arbuthnot, P. (2002). Regulatory elements of
hepatitis B virus transcription. J. Viral Hepat. 9, 323–331. doi: 10.1046/j.1365-
2893.2002.00381.x

Palumbo, G. A., Scisciani, C., Pediconi, N., Lupacchini, L., Alfalate, D.,
Guerrieri, F., et al. (2015). IL6 inhibits HBV transcription by targeting the
epigenetic control of the nuclear cccDNA Minichromosome. PLoS ONE
10:e0142599. doi: 10.1371/journal.pone.0142599

Park, E. S., Park, Y. K., Shin, C. Y., Park, S. H., Ahn, S. H., Kim, D. H.,
et al. (2013). Hepatitis B virus inhibits liver regeneration via epigenetic
regulation of urokinase-type plasminogen activator. Hepatology 58, 762–776.
doi: 10.1002/hep.26379

Park, I. Y., Sohn, B. H., Yu, E., Suh, D. J., Chung, Y. H., Lee, J. H.,
et al. (2007). Aberrant epigenetic modifications in hepatocarcinogenesis
induced by hepatitis B virus X protein. Gastroenterology 132, 1476–1494. doi:
10.1053/j.gastro.2007.01.034

Pollicino, T., Belloni, L., Raffa, G., Pediconi, N., Squadrito, G., Raimondo, G., et al.
(2006). Hepatitis B virus replication is regulated by the acetylation status of
hepatitis B virus cccDNA-bound H3 and H4 histones. Gastroenterology 130,
823–837. doi: 10.1053/j.gastro.2006.01.001

Riviere, L., Gerossier, L., Ducroux, A., Dion, S., Deng, Q., Michel, M. L., et al.
(2015). HBx relieves chromatin-mediated transcriptional repression of hepatitis
B viral cccDNA involving SETDB1 histone methyltransferase. J. Hepatol. 63,
1093–1102. doi: 10.1016/j.jhep.2015.06.023

Schluter, V., Meyer, M., Hofschneider, P. H., Koshy, R., and Caselmann, W. H.
(1994). Integrated hepatitis B virus X and 3’ truncated preS/S sequences derived
from human hepatomas encode functionally active transactivators. Oncogene 9,
3335–3344.

Frontiers in Microbiology | www.frontiersin.org 8 January 2016 | Volume 6 | Article 1491

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Koumbi and Karayiannis Epigenetic Control of Hepatitis B Virus

Seeger, C., and Mason, W. S. (2000). Hepatitis B virus biology.Microbiol. Mol. Biol.
Rev. 64, 51–68. doi: 10.1128/MMBR.64.1.51-68.2000

Tong, A., Gou, L., Lau, Q. C., Chen, B., Zhao, X., Li, J., et al. (2009).
Proteomic profiling identifies aberrant epigenetic modifications induced by
hepatitis B virus X protein. J. Proteome Res. 8, 1037–1046. doi: 10.1021/pr80
08622

Tropberger, P., Mercier, A., Robinson, M., Zhong, W., Ganem, D. E.,
and Holdorf, M. (2015). Mapping of histone modifications in episomal
HBV cccDNA uncovers an unusual chromatin organization amenable to
epigenetic manipulation. Proc. Natl. Acad. Sci. U.S.A. 112, E5715–E5724. doi:
10.1073/pnas.1518090112

Tuttleman, J. S., Pourcel, C., and Summers, J. (1986). Formation of the pool of
covalently closed circular viral DNA in hepadnavirus-infected cells. Cell 47,
451–460. doi: 10.1016/0092-8674(86)90602-1

Vivekanandan, P., Daniel, H. D., Kannangai, R., Martinez-Murillo, F., and
Torbenson, M. (2010). Hepatitis B virus replication induces methylation
of both host and viral DNA. J. Virol. 84, 4321–4329. doi: 10.1128/JVI.02
280-09

Vivekanandan, P., Kannangai, R., Ray, S. C., Thomas, D. L., and Torbenson, M.
(2008a). Comprehensive genetic and epigenetic analysis of occult hepatitis
B from liver tissue samples. Clin. Infect. Dis. 46, 1227–1236. doi: 10.1086/
529437

Vivekanandan, P., Thomas, D., and Torbenson, M. (2008b). Hepatitis B viral DNA
is methylated in liver tissues. J. Viral Hepat. 15, 103–107. doi: 10.1111/j.1365-
2893.2007.00905.x

Vivekanandan, P., Thomas, D., and Torbenson, M. (2009). Methylation regulates
hepatitis B viral protein expression. J. Infect. Dis. 199, 1286–1291. doi:
10.1086/597614

Waterland, R. A. (2006). Assessing the effects of high methionine intake on DNA
methylation. J. Nutr. 136, 1706S–1710S.

Werle-Lapostolle, B., Bowden, S., Locarnini, S., Wursthorn, K., Petersen, J.,
Lau, G., et al. (2004). Persistence of cccDNA during the natural
history of chronic hepatitis B and decline during adefovir dipivoxil
therapy. Gastroenterology 126, 1750–1758. doi: 10.1053/j.gastro.2004.
03.018

WHO (2015). Data Guidelines for the Prevention, Care and Treatment of Persons
with Chronic Hepatitis B Infection. Geneva: World Health Organization.

Wong, C. M., Lai, W., Law, C. T., Ho, D. W., Tsang, F. H., Au, S. L., et al. (2015).
Up-regulation of histone methyltransferase SETDB1 by multiple mechanisms
in hepatocellular carcinoma promotes cancer metastasis. Hepatology doi:
10.1002/hep.28304 [Epub ahead of print].

Yan, H., Zhong, G., Xu, G., He, W., Jing, Z., Gao, Z., et al. (2012). Sodium
taurocholate cotransporting polypeptide is a functional receptor for human
hepatitis B and D virus. Elife 1:e00049. doi: 10.7554/eLife.00049

Zhang, Y., Li, C., Zhang, Y., Zhu, H., Kang, Y., Liu, H., et al. (2013). Comparative
analysis of CpG islands among HBV genotypes. PLoS ONE 8:e56711. doi:
10.1371/journal.pone.0056711

Zheng, D. L., Zhang, L., Cheng, N., Xu, X., Deng, Q., Teng, X. M., et al. (2009).
Epigenetic modification induced by hepatitis B virus X protein via interaction
with de novo DNA methyltransferase DNMT3A. J. Hepatol. 50, 377–387. doi:
10.1016/j.jhep.2008.10.019

Zhou, Y., and Holmes, E. C. (2007). Bayesian estimates of the evolutionary rate
and age of hepatitis B virus. J. Mol. Evol. 65, 197–205. doi: 10.1007/s00239-007-
0054-1

Zhu, R., Li, B. Z., Li, H., Ling, Y. Q., Hu, X. Q., Zhai, W. R., et al. (2007).
Association of p16INK4A hypermethylation with hepatitis B virus X protein
expression in the early stage of HBV-associated hepatocarcinogenesis. Pathol.
Int. 57, 328–336. doi: 10.1111/j.1440-1827.2007.02104.x

Zhu, Y. Z., Zhu, R., Fan, J., Pan, Q., Li, H., Chen, Q., et al. (2010). Hepatitis B
virus X protein induces hypermethylation of p16(INK4A) promoter via DNA
methyltransferases in the early stage of HBV-associated hepatocarcinogenesis.
J. Viral Hepat. 17, 98–107. doi: 10.1111/j.1365-2893.2009.0
1156.x

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2016 Koumbi and Karayiannis. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) or licensor are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Microbiology | www.frontiersin.org 9 January 2016 | Volume 6 | Article 1491

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive

	The Epigenetic Control of Hepatitis B Virus Modulates the Outcome of Infection
	Introduction
	Chromatin Organization And Epigenetic Modifications
	Histone Acetylation
	Dna Methylation
	Acetylation Of The cccDna Minichromosome
	Hbv Dna Methylation
	Non-Integrated Hbv Genome
	Hbv Integration And Hepatocarcinogenesis
	Hbv Epigenetic Control Of Host'S Immune Responses
	Therapeutic Implications Of Epigenetic Mechanisms In Hbv Infection
	Concluding Remarks
	References


