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A commentary on

Chaophilic or chaotolerant fungi: a new category of extremophiles?
by Zajc J., DZeroski S., Kocev D., Oren A., Sonjak S., Tkavc R., et al. (2014). Front. Microbiol. 5:708.
doi: 10.3389/fmicb.2014.00708

The known distribution of microbial life on Earth is expanding thanks to improvements in
technologies that enable contamination-free sampling of previously inaccessible environments, and
the detection and cultivation of microbes from these locations (Lever et al., 2013; Priscu et al.,
2013; Santl-Temkiv et al., 2013; Inagaki et al., 2015). As novel Bacteria, Archaea, and microbial
eukaryotes are discovered, and even familiar organisms reveal unknown adaptations to extreme
temperature, pressure, radiation, pH, chemical toxicity, desiccation, or osmotic stress, notions of
habitability have to be revised. In many cases the “biotic fringe,” i.e., the boundary separating
environments that sustain life from environments believed to exclusively host abiotic processes
(Shock, 2000), has to be adjusted to include new places that were previously considered devoid
of life.

Parallel to knowledge on the distribution of life, the understanding of mechanisms determining
where life can exist is transforming. Sustenance of life in any given locale requires that organisms
conserve sufficient power to repair the inevitable biomolecule damage that is induced by their
environment over time. This basal power requirement (BPR; Hoehler and Jorgensen, 2013)
likely varies under different physicochemical conditions. For instance, rates of biomolecule
damage on the monomeric (e.g., racemization, depurination) to macromolecular level (e.g.,
hydrolysis, changes to secondary structure) are a function of temperature. Despite adaptations
that result in increased heat stability of their cellular building blocks, organisms adapted to hot
environments have to spend orders of magnitude more power on the repair of biomolecules
from temperature-related damage than their counterparts living at moderate temperatures (Lever
et al,, 2015). Comparable increases in BPR likely also result under other physiological extremes,
e.g., high pressure, radiation, desiccation, pH, osmotic stress, chemical toxicity, and combinations
thereof.

In recent decades, the understanding of how chemical toxicity affects organisms has
become more nuanced. While certain toxins alter biomolecules on an intramolecular level,
e.g., through oxidation or covalent bonding, others modify the macromolecular structure.
In the latter category is a group called “chaotropes” (Greek chaos = disorder, tropy =
behavior). Chaotropic compounds destabilize the two-dimensional structure and folding
patterns of biomolecules by replacing water from the hydration shell and eliminating
hydrogen bonds, or by penetrating into hydrophobic parts thereby causing swelling or
solubilization of these parts (reviewed in Ball and Hallsworth, 2015). These properties make
concentrated solutions with chaotropic compounds, e.g., guanidine chloride or urea, suitable for
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biochemical and molecular biological applications requiring
microbial cell lysis, protein or nucleic acid extraction, and/or
denaturation. At sublethal concentrations, the damaging effects
of chaotropes on biomolecules result in higher rates of
biomolecule repair and increased synthesis and accumulation
of compounds that stabilize biomolecules and thereby offset
the negative effects of chaotropes—socalled “kosmotropes.” In
nature, the maximum concentration of chaotropes, e.g., MgCl,
or CaCl,, that is tolerated by living organisms is thus to some
extent linked to the concentration of compatible kosmotropes,
e.g., NaCl (Oren, 1983).

Besides inducing stress, chaotropic compounds also have
important beneficial effects on microorganisms. Psychrophilic
fungi and fungi in NaCl-rich environments produce the
chaotropic compound glycerol to increase biomolecule flexibility
at low temperature and to shield enzymes from the damaging
kosmotrope Na%t, respectively, (Albertyn et al, 1994; Chin
et al, 2010). Fungi inhabiting brines in sea ice and dry
soils may also produce chaotropic sugars and sugar alcohols
as compatible solutes to concentrated kosmotropes (Gunde-
Cimerman et al., 2003; Rummel et al., 2014). Research on
the Dead Sea, pioneered by Benjamin Elazari Volcani 80
years ago (Wilkansky, 1936), has shown that blooms of the
dominant phytoplankton (Dunaliella spp.) occur only after
temporary salinity decreases caused by winter floods (Oren,
1993). Dunaliella blooms typically overlap with blooms of
halophilic Archaea, in which the chaotrope glycerol, produced
by Dunaliella as an osmo-protectant, serves as a key energy
substrate for Archaea (Oren, 1995). Environments with high
salinities, low moisture content, or temperatures below the
freezing point of water cover vast areas on Earth—and are widely
inhabited by microorganisms. This suggests an important role for
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