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Candida albicans adaptation to the host requires a profound reprogramming of
the fungal transcriptome as compared to in vitro laboratory conditions. A detailed
knowledge of the C. albicans transcriptome during the infection process is necessary in
order to understand which of the fungal genes are important for host adaptation. Such
genes could be thought of as potential targets for antifungal therapy. The acquisition
of the C. albicans transcriptome is, however, technically challenging due to the low
proportion of fungal RNA in host tissues. Two emerging technologies were used recently
to circumvent this problem. One consists of the detection of low abundance fungal RNA
using capture and reporter gene probes which is followed by emission and quantification
of resulting fluorescent signals (nanoString). The other is based first on the capture of
fungal RNA by short biotinylated oligonucleotide baits covering the C. albicans ORFome
permitting fungal RNA purification. Next, the enriched fungal RNA is amplified and
subjected to RNA sequencing (RNA-seq). Here we detail these two transcriptome
approaches and discuss their advantages and limitations and future perspectives in
microbial transcriptomics from host material.
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INTRODUCTION

Fungal pathogens of mammals are able to live and proliferate in a wide range of host body
sites including skin surfaces and mucosa, but also internal organs. In order to successfully
colonize or infect tissues offering such different conditions, pathogenic fungi need effective
adaptation mechanisms. Adaptive processes are controlled by transcriptional programs and their
understanding can provide critical clues in fungal pathogenesis (Odds, 1988; Pfaller and Diekema,
2010).

Fungal transcriptomics in the host has already been addressed in different studies in several
pathogens including Cryptococcus neoformans and Aspergillus fumigatus (McDonagh et al., 2008;
Chen et al., 2014). These two fungal species are important pathogens causing high mortality in
immune-compromised patients (Brown et al., 2012). These studies used microarrays and RNA
sequencing (RNA-seq) approaches. In C. neoformans, the transcriptome in the host was performed
from cerebrospinal fluid (CSF) from two AIDS patients with cryptococcal meningitis prior to
antifungal therapy. The RNA was extracted from fungal cells obtained after CSF centrifugation that
corresponded to 10°-10° cells. Due to this enrichment step, the RNA extraction yielded almost only
fungal material which could be further processed for direct RNA-seq analysis. The authors could
analyze the profile of about 97% of all C. neoformans genes (from a total of about 6800 genes).
Some genes were identified as significantly upregulated in vivo as compared to in vitro conditions
and were genes previously recognized as contributing to pathogenicity. For example, genes with
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known stress response functions, such as RIMI101 (a pH-
dependent regulator), ENAI (an ATPase transporter gene) and
CFOI (a ferroxidase) as well as several transporters were
upregulated in host samples (Chen et al., 2014). In A. fumigatus,
the transcriptome in the host was approached using experimental
nasal instillation to result in pulmonary infection in mice
(McDonagh et al., 2008; Bertuzzi et al., 2014). A. fumigatus
cells were recovered and enriched from bronchoalveolar lavage
(BAL) samples from which RNA was directly extracted.
Microarray hybridizations were carried out after amplification
of A. fumigatus RNA. This approach allowed the resolution of
95% of the A. fumigatus genes (from a total of about 9000
genes; McDonagh et al., 2008). The in vivo transcriptional
approaches with A. fumigatus allowed to perceive iron limitation,
alkaline stress and nutrient adaptation as important host-
dependent stresses during early stage A. fumigatus infection.
They also revealed a biased distribution of host-response genes
in subtelomeric regions of chromosomes (McDonagh et al., 2008;
Bertuzzi et al., 2014). In a review published by Cairns et al. (2010),
C. neoformans and A. fumigatus data were compared with each
other to conclude about a high degree of convergence between
the in vivo transcriptional data from the two pathogens. Even
though the in vivo conditions were quite different between the
two experimental systems, carbon metabolism was remarkably
shifted to the glyoxylate cycle in the two fungal pathogens (Cairns
etal., 2010).

One of the most common fungal pathogens is
Candida albicans, which can cause systemic infections in
immunocompromised patients with mortality rates of around
50% (Odds, 1988; Pfaller and Diekema, 2010), and it is a
great example of a microorganism with remarkable adaptation
capabilities. Some studies have attempted to characterize the
transcriptional response of C. albicans during the infection
process. On the opposite to C. neoformans and A. fumigatus cells
which can be collected from host fluids to significant numbers,
C. albicans sampling from the host is more problematic since
C. albicans cells in the host are associated to host tissues or
embedded in organs. This motivated in vitro transcriptional
profile experiments in which C. albicans growth conditions
can mimic stresses encountered by the fungus within its host
(see Table 1 for details of significant studies). Alternatively,
other studies have co-cultured C. albicans with mammalian
cells or tissue cultures to obtain transcript profiles reflecting
the adaptation of this fungal pathogen to different host cell
types (see Table 1). In these conditions, the recovery and
enrichment of C. albicans cells is not technically difficult. These
data may partially reflect the real gene expression landscape of
C. albicans in the host. It is now understood that transcriptional
networks can be shaped by different profiles between in vitro and
in vivo experiments, thus highlighting the value of conducting
such studies directly during infection (Fanning et al., 2012;
Xu et al, 2015). For example, there is only one commonly
regulated transcription factor (SFUI, which is involved in iron
homeostasis) between the in vitro and in vivo response to
caspofungin, although 18 and 13 transcription factors genes are
each upregulated by caspofungin in vivo and in vitro, respectively
(Xu et al,, 2015). Furthermore, the exploration of transcriptional

data from in vivo conditions and their interpretation for
biological relevance depends to some extent on the type of
applied reference conditions (in most cases logarithmic growth
in vitro; Cairns et al., 2010).

Even though it is technically challenging, several
transcriptional studies have been performed on mice organs
after systemic infection with C. albicans (Andes et al., 2005;
Thewes et al., 2007), or mice feces after GI-infection (Rosenbach
etal., 2010), as well as on biofilms grown on bloodstream-placed
devices (Nett et al., 2009; see Table 2 for details of significant
studies). The different attempts to resolve the C. albicans
transcriptome in vivo have turned out to be a great challenge
for researchers since fungal RNA ratios in recovered infected
organs were very low as compared to host RNA. Low fungal
RNA ratios in transcript profile experiments that use microarray
compromise data quality due the low signal/noise ratio. Likewise,
when using RNA-seq approaches, the number of fungal reads
may be too low for a comprehensive coverage of the fungal
ORFome.

Up to now, different strategies were developed to overcome
this problem, including isolation of fungal cells prior to
RNA extraction (Andes et al., 2005), or specific fungal RNA
amplification post-RNA extraction (Thewes et al., 2007; Table 2).
Enrichment of cells before RNA extraction exposed them
to environmental changes before stopping transcription and
RNA degradation, thus potentially modifying the observed
transcriptional response (Andes et al., 2005). RNA amplification
may be biased by non-linear amplification of fungal RNA because
of the presence of large amounts of host RNA (Thewes et al.,
2007). Alternative animal models have also been used such as
rabbits (Walker et al., 2009) and zebrafish (Chen et al., 2013) in
order to recover higher fungal biomass and to be able to perform
direct transcript profiling analyses on fungal RNA.

Most of the studies mentioned so far used microarrays
to measure C. albicans transcriptional activity, which is a
method with relatively low sensitivity in quantifying the absolute
expression values and in the detection of low abundance genes
(Draghici et al., 2006). With more recent technologies such as
RNA-seq, the detection threshold of non-aboundant transcripts
has been decreased as compared to microarrays (Seqc/Maqc-
III-Consortium, 2014). RNA-seq is based on established high-
throughput DNA sequencing technologies that are now mainly
implemented in Illumina sequencing instruments that produce
high read numbers (10°-107 per sample). RNA-seq has been
used in several genome-wide C. albicans transcriptional studies
in vitro (Bruno et al, 2010; Dhamgaye et al, 2012; Hnisz
et al., 2012) or with C. albicans-infected mammalian cells with
different resolutions (Table 1; Tierney et al., 2012; Liu et al,
2015). So far, only two studies have attempted the analysis of
the C. albicans transcriptome by RNA-seq directly from host
infections (Bruno et al., 2015; Liu et al., 2015). These reports
used either infected human samples or samples from mice
systemically infected with C. albicans. However, these studies
were confronted with the low fungal transcripts proportion in
the total extracted RNA. These samples had limited sequencing
depth, thus resulting in the detection of a small number of highly
expressed genes only.
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TABLE 1 | Representative in vitro and ex-vivo transcriptomic analysis performed with Candida Albicans.

In vitro condition Ex vivo condition

Sampling time points

Expression analysis

Number of
regulated genes?

Reference

Shift to serum at 37°C 30 min, 6 h Microarray (6580 ORF) 742 Nantel et al., 2002
Heat stress, osmotic 10, 30, 60 min Microarray (6580 ORF) 972 Enjalbert et al., 2003
stress, oxidative stress
pH shift (pH 4 vs. pH 8) 4h Microarray (6175 ORF) 1084 Bensen et al., 2004
Biofilm formation 24,48,72h Microarray (56907 ORF) 748-856 Garcia-Sanchez et al., 2004
Nitric oxide exposure 10, 40, 70, 120 min Microarray (6550 ORF) 131 Hromatka et al., 2005
Tetracycline-dependent 3,10h Microarray (6346 ORF) 238 Carlisle and Kadosh, 2013
UMEB6 expression
Low vs. high iron 5h Microarray (6111 ORF) 521 Chen and Noble, 2012
Spider medium 8h nanoString (293 ORF) NAP Finkel et al., 2012
Human blood 10, 20, 30, 60 min Membrane arrays (2002 ORF) 640 Fradin et al., 2003
Human Blood fractions 30 min Microarray (6039 ORF) 1518 Fradin et al., 2005
(PMN, MNC, Plasma)
Human neutrophils, 60, 80 min Microarray (6550 ORF) 246 Rubin-Bejerano et al., 2003
monocytes
Murine macropahges 1,6h Microarray (7600 ORF) 545 Lorenz et al., 2004
Reconstituted human oral 1,3,6,12,24 h Microarray (6039 ORF) 164 (upregulated)® Zakikhany et al., 2007
epithelium
Reconstituted human oral 30 min Microarray (6320 ORF) 268 Spiering et al., 2010
epithelium
Perfused pig liver 12h Microarray (6039 ORF) 63 Thewes et al., 2007
Human oral epithelial cells 20, 60, 180 min Microarray (6039 ORF) 607 Wachtler et al., 2011
Murine dendritic cells 30, 60, 90, 120 min RNA-seq 545 Tierney et al., 2012
Human epithelial cells 45, 90, 180 min Microarray (6266 ORF) 44-242 Park et al., 2009
Human endothelial cells 45, 90, 180 min Microarray (6266 ORF) 54-63 Park et al., 2009
Human endothelial cells 1,5,5,8h RNA-seq 15-31 Liu et al., 2015
Human epithelial cell 1,5,5,8h RNA-seq 21-63 Liu et al., 2015
Include genes that are >2-fold up- and down-regulated.
PNA, not available.
°Only upregulated genes were available.
TABLE 2 | Representative in vivo transcriptomic analysis performed with C. albicans.
Host Route of Time points  Organ/tissue/ Expression analysis Nucleic acids Number of Reference
infection device amplification regulated genes?
Human NAP NA Oral cavity Microarray (6039 ORF) No 189 (upregulated) Zakikhany et al., 2007
Neutropenic IV infection® 6,9,15h Kidneys Microarray (6737 ORF) No 652 Andes et al., 2005
mice
Immuno OP infection® 1, 5 days Tongue nanoString (134 ORF) No 65 (vs. Spider Fanning et al., 2012
suppressed medium)
mice
Mice IP infection® 0.5,8,5h IP space Microarray (6039 ORF) Yes 476 Thewes et al., 2007
Antibiotic- Gl infectionf 3 days Gl tract (cecum)  Microarray (6333 ORF) No 440 Rosenbach et al., 2010
treated
mice
Mice Central venous 12,24 h Catheter Microarray (6737 ORF) No 545 (12 h) Nett et al., 2009
catheter 1034 (24 h)
Rabbit IV infection 3 days Kidneys Microarrays (6580 ORF) No 108 Walker et al., 2009
Zebra fish IP infection 0.5-18 h Whole fish Microarray (6205 ORF) No 120 (0.5-2 h) Chen et al., 2013
Mice IP infection 48 h IP space nanoString (145 ORF) No NA Cheng et al., 2013

8nclude genes that are >2-fold up- and down-regulated.
PNA, not available.

CIntravenous infection.

d0ro-pharyngeal infection.

®Intra-peritoneal infection.

fGastro-intestinal infection.
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FIGURE 1 | Workflow of the nanoString strategy. Capture probes are bound to biotin and reporter probes consist of four different fluorophores that are arranged
at six different positions, thus providing a specific fluorescent signature for each probe. After mRNA hybridization and removal of excess unbound material, hybrid
molecules are fixed onto a surface using electrical current which will orient all molecules. Sequential reading with a fluorescent source provides signal signatures for
each specific mRNA in a quantitative manner. Adapted from Fortina and Surrey (2008).

probes,

NOVEL APPROACHES IN FUNGAL
TRANSCRIPTOME PROFILING IN THE
HOST

Novel approaches to enable transcript profiling directly from host
samples have emerged recently. The first technology, also called
“nanoString” (Geiss et al., 2008), consists upon two key steps
(Figure 1). Briefly, two probes are specifically designed for each
target gene. One probe, called the capture-probe, is linked to
biotin and helps to immobilize the molecules of interest onto a

counting stand. The second probe is target-specific and is called
the reporter probe. This probe is made of six fluorochromes of
four different colors, defining a fluorochrome code specific to
each target molecule. This color code confers the technique a
very high sensitivity and enables the analysis of quantity-limited
biological samples. The mRNAs of selected genes can hybridize
to both their corresponding capture-probe and the reporter
probes, which are both in excess in the reaction liquid. The main
interest of this detection method is that it is direct and does not
require linear (array) or exponential (PCR) amplifications. The
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method provides simultaneous digital readouts of the relative
abundance of the selected mRNA species within a sample. The
restricted number of sample manipulation steps together with the
absence of enzymatic reaction (in most cases) allows precise and
physiologically correct quantifications from starting material.
The nanoString technology was adapted to C. albicans and
allowed the fungal transcription profiling on mice samples
containing less than 0,1% of C. albicans RNA (Fanning et al.,
2012). Other studies have used the nanoString technology but
targeting a restricted number of C. albicans genes (248 out
of a total of 6218 ORFs) from host samples originating from
systemic and intra-peritoneal candidiasis in animal models
(Finkel et al., 2012; Cheng et al., 2013; Xu et al, 2015).
The 248 genes comprised environmentally responsive genes
chosen from published genome-wide datasets. A second panel

of C. albicans gene targets was based on the entire set of
C. albicans transcription factors (231; Xu et al., 2015). In addition,
Chung et al. (2014) reported the use of nanoString for analysis
of A. fumigatus expression from an in vivo murine model of
invasive pulmonary aspergillosis. Here the authors used a set of
60 different probes only (Chung et al., 2014). There is no doubt
that nanoString is a powerful technology with high multiplexing
capability and which overcomes the problem of low fungus/host
RNA ratio. Still, this technology is provided by a single supplier,
it is limited to a maximal number of target genes (800) and thus
cannot yield a comprehensive transcriptional profile (Geiss et al.,
2008).

Another technology that enables specific enrichment of a
microbial transcriptome in a host is the bait capture method
(SureSelect, Agilent), whose principle is outlined in Figure 2. This
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FIGURE 2 | Workflow of the mRNA enrichment strategy using the SureSelect technology. The technology consists of capturing the mRNAs of interest out of
the population of total RNA molecules transcribed from mixed genomes. A library of biotinylated oligonucleotides (corresponding to an ORFome and consisting of
overlapping oligonucleotides for each gene) is hybridized in a solution with a sample (cDNA from total RNA). Biotylinated RNA-cDNA hybrids can be selectively
captured with magnetic streptavidin-coated beads. After digestion of the biotinylated RNA baits, the remaining cDNA can be sequenced by high throughput
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genes regulated at early time points in Xu et al. (2015) and Amorim-Vaz et al. (2015b) was 148 and 1114, respectively. R2: R squared Pearson correlation coefficient,

method was originally used to analyze the human exome (Bowne
et al, 2011; Diaz-Horta et al., 2012; McDonald et al., 2012;
Chilamakuri et al., 2014) and consists of capturing the sequences
of interest out of the population of total RNA molecules
transcribed from the whole human genome. The hybridization
is carried out in a solution containing a library of biotinylated
oligonucleotides corresponding to the human exome and the
sample (cDNA from total RNA). The biotylinated RNA-cDNA
hybrids are next selectively captured using magnetic streptavidin
beads. After extensive washing steps, the remaining cDNAs can
be released after digestion of the biotinylated RNA baits and are
further processed for deep sequencing. We have recently adapted
this technology to C. albicans, by designing oligonucleotides
complementary to the ORFome of this fungus (Amorim-Vaz
et al, 2015b). Using an online accessible platform (https://
earray.chem.agilent.com/earray/), the design of biotinylated
oligonucleotides can be undertaken and customized. A total of
55,342 bait probes were designed to cover 6,094 C. albicans ORFs.
Due to cost limitations, the first 250 nucleotides of each gene
were not covered in the bait design, resulting in an average of

nine probes for each ORF. The use of this capture system on
RNA obtained from infected host tissues resulted in enrichments
in the proportion of C. albicans transcripts of more than 500-
fold and in RNA-seq libraries containing more than 50% of
fungal transcripts. To verify that neither this enrichment nor
the predominating background of host material introduced a
bias in the results, a simple validation was carried out. RNA
from C. albicans was mixed with host RNA (1% of C. albicans,
99% of uninfected host). This spiked RNA was next subjected
to enrichment with the biotinylated bait system. The results
obtained from sequencing these samples were compared to those
of sequencing the same C. albicans RNA without the presence
of host RNA and without enrichment. Using this approach, we
were able to verify that there was no bias for 97% of the genes.
Therefore, the relative amount of each gene was the same whether
the samples were subjected to the enrichment procedures or not.
Moreover, a machine learning approach helped to delimitate the
necessary features for the baits in order to efficiently capture their
target genes. Such information will be useful for future designs of
bait libraries, either targeting C. albicans or other organisms.

Frontiers in Microbiology | www.frontiersin.org

January 2016 | Volume 6 | Article 1571


https://earray.chem.agilent.com/earray/
https://earray.chem.agilent.com/earray/
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive

Amorim-Vaz and Sanglard

Fungal Transcriptomics from the Host

This enrichment method allowed RNA-sequencing of
C. albicans from infected mouse kidneys, after 16 and 48 h of
infection, and from infected Galleria mellonella larvae, 2 and
24 h post-infection. These samples revealed a high resolution
transcriptome, showing the expression levels of over 80%
of all C. albicans genes, constituting a huge improvement
in resolution relatively to previous in vivo transcriptional
analyses of this microorganism. Over 1000 genes were found
to be statistically up- or down-regulated in vivo relatively
to in vitro when performing a meta-analysis that identified
genes commonly regulated in the four different conditions.
Several functions were enriched among these genes, including
some typically associated with virulence, such as adhesion,
iron homeostasis, stress response, response to starvation,
and biofilm formation. On the other hand, such detailed
landscape of the C. albicans gene expression profile allowed
the identification of a large number of genes that were so
far ignored to participate in the process of host invasion and
infection, and these alone will be targets of investigation for years
to come.

The two models of infection, mouse and insect larvae, elicited
surprisingly similar transcriptional responses from C. albicans,
highlighting the adequation of this insect model to study
C. albicans virulence. These data are consistent with studies
that revealed a good correlation between C. albicans virulence
in mice invasive models and the insect larvae (Brennan et al.,
2002; Amorim-Vaz et al,, 2015a). Unfortunately, the libraries
enriched for C. albicans cannot be used to analyze the host
transcriptome without a non-negligible bias. Still, dual RNA-seq
of host and pathogen can be performed on the same RNA sample,
if both a non-enriched and an enriched library are prepared and
sequenced.

Taking datasets produced from both technologies analyzing
C. albicans systemic infection in mice, we compared sets of
C. albicans genes that were common between both studies and
estimated the expression levels as compared to in vitro grown
cells. We considered only early infection times of both studies for
the comparison and only genes that were significantly regulated
as compared to in vitro conditions. With a set of 56 genes
in common between both studies, the data showed a high
correlation (R%: 0.8) between observed gene expression levels
(Figure 3). This high correlation in gene expression profile is
remarkable, given the different experimental conditions between
both studies (choice of time points, choice of mice strain) and
the different analytical approaches taken. Among the genes that
were commonly upregulated in both data sets, genes relevant for
C. albicans pathogenesis can be identified including: (i) HWPI
(hyphal specific protein involved in adhesion to epithelial cells)
and ALS3 (adhesin involved in the adherence of C. albicans to
endo- and epithelial cells), (ii) ZRTI and PRAI (zinc transporter
and zinc binding protein important for zinc acquisition of
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