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Viruses impact microbial activity and carbon cycling in various environments, but their
diversity and ecological importance in Sphagnum-peatlands are unknown. Abundances
of viral particles and prokaryotes were monitored bi-monthly at a fen and a bog at two
different layers of the peat surface. Viral particle abundance ranged from 1.7 x 10° to
5.6 x 108 particles mL~", and did not differ between fen and bog but showed seasonal
fluctuations. These fluctuations were positively correlated with prokaryote abundance
and dissolved organic carbon, and negatively correlated with water-table height and
dissolved oxygen. Using shotgun metagenomics we observed a shift in viral diversity
between winter/spring and summer/autumn, indicating a seasonal succession of viral
communities, mainly driven by weather-related environmental changes. Based on the
seasonal asynchrony between viral and microbial diversity, we hypothesize a seasonal
shift in the active microbial communities associated with a shift from lysogenic to
lytic lifestyles. Our results suggest that temporal variations of environmental conditions
rather than current habitat differences control the dynamics of virus-host interactions in
Sphagnum-dominated peatlands.

Keywords: fen, bog, metaviromes, prokaryotes, ecological succession, microbial interactions

INTRODUCTION

Viruses are present in virtually all ecosystems, and are considered to be the most abundant
biological entities in the biosphere (Suttle, 2005). Through lytic and lysogenic life cycles, viruses
affect the metabolism and abundance of their cellular hosts from all three domains of life (synthesis
in) (Kirchman, 2012), impacting the diversity and the structure of microbial communities
(Middelboe, 2000; Suttle, 2007; Sime-Ngando, 2014). Because viruses function as a top-down
control on microbial production (Pradeep Ram et al., 2011; Chow et al., 2014), they affect
biogeochemical cycles through the release of substantial amounts of organic carbon and nutrients
in the environment (Middelboe and Lyck, 2002). While resources released by this viral shunt
can be reused to sustain microbial biomass, it typically results in a reduction of the overall flow
of organic matter and energy towards higher trophic levels (Fuhrman, 1999; Middelboe and
Lyck, 2002; Ankrah et al., 2014). Besides the viral-shunt, a significant proportion of the released
viruses represent a consequential amount of labile organic matter that can be readily decomposed
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(Dell’Anno et al, 2015). Viral lysis, along with bacterial
grazing are important processes in microbial succession (Fierer
et al, 2010), suggesting that coupled viral-host interactions
can influence ecosystem-level carbon cycling, depending on the
activity of cells and on the balance between lytic and lysogenic
strategies. Consequently, considering viral ecology is critical to
understanding ecosystem functioning.

Peatlands are a globally relevant component of the carbon
cycle, storing a quarter of global soil carbon and more carbon
than all vegetation (Yu, 2012; Turetsky et al, 2015). Boreal
and temperate peatlands are often dominated by peat forming
mosses, belonging to the Sphagnum genus. Many Sphagnum-
dominated peatlands develop from a nutrient-rich, non-acidic
fen (minerotrophic fen) during early stages, to a nutrient-poor
acidic bog (rain-fed ombrotrophic bog) (Rydin and Jeglum,
2006). During this development process, peatlands accumulate
large stocks of partly decomposed organic matter as peat. This
accumulation is a consequence of the long-term imbalance
between carbon uptake from photosynthesis and carbon losses
via respiration, methanogenesis and DOC leaching, which results
in the preservation of up to 15 % of the net primary production
as peat (Clymo, 1984; Moore, 1987; Francez and Vasander, 1995;
Roulet et al., 2007). The combination of abiotic conditions,
such as low temperature, low pH, high soil water content and
poor nutrient availability, as well as biotic factors (Sphagnum
litter quality, allelopathy) constrains microbial activities, limiting
decomposition and mineralization (Clymo, 1984; Rydin and
Jeglum, 2006). Accumulation of organic matter over long time
periods leads to stratification with a deep permanently anoxic
catotelm in contact with underlying bedrock, an intermediate
mesotelm layer that is periodically anoxic and oxic and the
predominantly oxic acrotelm at the surface (Clymo and Bryant,
2008). The heterogeneity of peat, the variety of dynamic stages
and sources of water and nutrients provide a large panel of
habitats and niches for a broad diversity of microorganisms
transforming different carbon substrates through aerobic and
anaerobic pathways of decomposition (Juottonen et al., 2005;
Artz, 2009; Andersen et al., 2010; Tveit et al., 2012).

Understanding of microbial diversity in peatlands, especially
in regards to spatio-temporal patterns, is currently limited.
The development of cultivation-independent approaches such
as metagenomics provide a powerful tool to investigate
microbial taxa and associated protein-coding genes across
ecosystems (Lynch et al., 2004; Vandenkoornhuyse et al., 2010).
More recently, sequencing of viral metagenomes (hereafter
metaviromes) has dramatically expanded understanding of viral
diversity, particularly in marine and freshwater environments
(Comeau et al., 2008; Lopez-Bueno et al., 2009; Rohwer and
Thurber, 2009; Roux et al., 2012; Smith et al., 2013; Labonté and
Suttle, 2013; Wommack et al., 2015) compared to soil ecosystems
(Kimura et al., 2008; Zablocki et al., 2014; Adriaenssens et al.,
2015). Most analyses have focused on cross-biomes comparisons,
while spatio-temporal dynamics remain poorly documented
(Pagarete et al.,, 2013; Chow et al,, 2014). Several viral marker
genes, conserved within particular viral families, are considered
to be reliable for taxonomic affiliation (Roux et al., 2011;
Sakowski et al., 2014). Nevertheless, none of these marker

genes are ubiquitous among viruses and they are far from the
high level of conservation found in rRNA genes that are used
for the classification of organisms from the three kingdoms.
While several studies have investigated the diversity of microbial
communities in peatlands (Dedysh et al., 2006; Artz et al., 2007;
Peltoniemi et al., 2009; Dedysh, 2011; Mackelprang et al., 2011;
Bragina et al, 2012; Serkebaeva et al., 2013; Mondav et al,
2014; Tveit et al., 2014; Hultman et al, 2015; Nunes et al,,
2015) viral diversity in Sphagnum-dominated peatlands remains
largely unknown and basic knowledge of virus ecology in these
ecosystems is still lacking (Quaiser et al., 2015). In view of the
importance of viruses in structuring and regulating prokaryotic
communities and the implication of the latter in the carbon sink
function of peatland; it is essential to understand the role of
viruses in the dynamics of the microbial communities in this
ecosystem.

In order to characterize virus ecology in a temperate
Sphagnum-dominated peatland, we combined and integrated
different approaches to study the spatio-temporal patterns of
viral abundance and diversity. The goals of this work were: (1)
to compare the seasonal abundance of viruses and prokaryotes
at two different layers of the peat surface corresponding to
a stratified analysis of acrotelm, the most active layer, of
fen and bog; (2) to identify abiotic controls on abundance
and distribution of these viruses and prokaryotes; and (3) to
characterize the viral diversity over an annual cycle.

MATERIALS AND METHODS

Site Description

Peat samples were collected at Les Pradeaux (3°55E; 45°32N),
a Sphagnum-dominated peatland situated in the French Massif
Central at an altitude of 1 350 m. The fen is dominated by
Sphagnum fallax, Carex rostrata, Eriophorum angustifolium, and
Menyanthes trifoliata, while the bog is mainly colonized by
Sphagnum magellanicum, Sphagnum capillifolium, Andromeda
polifolia, Vaccinium oxycoccos, and Eriophorum vaginatum.

Sampling Strategy and Experimental
Design

Twelve field sessions were organized between May 2010 and
November 2012 (Supplementary Table S1): One in May 2010,
four in 2011 (June, August 12th, August 24th and October), and
seven in 2012 (March, May, June, July, August, September, and
November).

For each field session, three peat profiles (replicates) were
analyzed in the fen and the bog. In order to avoid disturbance
during the extraction of peat and water, sampling for viral counts
and metagenomes followed a 3-step progressive cutting from
surface to depth. The 0—5 cm layer corresponding to the living
Sphagnum carpet (capitulum and “green” stems and leaves) was
cut off and carefully removed. The 5—10 cm layer (called “upper
surface layer” thereafter) was then cut off and a fraction of peat
matrix was harvested and stored in a 50 mL tube for metagenome
production. From the remaining undisturbed peat, pore-water
was expressed for viral and prokaryote counts. The same method
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was applied to the 10—15 cm layer (called “lower surface layer”
thereafter). For metaviromes production as well as for physico-
chemical analysis pore-water was expressed from the remaining
peat surface layers combined. At least 200 mL of pore-water were
necessary for metavirome production.

Prokaryote and Viral-Like Particle
Abundances

For each layer of each sampling point, at least 20 mL of peat water
was extracted, prefiltered at 125 um, and fixed in Glutaraldehyde
(2%, Grade II, Sigma—Aldrich). Prokaryote abundance (PA)
and viral particle abundance (VPA) were obtained using flow
cytometry (BD Accuri C6) (Sime-Ngando et al., 2008).

Physico-Chemical Parameters

Peat temperature was measured directly in the peat profiles
at 5, 10, and 15 cm under the Sphagnum capitula layer.
Conductivity, pH and oxygen were measured in the field with
filtered (125 pm) peat water. Dissolved organic carbon (DOC)
and anion concentrations (nitrate, sulfate, and acetate) were
measured at the “Biogeochemical Analysis” platform (ECOBIO
and GEOSCIENCES - OSU Rennes), following water filtration
at 0.2 wm (Whatman), using a Bioritech DOC Analyser and a
Dionex Analyzer (Table 1).

Metavirome and Metagenome

Production

To get enough material fen and bog viral communities were
sampled from pore water combining the upper and lower surface
layers. Samples were recovered at four dates (Supplementary
Table S1, Table 2): 07 June 2011 (vFen_Junell, vBog Junell;
along with peat for a study of the microbial communities),
12 August 2011 (vFen_Augll, vBog_Augll), 12 October 2011
(vFen_Octl1, vBog_Octl1), and 23 March 2012 (vFen_Marl2,
vBog Marl2). Due to low water content of the peat, only one

sample was collected for each dynamic stage for the three first
dates. In March 2012, the fen and bog were sampled in biological
triplicates (vFen_Marl2_A, B, C; vBog_Mar12_A, B, C). In total
we prepared six fen and six bog metaviromes. Sphagnum water
was prefiltered at 125 pm. Viruses were concentrated using
PEGylation (Colombet et al., 2007). Viral concentrates were
filtered through a 0.20 pm filter (Minisart, Sartorius) and diluted
5x in H,O (Sigma) to a volume of 5 mL. Remaining non-
viral DNA was digested with 10 U DNAse RQ1 RNAse free
(Promega) at 37°C for 1 h. Viral DNA was extracted as described
previously (Quaiser et al., 2015). DNA quality was checked with
the High Sensitivity DNA kit on a 2100 Bioanalyzer (Agilent).
Whole genome amplification (WGA) was applied in triplicate
for each sample using GenomiPhi V2 (GE Healthcare) following
manufacturers’ instructions and the triplicates were pooled.

Subsequent pyrosequencing was performed on a GS FLX
system (454 Life Sciences, Roche, Branford, CT, USA) at the
“Functional and Environmental Genomics® platform (OSU,
Rennes, France). Roche/454 filtering tools and stringent filters
were used to ensure the highest sequence quality and to remove
artificial replicates of sequences and sequences smaller than
250 bp as shown previously (Quaiser et al., 2014).

For the metagenomes, 12 un-pressed peat matrix samples,
distinguishing bog/fen, upper and lower surface layers, each
in triplicates, collected on 07 June 2011, underwent DNA
extraction, pyrosequencing as well as size and quality trimming
(Supplementary Table S2) as described previously (Quaiser
et al, 2014). Briefly, 2 g of peat matrix were lysed in
15ml of extraction buffer containing 4% cetyltrimethylam-
monium bromide (CTAB), 0.5% polyvinylpyrrolidone (PVP,
Sigma—Aldrich), 0.7 M NaCl, 100 mM potassium phosphate
(pH 6.8), 20 mM EDTA (pH 8.0), 1% beta-mercaptoethanol,
1 M guanidin thiocyanate and incubated at 65°C for 30 min.
Homogenization was obtained by vigorous vortexing every 5 min
during 1 min in the presence of glass beads. One volume
of chloroform-isoamylalcohol (24:1) was added, vortexed for

TABLE 1 | Physico-chemical parameters measured in the peat samples from 2012.

Temperature  Water-table pH Conductivity Sulfate (mg.L-')  Nitrate (mg.L.~')  Oxygen (mg.L~') DOC (ppm)
(c°) (cm) (wS cm™)
March 14.5(1.3) 1(0) 4.7 (0.2 17.6 (4.2) 0.70 (0.14) 0.1 (0.01) 9.54 (0.55) 15.6 (3.1)
May 14.3 (0.6) 0.8(1.8) 4.6 (0.1) 16.1 (1.1) 0.67 (0.07) 0.40 (0.42) 6.33 (0.02) 19.7 (2.2)
> June 14 (0.5) -0.2 (0.6) 6.1 (0.1) 16.8 (4.8) 0.69 (0.06) 0.99 (0.72) 6.57 (0.90) 25.3 (3.3)
W July 13.8 (1.6) —5.6 (1.2) 6.6 (0.2) 12.8(0.7) 1.08 (0.07) 1.04 (0.67) 9.61 (0.84) 18.4 (1.2)
August 15 (1.0) -10 (1) 4.6 (0.1) 97.7 (4.8) 1.85 (0.38) 1.45 (0.07) 0.44 (0.02) NA
September 10.1 (1.4) —7.3(0.6) 4.6 (0.1) 34.6 (8.2) 1.64 (0.10) 1.40 (0.03) 1.28 (1.11) 38.4 (2.5)
November 5 (4.4) 1(0) 4.6 (0.1) 56.9 (32.8) 1.67 (0.09) 1.66 (0.09) 9.73 (0.35) NA
March 11 (3.0) -12.3 (2.5) 4.7 (0.1) 44.2 (23.7) 1.24 (0.35) 0.94 (0.09) 7.28 (0.20) 19.5 (0.7)
May 13.7 (0.8) -10.3 (1.5) 4.4 (0.2 42,5 (8.1) 2.20 (0.41) 1.30 (0.21) 5.69 (0.56) 27.9 (5.3)
o June 12.8 (0.8) -16.2 (1.6) 4.4 (0.3) 45.3 (18.2) 0.94 (0.19) 0.57 (0.66) 5.83 (0.49) 49.7 (9.1)
8 July 13.8 (0.3) —20.3 (2.1) 4.5 (0.1) 29.5 (3.4) 1.46 (0.09) 0.1 (0.01) 6.12 (0.34) 17.8 (1.9)
August 16.8 (1.4) —23.7 (2.1) 4.2 (0.1) 61.8 (2.6) 2.28 (0.17) 1.67 (0.17) 1.77 (1.68) NA
September 10.7 (0.6) -21.3 (2.1) 4.3 (0.1) 62.8 (25.3) 3.01 (0.60) 0.1 (0.01) 0.30 (0.07) 47.9 (12.3)
November 2.7 (0.6) —22 (2.0 4.1 (0.1) 47.5 (18.9) 2.13 (0.44) 0.05 (0.02) 10.96 (0.58) NA

Mean (+SD) (n = 3), DOC: Dissolved Organic Carbon; NA: not available.
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310
550

77 109

138
132
278

119
314
535

245

249
151

276

207

111

40
16
59

50
19
69

No. of tRNA

1115
1011

957
873

1134
10563

37
46

Hits to KO_KEGG

Hits to COG
% “No Hit”

167

113

90.01%
42

89.52%
336

91.90%

66

94.08%
1786
2.28%

94.09%
195

93.64%
329

95.47%
3792
3.60%

94.10%
8335

92.83%
817

92.99%
1492

88.30%
109

91.30%
1027

No. shared sequences

% shared

0.27% 0.06%

0.06%

0.31%

0.44%

0.30% 1.39% 0.48% 12.38%

1.13%

% No hit: percentage of sequences that did not match against the “RefSeqVirus” database (tBLASTx, e-value 10~7).

=33).

shared: sequences that are common between at least one metagenome and one metavirome (Compareads 1.2.2., t = 4, k

1 min and incubated at room temperature for 5 min. The
samples were centrifuged at 4000 g for 15 min at 4°C and
the aqueous phases were transferred to new tubes. Binding
conditions for silica-based RNA extraction were adjusted, applied
on Nucleo Spin RNA II kit columns and subsequent purification
was performed following the instructions of the manufacturer
(Macherey—Nagel). DNA was nebulized to fragments of about
700 bp. The DNA was purified with Agencourt AMPur XP
magnetic beads (Beckman—Coulter). DNA fragmentation quality
was checked with the High sensitivity DNA kit on a 2100
Bioanalyzer (Agilent). Subsequent library construction and
pyrosequencing was performed in technical duplicates on a GS
FLX system (454/Roche) at the “Functional and Environmental
Genomics” platform (OSU, Rennes, France). Roche/454 filtering
tools and stringent filters developed locally were used to ensure
the highest possible sequence quality and to suppress artificial
replicates of sequences as well as sequences smaller than 250 bp.

The metaviromes are available under the Metavir IDs
(http://metavir-meb.univ-bpclermont.fr/): 1368, 1369, 1370,
1373, 1374, 1375, 1376, 1377, 1378, 1379, 1380, and 1382
(project: VIRTOU). In addition, pyrosequencing reads reported
in this publication have been deposited in the ENA Sequence
Read Archive under the study accession number PRJEB11420
(metaviromes) and PRJEB11421 (metagenomes).

Metavirome Analysis

After pyrosequencing, sequence quality and size trimming, we
obtained 481 402 and 615 487 sequences with an average length
of 415 bp from fen and bog, respectively (Table 2). The quality
of the virome extraction process was assessed by determining
the amount of rRNA and tRNA sequences using Meta_RNA
that identifies SSU and LSU rRNAs from the three kingdoms
(Huang et al., 2009) and tRNAscan-SE (Lowe and Eddy, 1997).
In total 69 rRNA (0.0063%) and 1681 tRNA (0.15%) sequences
were identified indicating an insignificant level of potential
contamination of microbial DNA. To avoid misinterpretation of
the results, these sequences were excluded in subsequent analysis.

The viral diversity was analyzed using Metavir (Roux et al,,
2014) and the sequences were subjected to tBLASTx (Altschul
et al., 1997) against the NCBI RefSeqVirus database (e-value
10~7). Taxonomic assignment of the sequences was determined
with MEGAN (Huson et al., 2007). Several accompanying tools
were used on the Galaxy/Genouest bioinformatics platform (Le
Braset al.,, 2013).

To estimate the level of similarity between the viral
communities, the proportion of similar sequences of each pair
of metaviromes was computed with Compareads 1.2.2 (Maillet
et al., 2012). Using this software, two sequences are considered
to be similar if they present a defined number (f) of identical
k-mers (k). To calibrate this analysis we tested 3 different
numbers (f = 2; 4; 10) of identical 33mers (k = 33 nt).
The most reliable results were obtained using four identical
33mers, parameters that were used for further analyses computed
with Compareads. Compareads output is a percentage of
similarity between a pair of metaviromes. These percentages
were used to build a distance matrix, on which hierarchical
clustering was performed using the R package pvclust package
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(Suzuki and Shimodaira, 2006) (distance =
method = “average”).

Comparisons made with Compareads give a global estimate
of the similarity between the metaviromes. In order to take into
account the diversity of sequences within each metavirome,
we analyzed the qualitative distribution (presence—absence)
of clusters of highly similar sequences in the 12 metaviromes.
This second analysis also allowed removal of potential bias
due to the variation of the number of sequences obtained
for each metavirome. Sequences from the 12 metaviromes
were clustered using CD-HIT-EST (Huang et al, 2010)
(c = 0.95; n = 8). Clustering results were used to compute
Serensen dissimilarity between pairs of metaviromes using
MOTHUR (Schloss et al, 2009). Hierarchical clustering
(pv-clust package) was used to represent compositional
relatedness between metaviromes from the matrix of Serensen
dissimilarities. Clusters of sequences were split into different
categories according to the amount of sequences they
contained and the same analysis was performed for each
size category.

correlation”,

Analysis of the Sequences Shared by a
Metagenome and a Metavirome

In order to find viral sequences in the metagenomes, and to
analyze the link between the viral and microbial communities,
sequences shared by at least one metagenome and one
metavirome were retrieved using Compareads (k = 33, t = 4),
and clustered using CD-HIT-EST (see “Metaviromes Analysis”).
To ensure that this selection of sequences did not alter the
compositional patterns observed for the total metaviromes,
Serensen dissimilarity was calculated with these clusters for
the “shared” sequences originating from the metaviromes.
Correspondence Analysis (CA) was performed on the whole
dataset of shared sequences and the sample dissimilarities carried
on the two first axes was represented with a hierarchical clustering
(ade4 package) (Dray and Dufour, 2007). Taxonomic assignment
of the sequences was obtained using Metavir tBLASTx output
(e-value 10~7) (Roux et al., 2014), and analyzed with MEGAN
(Huson et al., 2007).

Statistical Analysis

Due to non-homogeneity of variance, one-factor Kruskal-Wallis
tests were used on PA, VPA, and VPR in order to detect
differences between sites (fen vs. bog), layers (upper vs. lower)
and sampling dates. A principal component analysis (PCA) was
performed on the physico-chemical dataset taking into account
samples with available DOC (ade4 package) (Dray and Dufour,
2007). The first component was associated with the fluctuation of
the physico-chemical variables through the habitats and seasons.
We used the sample coordinates on the first component as a
variable representing the spatio-temporal gradient (Legendre and
Legendre, 1998; Ramette, 2007). Then potential relations between
the gradient and log transformed PA, VPA, and VPR were tested
using linear regression. All statistical analyses were performed
using the open-source statistical software R (version 2.14) (R
Development Core Team, 2013).

RESULTS

Viral and Prokaryotic Bundance

Viral particle abundance and PA were investigated for the two
peatland development stages over 2 years (Figure 1) aiming for
the detection of spatial trends in the abundance of biological
entities. VPA ranged from 1.7 £ 0.9 x 10° (fen upper layer,
July 2012) to 5.6 4 2.1 x 10® particles mL~! (bog lower layer,
September 2012), and PA ranged from 2.8 & 1.2 x 10° (fen
upper layer, July 2012) to 6.3 £+ 1.3 x 10% cells mL~! (fen
lower layer, May 2010). VPA and PA were significantly correlated
(Spearman, r = 0.76; P < 10713, N = 95). We did not observe
significant differences in PA and VPA between fen and bog;
however, we detected significant variations with time (PA: KW-
test, P = 1.8 x 107>, N = 95; VPA: KW-test, P = 1.1 x 1075,
N = 95). While PA was significantly higher at the lower layer
(average abundance of 9.5 & 7.1 x 107 cells mL™! at the upper
layer and 1.9 & 1.6 x 10% cells mL™! at the lower layer) (KW-
test, P < 0.05, N = 95), VPA did not differ significantly with
depth (KW-test, P = 0.056, N = 95). Nevertheless, VPA followed
a similar trend, with higher average abundances at lower layer
compared with the upper layer (1.8 & 1.6 x 103 particles mL™*
vs0 1.2 £ 1.1 x 108 particles mL™!, respectively). The virus
to prokaryote ratio (VPR) differed by sampling date (Figure 2)
(KW-test, P < 0.01, N = 95). No significant differences were
observed between development stages or sampling depths. The
highest VPR, measured in June 2011 was due to low PA rather
than to high VPA.

Link Between Abiotic Variables, VPA and
PA

The potential relationships between abiotic and biotic
environment and virus communities were analyzed combining
fluctuation of physico-chemical variables with viral and
prokaryote abundance. The annual mean water-table level
was —2.9 £ 4.5 cm in the fen and -18.0 £ 5.0 cm in the
bog. Temperature varied more at the upper layer of the bog
(annual mean: 11.6 £ 4.4°C) than at the upper layer of the
fen (124 £ 3.8 °C), but was lower at the lower layer of
both stages (fen: 9.3 £ 3.5°C; bog: 9.2 £+ 3.5°C) (Table 1).
We characterized the variation of abiotic physico-chemical
parameters with a (PCA) (Figure 3). The first component of the
PCA accounted for 49.8% of the variance, and was positively
correlated with conductivity, sulfate (SO427) and DOC and
negatively correlated with water-table level and oxygen (O;).
The second component accounted for 16.4% of the variance and
was mainly correlated with nitrate concentration, which was
higher in the fen in June, July, and September. The distribution
of data points across the first two components emphasized
the differences between fen and bog but also highlighted
similar temporal trends within the two development stages,
distinguishing the March and May samples from September.
The seasonal fluctuations of the water-table were closely linked
with variation in water-chemistry, suggesting that water sources
and flowpaths affect nutrient concentrations, potentially due
to dilution of a limited solute stock (for example, Spearman’s
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FIGURE 1 | Prokaryote abundance (PA) and viral particle abundance (VPA) from the fen and bog of the Sphagnum-dominated peatland. (A) PA at the
upper layer (5—10 cm), (B) PA at the lower layer (10—15 cm), (C) VPA at the upper layer, (D) VPA at the lower layer. Bars represent standard deviations (N = 3).

rank correlations; water-table to conductivity: R = —0.67,
P =6 x 107°, N = 29; water-table to sulfate: R = —0.66,
P = 9 x 107>, N = 29) (Table I; Figure 3). Because the
first component represents an integrated variable of spatio-
temporal variations of the physico-chemical and hydrological
parameters, we used sample coordinates on this axis to
model the seasonal abiotic fluctuations for both fen and bog.
Log-transformed PA and VPA were both positively, linearly
correlated with this abiotic gradient (N = 29, PA: 2 = 0.53,
P < 107> VPA: r> = 0.41, P < 10~ 3; Supplementary Figure
S1), whereas VPR was unrelated to this gradient (r* = —0.03,
P =0.68).

Viral Community Composition and

Diversity

Pyrosequencing of the 12 metaviromes yielded 1 096 889
sequences with an average length of 415 bp (Table 2). Analysis
revealed that sequences of ribosomal RNA genes accounted
for 0.0063% (69 rRNA sequences), which were excluded from
subsequent analysis. In addition, the predicted protein coding
sequences that matched the functional category databases
(KEGG) and the cluster of orthologous genes database (COG)
accounted for only 0.38 and 0.45%, respectively. This corresponds
to 10—50 times fewer matches than are typically found in
conventional short read metagenomes (Table 2; Quaiser et al,,
2011), indicating a very low level of contamination by genomic
DNA from microorganisms (Roux et al., 2013b). This allows the

precise characterization of viral diversity and variation in fen and
bog through the year.

Taxonomic Composition

Sequences were compared against viral genomes from the NCBI
RefSeqVirus database. Only a small proportion of sequences,
ranging from 4.2% (vBog_Octl11, v = virus/Fen or Bog/sampling
date) to 10.9% (vBog Junell) matched the available viral
genomes indicating the presence of currently undetected viruses
(Table 2; Figure 4). Matches associated with ssDNA viruses
were most common, accounting for a mean of 4.5% of the
total number of sequences, with primary assignment to the
bacteriophage family Microviridae (1.7 £ 1.3%) and to the
eukaryal ssDNA family Circoviridae (0.9 &= 0.7%). Matches with
dsDNA viruses appeared mostly affiliated with the order of
Caudovirales (1.3 & 0.8%), which can be hosted by both Bacteria
and Archaea. While the protocol was not designed to preserve
RNA viruses, we detected sequences matching to ssRNA viruses
affiliated with Tombusviridae and Sclerophtora macrospora virus
A representing likely the recently identified so called “chimeric
viruses” (Diemer and Stedman, 2012; Roux et al., 2013a). They
were present in all samples and accounted for 0.1% (vFen_Augl1)
to up to 2.8% (vBog_Augll) of the total metavirome sequences
(Figure 4). Nevertheless, the interpretation of these results must
be considered with respect to the applied multiple displacement
amplification, that was shown to be bias prone towards ssDNA
viruses (Kim and Bae, 2011). Due to potential biases no statistical
analyses were performed on the proportions of the viral types.
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FIGURE 2 | Comparison of the virus to prokaryote ratio (VPR) of the
Sphagnum-dominated peatland. Bars represent standard deviations
(N =3).

Genomic Diversity Based Comparisons
of the Metaviromes

Due to the lack of virus reference sequences in the databases
the majority of sequences (88.3 to 95.4%) remained unaffiliated
to known viral taxa. To characterize the remaining, unidentified
metaviromes sequences, we analyzed the proportion of similar
sequences (four identical kmers of 33 bp) between each pair
of metaviromes with Compareads (Maillet et al., 2012). The
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FIGURE 4 | Relative abundances of the different viral types in the six
fen and six bog metaviromes. Taxonomic affiliations were obtained by
tBLASTx against RefSeqVirus (e-value 10~ 7). Relative abundances were
averaged for March fen and bog metavirome triplicates. Error bars are shown
only for negative values and represent standard deviation (N = 3).

dendrogram built from the similarity matrix showed two well-
separated clusters (Supplementary Figure S2A). One group was
composed of metaviromes collected during summer and autumn
2011 (vBog_Aug2011, vFen_Octll, vBog_Oct2011), while the
second group included the communities sampled in winter 2012
(March 2012) and spring 2011 (June 2011) regardless of the
peatland development stage.

Sequence comparisons with Compareads provide a global
estimate of the proportion of similar sequences without taking
into account the internal structure of the sequence sets. Therefore
we clustered sequences with a 95% identity threshold to assess
the diversity of protein-coding gene sequences and to determine
which groups of sequences drive the similarity between
metaviromes in the Compareads analysis. Serensen dissimilarity
was calculated for every pair of metaviromes. This distance
is based on the distribution (presence-absence) of sequences

A B d=1
Bog
= 7'y
S
< emp. oo o &
€ Oxygen < A
~ 2 Cpnduct A A
- / L} A
§ ~  ——~DOC v A Aa
A

é. WaterTable Sultate Fen ° A
8 pH ° ® o

° ]

[ J
Nitr,

Component 1 (49.8 %)

FIGURE 3 | Principal Component Analysis on the physico-chemical dataset. (A) Variance explained per component, and correlation circle. (B) Projection of
the samples. Dot shape represents the habitat (circle: fen, triangle: bog). Dot colors represent the sampling date (dark blue: March 2012, light blue: May 2012, light

green: June 2012, orange: July 2012, red: September 2012).
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from the different clusters in the 12 metaviromes. Serensen
dissimilarities between pairwise metaviromes were uncorrelated
with the amount of sequences in pairwise comparisons
(Spearman’s rank correlation, R = 0.08, P = 0.495, N = 66).
The pattern of similarity between the metaviromes supported
the first analysis done with Compareads (Supplementary Figure
S2B), with nearly identical grouping of summer and autumn
communities and winter and spring communities.

Unique sequences represented 28% of the total metaviromes
and 49% of the sequences belonged to clusters consisting of
10 to more than 1 000 sequences. We split clusters of highly
similar sequences into different size categories, depending on the
number of sequences they included (Figure 5) and computed
hierarchical clustering based on Serensen dissimilarities for
each size category. Dendrograms indicated the same contrasted
pattern between March viral communities and the summer and
autumn group of metaviromes to the exception of vFen_Augll.
This distinction was not significant for clusters smaller than
five sequences. This suggests a fundamental change in viral
community between the two main groups of metaviromes with
low intergroup Serensen similarity (Supplementary Figure S3).
Resemblance between winter and spring metaviromes (Fen and
Bog from June 2011 and March 2012) was only significant
for clusters larger than 250 sequences. Thus, the resemblance
between June and March metaviromes appears to be due to a
small number of large clusters.

To analyze the genetic similarities with other metaviromes,
we compared the 12 peatland metaviromes with 49 available
metaviromes from eight different ecosystem types by hierarchical

clustering and tBLASTx (Supplementary Figure S4, see Materials
and Methods). Peatland viruses formed a distinct group, clearly
separated even from geographically close viral communities
originating from freshwater lakes, indicating that these
metaviromes represent a unique community characteristic
of and structured by its ecosystem (Roux et al., 2012).

Link Between Viral and Microbial
Communities

To investigate the interactions between viruses and the microbial
communities in Sphagnum-dominated peatlands, we sequenced
12 metagenomes from the fen and bog prokaryotic communities
(Supplementary Table S2) from the same day and site as the
metaviromes vFen_Junell and vBog Junell (Supplementary
Table S1). Metagenome DNA was extracted from the peat
matrix allowing finer spatial sampling. In addition, the peat
matrix contained the peat pore-water from which the viral
particles were sampled. Based on taxonomic affiliations fen and
bog prokaryotic communities (hereafter called pFen and pBog)
appeared to be predominantly composed of the same main
phyla (Supplementary Figure S5). However, regardless of depth,
fen and bog appeared to harbor prokaryotic communities with
distinct structures as shown by non-metric multidimensional
scaling ordination of euclidean distances between metagenomes
(Supplementary Figure S6) and with the analysis of similarity
(ANOSIM, Euclidean distance, R = 0.68, P < 0.01). In order
to identify viral signatures in these metagenomes, we identified
sequences shared by metagenomes and metaviromes using
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FIGURE 5 | Metaviromes similarities based on Serensen Index and on the number of sequences gathered in the clusters. (A—F) represent different size
categories, ranging from the category of clusters that gathered more than 1000 sequences (A) to the category of clusters represented by three or four sequences
(F). Abbreviations: CS: Cluster Size. Numbers below the class size: No. of clusters represented in the size category / No. of sequences represented in the size
category/% of the total metaviromes sequences. Red rectangles represent the most robust clusters (pvclust. au = 0.05).
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Compareads (four identical kmers of 33 bp). We obtained 18,676
“shared” sequences, of which 30 were from bog metagenomes
(pBog), 320 were from fen metagenomes (pFen) (Supplementary
Table S2), and 18,326 from the 12 metaviromes (Table 2). In most
metaviromes, the number of “shared” sequences represented
less than 1% of the total sequences but reached up to 12%
in vFen_Octll (Table 2). We clustered sequences with a
95% identity threshold, built a contingency matrix based on
the number of sequences from each sample in the different
clusters and performed a CA on this contingency matrix.
The first two axes of the CA contained 21% of the total
information. Hierarchical clustering based on the first two
components revealed three groups of samples (Figure 6). Two
groups included metagenomes sampled in June 2011 from fen
and bog, respectively (pFen and pBog_  samples) as well as
metaviromes from August and October 2011. The third group
contained the metaviromes from June 2011 and March 2012.
Thus metaviromes from June 2011 did not cluster with the
metagenomes sampled on the same day. Clustering and Serensen
dissimilarity analysis based solely on the subset of metavirome
sequences shared with metagenomes revealed the same summer
and autumn and winter and spring groupings as obtained
for complete metaviromes (Supplementary Figure S7). Among
these 18 676 “shared” sequences, a total of 774 sequences (4%)
were assigned to references in RefSeqVirus (tBLASTX, e-value
10~7) indicating that the vast majority (96%) originate from
currently unidentified viruses. Most hits were associated with the
Microviridae subfamily Gokushovirinae (ssDNA viruses, 409 hits)
and to a lesser extend with the ssDNA viruses Circoviridae (173
hits), Caudovirales (AsDNA viruses, 134 hits), and Sclerophtora
macrospora virus A (ssRNA viruses, 19 hits).

DISCUSSION

Quality of the Metaviromes

To explore the diversity and potential ecological role of viruses
in Sphagnum-dominated peatland, we analyzed and compared
six fen and six bog metaviromes covering the seasonal periods.
The quality of the viromes is essential for comprehensive analysis,
since contaminations with microbial genomic DNA would falsify
the results. To assure that microbial DNA contamination was
satisfactorily low, we applied the pegylation procedure to enrich
viral particles (Colombet et al., 2007), DNAse treatment to
degrade “free” DNA not protected by capsids, and triplicate whole
genome amplification to balance potential amplification bias. The
high quality of the virome sequences was shown by the very
low abundance of rRNA sequences as well as the low number
of matches to functional databases (i.e., KEGG_KO and COG).
This is in accordance with the high diversity present in the viral
genomic pool and with the high rates of evolutionary changes in
viral genomes that are much less conserved than microbial genes
(Dufty etal., 2008). Whole genome amplification, as applied here,
is known to amplify preferentially circular ssDNA viruses (Kim
and Bae, 2011), a bias that cannot be prevented when pooling
separate triplicate amplification (Marine et al., 2014). Therefore,
the interpretation of the results must be considered with caution.
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metavirome similarity based on sequences shared by at least one
metagenome and one metavirome. Similarities were obtained using
Compareads (k = 33; t = 4). Shared sequences have been clustered using
CD-HIT-EST, and a Correspondence Analysis (CA) was performed on the
clusters. Hierarchical clustering is based on the two first axes of the CA.
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Nevertheless, since all viromes were generated the same way, the
inevitably introduced biases should be the same for all allowing
reliable comparative analysis.

It has been hypothesized that viruses infecting eukaryotes
might be more important in terrestrial ecosystems and
wetlands, where protozoan and fungal biomass is higher,
while bacteriophages dominate viral consortia in marine and
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freshwater ecosystems (Farnell-Jackson and Ward, 2003; Jackson
and Jackson, 2008; Kimura et al., 2008). Concerning the peatland
metaviromes, among the sequences that matched viral genome
databases, similar proportions of sequences were assigned
to eukaryotic viruses, such as Circoviridae and Sclerophtora
macrospora virus A-like viruses, and to prokaryotic viruses,
such as Caudovirales or Microviridae. However, due to the vast
majority of sequences being unassigned and to the high variability
of viral genes, it remains impossible to determine whether
viral communities in peatlands are dominated by prokaryote or
eukaryote infecting viruses.

Successional Patterns of Viral and

Microbial Communities

Ecological integration of the viral compartment into ecosystem
functioning is mainly obtained through approaches combining
virome sequences and viral abundance analysis (Wommack et al.,
2015). In order to characterize viral ecology of Sphagnum-
dominated peatlands, we monitored seasonal abundance and
diversity of viruses and prokaryotes at two different depths of fen
and bog and attempted to identify whether these were correlated
to abiotic factors. Fens and bogs are development stages of
peatlands that differ fundamentally in vegetation (Sphagnum
and vascular plants) and associated physico-chemistry (Rydin
and Jeglum, 2006). Thus, as already observed for microbial
diversity (Opelt et al., 2007; Bragina et al., 2012), we hypothesized
that peatland development stage and associated Sphagnum
habitat would be the major driver in the distribution of virus
and prokaryote abundance and diversity. Our results confirm
that the physico-chemical conditions and the structure of the
prokaryotic communities differ between the 2 dynamic stages,
but, surprisingly, we did not observe any significant difference
in VPA, PA, and viral diversity between fen and bog. The
viral communities showed no systematic spatial trend and high
variability even within replicates.

While we did not detect any significant spatial differences, we
observed a significant seasonal fluctuation of virus diversity and
abundance. For both fen and bog, VPA and PA (log-transformed
data) were strongly correlated with the seasonal fluctuations of
water-table, DOC, conductivity and sulfate: i.e., VPA and PA were
higher when water-table was low and DOC and sulfate were high
(Supplementary Figure S1). DOC has been recognized as a key
factor in the C-balance of Sphagnum-dominated peatlands (Billett
etal.,, 2004) and its patterns are driven by both biological activity
(microbial production and consumption, plant exudation) and
abiotic variables such temperature, water-table level or acidity
(Clark et al., 2009) with seasonal fluctuations as a consequence
(Moore, 1987). While the pH is recognized as an integrated
physico-chemical variable, we did not register strong influence
on PA and VPA. The increased pH observed during June and
July in the fen is potentially due to photosynthetic activity with
strong assimilation of dissolved inorganic carbon by microalgae,
which significantly develop in submerged Sphagnum-fen at the
beginning of summer (Gilbert et al., 1998). As viral activity
is dependent on bacterial production (Middelboe, 2000), the
correlations between DOC and VPA and PA suggest a net

production of DOC with increasing microbial activity including
viral lysis. DOC concentrations also depend on temperature
and water flows, which play a key role in the production
and redistribution of carbon in the peat (Waddington and
Roulet, 1997; Clark et al, 2009), the two factors interacting
during drawdown and flooding periods. However, we did not
evidence a clear combination of DOC and temperature. The
fluctuations of the water-table depend largely on hydrologic
inputs that are rainfall in the bog and mainly runoff and
groundwater inflow in the fen, which occur at the yearly scale
(seasons) and at a short-time scale (episodic events). Sulfate also
interacts with DOC concentrations, especially during drought
periods when significant production of sulfate may increase peat
acidification and ionic strength (Clark et al., 2009). In our study,
sulfate concentrations were significantly higher during water-
table drawdowns and were positively linked to DOC. In addition,
we could not show whether the production of sulfate was
linked to nitrate through microbial sulfur oxidation as already
demonstrated in peatlands (Burgin and Hamilton, 2008). Nitrate
seems to play a key role only during summer in the fen (see
component 2 of the ACP), a dynamic stage in which nitrogen
mineralization significantly occurs at this season (Francez and
Loiseau, 1999). Our results suggest that viruses and prokaryotes
are more abundant at the lower surface layer regardless of
peatland development stage. This is in accordance with a previous
study concerning prokaryote abundance (Dedysh et al., 2006)
and potentially due to more buffered temperature and water-table
fluctuations at the lower layer providing more stable conditions.
Altogether, these results indicate that seasonal changes in
temperature and precipitations (allogenic variables) influence PA
and VPA via water-table fluctuations and consequently nutrient
concentrations with larger effects at the upper than at the lower
layer.

Comparisons of metaviromes with metagenomes showed that
temporal variations are more influential than differences in
peatland habitat in structuring viral communities. There was
a particularly substantial shift in sequence composition from
spring to autumn with distinct patterns of composition and
abundance, suggesting the existence of ecological succession of
viral communities at the seasonal scale. This pattern appears to
be consistent inter-annually, with metaviromes sampled about a
year apart (June 2011 and March 2012) clustering together. These
findings suggest, for the first time, that a cyclic succession in
peatlands affects free-occurring viruses at the community level.
Recent studies on marine ecosystems also described seasonal
fluctuations of viral communities at the ocean surface (Chow and
Fuhrman, 2012; Pagarete et al., 2013). In these studies, which
focused on the diversity of a viral gene marker, seasonality was
mainly characterized by fluctuations of dominant viral types
while in our study, seasonality was associated with a general
change in the composition of viral communities.

Viruses and Carbon Cycling in

Sphagnum-Dominated Peatlands
Viruses are believed to be key components of the carbon cycle in
many ecosystems, both altering carbon fluxes and contributing
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to C-redistribution through bacterial lysis (Fuhrman, 1999;
Middelboe and Lyck, 2002; Ankrah et al., 2014). Despite recent
analyses of peatland microbial food-webs (Lamentowicz et al.,
2013), the significance of viruses in the functioning of Sphagnum-
dominated peatlands remains unknown.

In viral ecology, VPR is generally considered as an indicator
of the bacterial hosts metabolic state (Williamson et al., 2005;
Kimura et al., 2008) because viral burst size, and thus viral
abundance is positively correlated with microbial growth rate
(Middelboe, 2000). In the studied peatland, the VPR was low
and did not differ between fen and bog, despite the differences
between dead organic matter produced in the two dynamic
stages, in relation to the dominant Sphagnum species (Francez,
1995; Thormann et al., 2003). The low VPR compared with
other ecosystems is likely due to lower metabolic activity of
microorganisms, that is in accordance with the functioning of
Sphagnum-dominated peatlands where decomposition is slowed
down due to constraining conditions (Rydin and Jeglum, 2006;
Artz, 2009) and the presence of a significant proportion of
dormant cells in the community (Dedysh et al., 2006; Pankratov
etal., 2011).

We detected a VPR peak in June 2011, just before a broad
modification of viral community composition in fen and bog.
Viruses interact with their hosts through at least two main
strategies: the lytic and the lysogenic life cycles, the latter is
believed to be favored when microbial activity is low (Danovaro
et al., 2002; Payet and Suttle, 2013; Sime-Ngando, 2014). The
change in the viral community composition in summer could
result from a seasonal shift in the active part of the microbial
community and related C-cycling processes via decomposition
that show seasonal patterns (Basiliko et al., 2005; Sun et al., 2012).
This illustrates a transition from lysogenic to lytic strategies of the
viruses infecting the newly active prokaryotes. This hypothesis
is supported by the low PA associated with the VPR peak in
June 2011, which could result from virus-mediated bacterial
lysis, and by the similarities between spring metagenomes (June)
and summer and autumn viromes, suggesting the presence of
prophages in the microbial genomes in June, that were later
released and detected in the metaviromes in August and October.

CONCLUSION

We applied an integrated approach linking virome sequence
analysis, viral particle and prokaryote abundance, physico-
chemical parameters and metagenome-virome comparison to get
insights into the ecological functioning of the viral community
in peatlands. We found that viral community abundance and
diversity in Sphagnum-dominated peatlands express an ecological
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