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Salmonella enterica serovar Pullorum (S. pullorum) causes pullorum disease in poultry
and results in great economic losses to the poultry industry. Although an eradication
program has been successfully performed in some countries, it remains a major threat to
countries with poor poultry disease surveillance. Currently there are no effective control
measures for pullorum disease except eradication. In particular, the pathogenesis of
S. pullorum infection is still largely unknown. Here we identified bacterioferritin (Bfr)
as a major antigen of S. pullorum to elicit a humoral immune response. Furthermore,
we demonstrate that Bfr induces activation of IFN-β promoter and mRNA expression
in DF-1 cells, and that the amino acids 1–50 form a critical domain involved in IFN-β
expression. Moreover, we found that the p38 MAPK signaling pathway was essential for
Bfr-induced IFN-β expression. Importantly, S. pullorum-induced IFN-β expression was
totally abolished by deficiency of Bfr in the bacteria, indicating that Bfr plays a critical
role in S. pullorum induced IFN-β expression in DF-1 cells. Our findings provide new
insights into the molecular mechanisms of the host response to S. pullorum infection.
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INTRODUCTION

Pullorum disease, an acute systemic disease commonly seen in young birds, is caused by Salmonella
enterica serovar Pullorum. The clinical signs of pullorum disease are characterized by anorexia,
diarrhea, dehydration, weakness and high mortality in young chicks, but this disease usually
shows a persistent infection and causes decreased egg production and diarrhea in adult fowls
(Shivaprasad, 2000). Pullorum disease is basically controlled in Europe and North America, but
it still occurs in many countries such as Brazil, Argentina, India, and China, leading to severe
economic losses (Barrow and Freitas, 2011; Barrow et al., 2012). Salmonella spp. belongs to the
Enterobacteriaceae family. Salmonella is a Gram-negative and facultative intracellular pathogen
which, depending on the serotype and host, can cause diseases ranging from gastroenteritis
to typhoid fever (Marcus et al., 2000). S. pullorum, currently belonging to biovars of serovar
Gallinarum within serogroup D, has identical somatic antigens (O1, O9, O12) and no flagella
due to mutations in flagellar genes while its pathogenicity is restricted only to avian species
(Barrow and Freitas, 2011). The relatively high rate of accumulation of mutations in the genome of
S. pullorum suggests a rapid rate of evolution associated with the host adaptation, particularly in
the development of S. pullorum (Barrow and Freitas, 2011). During S. pullorum infection, the
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interaction of this pathogen with the immune system occurs in
three main phases, including invasion via the gastrointestinal
tract, establishment of systemic infection and induction of
cytokine expression (Chappell et al., 2009).

High titers of anti-Salmonella IgY were produced by birds
infected with S. pullorum from 5 weeks onwards and S. pullorum
was detected in splenic macrophages from 3 days to 10 weeks
postinfection (Wigley et al., 2001). It was found that approximate
1 to 2% of macrophages contained fluorescent Salmonella
bacteria in all birds examined, and dropped to less than 1%
at 5 weeks postinfection and even further at 10 weeks to less
than 0.5% of cells infected (Wigley et al., 2001), indicating that
macrophage plays a critical role in clearance of S. pullorum.
An antigen-specific T-cell response to S. pullorum was found in
birds at 5 and 9 weeks postinfection, but dropped to negligible
levels at 17 weeks postinfection (Wigley et al., 2005). The
numbers of S. pullorum bacteria recovered from the spleen,
liver, the reproductive tracts and developing eggs increased
following the fall in T-cell proliferation activity at 18 weeks
postinfection, while T-cells proliferation began to increase at
22 weeks postinfection (Wigley et al., 2005). In contrast to T-cell
response, antibody response did not decline (Wigley et al., 2005).
Like other pathogens, Salmonella infection stimulates cytokine
production. The induction of cytokines such as IL-1β, IL-8, IL-12,
IL-17, IL-18, TNF-α, and IFN-γ following Salmonella infection
of chickens have been previously reported (Withanage et al.,
2004; Berndt et al., 2007; Crhanova et al., 2011). One of the
most remarkable features of Salmonella infection is that IFN-β
was induced in fibroblasts and macrophages (Hess et al., 1989;
Robinson et al., 2012). The role of IFN-β in the response to
bacterial infection is variable, and it contributes to a variety of
beneficial and detrimental immune functions (Monroe et al.,
2010).

The iron that is acquired by the pathogenic bacterium is used
for numerous biochemical activities and any surplus iron that
is available is stored within the bacterial cell in the form of Bfr
(Ratledge, 2007). Bfr belongs to an outer membrane protein in
S. hadar as examined by a proteomic approach (Snoussi et al.,
2012). Bfr is a major iron storage protein and protects against
hydrogen peroxide toxicity, and the haeme-containing Bfr was
found exclusively in bacteria (Velayudhan et al., 2007).

Currently it is known that Bfr is a T-cell antigen that induced
a strong IFN-γ production and the proliferation of lymphocytes
(Denoel et al., 1997; Al-Mariri et al., 2002; Lee et al., 2006).
In addition, Bfr induced humoral immune response in mice
immunized with DNA vaccine encoding the Bfr or recombinant
Bfr proteins (Al-Mariri et al., 2001a,b. The antibodies against Bfr
were detected from Crohn’s disease, and 53% of Crohn’s disease
patients were positive, indicating that Bfr was a specific protein
antigen of Mycobacterium paratuberculosis (Walmsley et al.,
1996). However, little is known about the role of Bfr in innate
immune responses. DF-1, an immortal chicken embryo fibroblast
cell line, is commonly used for the research of Salmonella (Li
et al., 2006; Szmolka et al., 2015) and type I interferon (Li
et al., 2013). To gain a better understanding about the role
of Bfr in innate immune responses, we set out to determine
if Bfr induces humoral immune response in chickens and

induces type I IFN expression in S. pullorum infected DF-1
cells.

In this study, we demonstrate that Bfr is a major antigen of
S. pullorum, and Bfr induced IFN-β mRNA expression in DF-
1 cells. In addition, we show that the amino acids 1–50 form
a critical domain involved in activation of the IFN-β promoter.
Furthermore, we found that Bfr induced IFN-β expression likely
via the p38 mitogen-activated protein (MAP) Kinase signaling
transduction pathway. Importantly, we found that S. pullorum-
induced IFN-β expression was totally abolished by deficiency of
Bfr in the bacteria, indicating that Bfr plays a critical role in
S. pullorum-induced IFN-β expression in DF-1 cells.

MATERIALS AND METHODS

Bacteria and Cells
Salmonella pullorum strain 533 was obtained from China
Institute of Veterinary Drug Control (Beijing, China). Escherichia
coli DH5α and E. coli BL21 (DE3) strains were obtained from
TransGen Biotech (Beijing, China). Bacteria were grown in LB
medium. DF-1 cells were obtained from ATCC (USA), and were
cultured in DMEM supplemented with 10% fetal bovine serum
(FBS) in 5% CO2 incubator.

Reagents
Protein A/G beads were purchased from GE Healthcare (USA).
Protease inhibitor cocktail C was purchased from Yataihengxin
Company (Beijing, China). The restriction enzymes BamH I,Xho
I, and Sph I were purchased from TaKaRa (Dalian, China). The
Mops, FeCl2 and H2O2 were purchased from Solarbio Company
(Beijing, China). The Large Amount Without Endo-Toxin
Plasmid Preparation Kits and the monoclonal antibody against
GAPDH were purchased from CWBio (Beijing, China). DMEM
medium was purchased from Hyclone (USA). The jetPRIME
reagent was purchased from Polyplus-transfection (France). The
serum against S. pullorum was collected from chickens with
pullorum disease and the control serum from SPF chickens from
Beijing Agricultural University Animal Technology Company
(Beijing, China). Monoclonal antibody against His-tag fusion
protein was purchased from Abmart (Shanghai, China). Anti-
GFP monoclonal antibody, anti-p38 monoclonal antibody, and
anti-p-p38 monoclonal antibody were purchased from Santa
Cruz Biotechnology (USA). Monoclonal antibody against Bfr
(Clone ID: EU-0218), pGL3-chIFN-α-luc and pGL3-chIFN-β-luc
were obtained from CAEU Biological Company (Beijing, China).
HRP-conjugated goat-anti mouse polyclonal antibodies and
HRP-conjugated goat-anti rabbit polyclonal antibodies were
purchased from DingGuoShengWu Company (Beijing, China).
Rabbit-anti chicken polyclonal antibodies were purchased from
Bioss (Beijing, China). pET28a (+) vector was obtained from
Novagen (USA). pEGFP-N1 vector was purchased from Clontech
(USA). p38 (mitogen-activated protein kinase, MAPK) inhibitor
SB203580 and JNK inhibitor SP600125 were purchased from
Enzo Life Sciences (USA). Red homologous recombination using
the plasmids pKD46, pKD3, and pCP20 were kindly provided by
Professor Guo-Qiang Zhu (Yangzhou University, China).
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Pull-Down Assay
Salmonella pullorum was grown in LB medium. The bacterial
culture were centrifuged at 6000 × g for 5 min, and the
pellet was resuspended and lysed in pH 7.4 PBS buffer by
ultrasonic treatment. Then 50 μL of 25% protein A/G beads
were preincubated with 60 μg rabbit-anti chicken polyclonal
antibodies and 200 μL pullorum-positive serum or negative
serum as controls for 8 h at 4◦C. The mixture was washed three
times with pH7.4 PBS by centrifugation at 825 × g for 3 min
at 4◦C and the supernatant was removed after the last wash.
The rabbit-anti chicken polyclonal antibody-conjugated beads
with anti-S. pullorum antibodies mixed with the cell extract from
S. pullorum and incubated at 4◦C for 8 h. Themixture was washed
as above described. The immunoprecipitates were suspended
with 40 μL 1x SDS-PAGE loading buffer and boiled for 10 min
before resolved on 12% SDS-PAGE gel. Then the gel was stained
with Coomassie blue dye for analysis of specific bands.

Mass Spectrometric Identification of
Proteins
After separation of proteins on SDS-PAGE gel, the interesting
bands were cut out and subjected to liquid chromatography-
mass spectrometry. Briefly, the interesting peptides extracted
from gel were dissolved in 0.1% formic acid, and then separated
by a Nano-LC system (Micro-Tech Scientific, Vista, CA, USA)
equipped with a C18 reverse phase column. The peptides were
eluted using a 120 min gradients from 0 to 50% acetonitrile
in 0.1% formic acid at a constant flow rate of 400 nL/min.
Mass spectra were recorded on a 7-T Fourier transform
ion-cyclotron resonance (FTICR) mass spectrometer, Apex-Qe
(Bruker Daltonics, Bremen, Germany). Data were acquired in
data-dependent mode using ApexControl 1.0 software (Bruker
Daltonics, Bremen, Germany). Three strongest peaks of each
MS acquisition were selected for the following MS/MS analysis.
The MS/MS spectra were processed by DataAnalysis 3.4 (Bruker
Daltonics, Bremen, Germany) with S/N ≥ 4.0, and automatically
searched against IPI.RAT database (version 3.41) using the
Mascot 2.1.0 (Matrix Science, London, U.K.). The NCBI database
was used in the search.

Construction of Plasmids
The bfr gene was amplified from S. pullorum genomic DNA
by PCR using the specific primers containing BamH I in
sense and Xho I in antisense (sense: 5′-CGCGGATCCATGA
AAGGTGATGTTAAA-3′; antisense: 5′-CCG CTCGAGATC
GGTAACCTTAATTTG-3′) that were designed with reference
to the published sequence (GenBank, gene ID: 661554730),
and the PCR products were cloned into the pET28a (+).
The resulting plasmid was named pET28a-bfr. The bfr gene
was then subcloned into pEGFP-N1 vector using primers
with Xho I in sense and BamH I in antisense (sense: 5′-
CCGCTCGAGATGAAAGGTGATGTTAAA-3′; antisense: 5′-C
GCGGATCCCGATCGGTAACCTTAATT-3′) and this plasmid
was named pEGFP-bfr. Different truncated bfr segments
were subcloned into pEGFP-N1 vectors and were named Bfr
(1–50aa), Bfr (51–158aa), Bfr (101–158aa) accordingly. The

Bfr (1–50aa) plasmid was constructed using the same sense
primer as pEGFP-bfr plasmid and the antisense primer is
5′-GGATCCCGATCAATGGATTCATGGTAC-3′ containing
BamH I restriction site. The Bfr (51–158aa) and the Bfr
(101–158aa) plasmids were constructed using the same antisense
primer as pEGFP-bfr plasmid. For Bfr (51–158aa) plasmid, the
sense primer is 5′-CCGCTCGAGGAGATGAAACACGCCGAT
A-3′. For Bfr (101–158aa) plasmid, the sense primer is 5′-
CTCGAGCTACGTGAGGCAATAGCC-3′. All the sense primers
contained Xho I restriction site. All the primers were synthesized
by Sangon Company (Shanghai, China), and all the constructs
were confirmed with sequencing analysis by Huada Company
(Beijing, China).

Iron Uptake Assays
Iron uptake by rBfr was examined using SpectraMax M5
according to the method described by Timoteo et al. (2012).
Briefly, reaction of 0.5μM rBfr with 12μMFe2+ ions and 72μM
H2O2 in 0.2 M Mops buffer (pH 7) and 0.2 M NaCl, and BSA
was used as control. The iron storage capacity was determined
by plotting the OD optical density at 200–400 nm in Spectra-
Max M5.

Transfection and Reporter Gene Assays
DF-1 cells (1 × 105) were seeded on 24-well plates and cultured
overnight before transfection with pEGFP-bfr or pEGFP-
N1, together with pGL3-chIFN-β-luc (or pGL3-chIFN-α-luc)
and pRL-TK using jetPRIME reagents (Polyplus-transfection).
Twenty four hours after transfection, cell extracts were harvested,
and the luciferase activities were examined with a dual-specific
luciferase assay kit (Promega). Firefly luciferase activities were
normalized based on Renilla luciferase activities. All reporter
gene assays were repeated at least three times. Data are
represented as mean ± SD.

RNA Isolation and RT-PCR Analysis
Total RNA was prepared from DF-1 cells using a RNeasy
kit (Aidlab, China) per the manufacturer’ instruction,
and was treated with DNase I. Two μg of total RNA was
used for cDNA synthesis by reverse transcription using
RT-PCR kit (TaKaRa). The specific primers for chicken
IFN-α1 (sense: 5′-CCAGCACCTCGAGCAAT-3′; antisense: 5′-
GGCGCTGTAATCGTTGTCT-3′), IFN-β (sense: 5′-GCCTCC
AGCTCCTTCAGAATACG-3′; antisense: 5′-CTGGATCTGGTT
GAGGAGGCTGT-3′), and glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH; sense: 5′-TGCCCATCACAGCCACA
CAGAAG-3′; antisense: 5′-ACTTTCCCCACAGCCTTAGCA
G-3′) were designed with reference to previous publications
(Li et al., 2007; Abdul-Careem et al., 2008; Liu et al., 2010)
and synthesized by Sangon Company (Shanghai, China). The
real-time PCR assay was carried out with a Light Cycler 480
(Roche, USA). The PCR was performed in a 20-μL volume
containing 1 μL of cDNA, 10 μL of 2 × SYBR green Premix
Ex Taq (TaKaRa), and a 0.4 μM of each gene-specific primer.
The thermal cycling parameters were referred to the previous
study (Li et al., 2013), and they were as follows: 94◦C for 2 min;
45 cycles of 94◦C for 20 s, 55◦C for 20 s, and 72◦C for 20 s;
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and 1 cycle of 95◦C for 30 s, 60◦C for 30 s, and 95◦C for 30 s.
The final step was to obtain a melt curve for the PCR products
to determine the specificity of the amplification. All sample
reactions were carried out in triplicate on the same plate, and
the GAPDH gene was utilized as the reference gene. Expression
levels of genes were calculated relative to the expression of the
GAPDH gene and expressed as fold increase or decrease relative
to the control samples.

Inhibition of Signal Transduction
Pathways
DF-1 cells (4 × 105) were seeded on a 6-well plates and
cultured for 24 h before treatment with p38 inhibitor SB203580
(20 μM), JNK inhibitor SP600125 (20 μM), and dimethyl
sulfoxide (DMSO) as control for 1 h, and then transfected with
pEGFP-bfr or pEGFP-N1 as controls using jetPRIME reagents.
Twenty four hours after transfection, total RNA was extracted
and used for cDNA synthesis. Real-time PCR was performed to
examine the expressions of chicken IFN-β and GAPDH at an
mRNA level as above described.

Western Blot Analysis
The pET28a-bfr recombinant or empty vectors were transformed
into E. coli BL21 (DE3), and Bfr-his recombinant proteins
were expressed by 1 mM IPTG induction at 37◦C for 6 h.
One mL bacterial cells were centrifuged at 6000 × g for
5 min and the pellets were resuspended with 120 μL 1x
SDS-PAGE loading buffer and boiled for 10 min before
fractionated by electrophoresis on 12% SDS-PAGE gels, and
the resolved proteins were transferred onto PVDF membranes
(Millipore, USA). After blocking with 5% skim milk, the
membranes were probed with primary antibodies [anti-His-
tag (1:10000), pullorum-positive chicken serum (1:500), or
pullorum-negative SPF chicken serum (1:500)], followed by
incubation with HRP-conjugated goat anti-mouse IgG (1:20000;
DingGuoShengWu, China) or HRP-conjugated rabbit anti-
chicken IgY (1:5000) secondary antibodies (Bioss, China). The
blots were visualized using the ECL reagent according to
the manufacturer’s instructions (CWBio, China). For GFP-
Bfr expression analysis, cells were transfected with pEGFP-
bfr or pEGFP-N1, cells lysates were prepared and examined
with anti-GFP antibodies. For signal transduction pathways
analysis, cells were transfected with pEGFP-bfr or pEGFP-N1.
The whole cell extracts were lysed in lysis buffer (150 mM
NaCl, 5 mM EDTA, 50 mM Tris·Cl, 10% glycerin, 1% Triton
X-100) containing with 1% protease inhibitor cocktail C and
1% 20 mM phosphatase inhibitors (NaF) and examined with
Western Blot using anti-p-p38, anti-p38, anti-GFP, and anti-
GAPDH antibodies.

Generation of the Bfr-Deficient
S. pullorum
The Bfr-deficient strain was constructed by λ-Red-
mediated recombination system, according to the method
described by Datsenko and Wanner (2000). Briefly, the
specific primers (�Bfr1: 5′-ATGAAAGGTGATGTTAAAATC

ATAAATTATCTCAATAAACTATTGGGAAATGTTAGGCTGG
AGCTGCTTCG-3′; �Bfr2: 5′-TTAATGGTAACCTTAATTTGT
GATTGCAGATAATTTTGCATACCAAGTTCATATGA ATAT
CCTCCTTAG-3′), including 50-bp homology extension
from the 5′ and 3′ of the bfr gene, were designed to
amplify the chloramphenicol cassette from the template
plasmid pKD3 by PCR. The PCR products were purified and
electroporated into S. pullorum containing the pKD46 plasmid.
Recombinant bacteria S. pullorum Bfr::cat was screened and
selected on both Cm and Amp resistance LB agar plates.
Gene deletion was confirmed by PCR using the specific
primers (Bfr1: 5′-ATGAAAGGTGATGTTAAA-3′; Bfr2: 5′-
ATCGGTAACCTTAATTTG-3′). Then the Cm cassette gene
of S. pullorum Bfr::cat was excised via introducing the Flp
recombinase-expressing vector pCP20 by electroporation. The
Bfr-deficiency in parental strain was confirmed by PCR, DNA
sequencing and Western Blot.

To generate the �Bfr-complemented strain, the Bfr open-
reading frame was amplified by PCR using S. pullorum genomic
DNA with the specific primers containing BamH I and Sph
I (PBR-Bfr1: 5′-CGCGGATCCATGAAAGGTGATGTTAAA-3′;
PBR-Bfr2: 5′-ACATGCATGCTTAATCGGTAACCTTAATTTG-
3′). The expected 477 kb PCR product of bfr gene was confirmed
byDNA sequencing, and further cloned into the plasmid pBR322.
The constructed recombinant plasmid was electroporated into
the Bfr-deficient bacteria to obtain the �Bfr-complemented
strain. The restoration of Bfr in parental strains was confirmed
by PCR and Western Blot.

Infection of DF-1 Cells with Wild Type
(WT), Bfr-Deficient and Complemented
S. pullorum
DF-1 cells were infected with WT, Bfr-deficient (KO) and �Bfr-
complemented (RS) strains at an MOI of 500 or indicated doses.
Eight hours after infection, total RNA was extracted from the
infected cells and used for cDNA synthesis. Real-time PCR
was performed to examine chicken IFN-β expression as above
described.

Statistical Analysis
The significance of the differences between the treatment
group and control in the activation of promoters and mRNA
expressions (cytokine and transcription factor) was determined
by the ANOVA and Mann-Whitney accordingly.

RESULTS

Screening for the Major Antigens of
S. pullorum
Since S. pullorum infection elicits a robust humoral immune
response in chickens, we wanted to determine the major antigens
of S. pullorum responsible for the induction of specific antibodies.
We proposed that major antigens of S. pullorum could be
pulled down by specific IgY in the anti-S. pullorum Ab positive
serum. To test our hypothesis, we performed a pull-down
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assay using anti-S. pullorum Ab positive serum of chickens
and the bacterial cell extract of S. pullorum according to the
published method (Cho et al., 2013). We found that there was
an extra clear protein band in the immunoprecipitates of the
mixture of anti-S. pullorum Ab-positive serum with bacterial
cell lysate as compared to that of controls as demonstrated
by SDS-PAGE (Figure 1A), indicating that the antigens of
S. pullorum could be pulled down by anti-S. pullorum antibodies.
To analyze the amino acid sequence of this major antigen,
we cut-down the interesting protein band and performed a
mass spectrometry. As a result, the arrow-pointed band in
Figure 1A is a protein named bacterioferritin (Bfr) based
on online information from GenBank (Gene ID: 661554730;
Figure 1B). Although Bfr is known as a protein antigen of
M. paratuberculosis (Walmsley et al., 1996), our data indicate
that this protein might be an important major antigen of
S. pullorum.

To determine the antigenicity of Bfr, we cloned bfr gene from
genomic DNA of S. pullorum and expressed Bfr-his recombinant
protein using an E. coli expression system. We found that the
Bfr-his fusion protein could be detected by anti-S. pullorum
Ab positive serum of chickens but not by negative chicken
serum (Figure 1C), indicating that Bfr-his protein is of good
antigenicity. These results suggest that Bfr may serve as a major
antigen of S. pullorum.

To determine the basic function of Bfr-his(rBfr) fusion
protein, we performed the iron uptake assays with rBfr according
to the published method (Timoteo et al., 2012). We found
that the color of Fe3+ in the BSA control could be clearly
observed. In contrast, Fe3+ color was markedly reduced with
rBfr treatment (Figures 2A,B), indicating that Bfr can rapidly
uptake free Fe2+ for oxidation in the presence of H2O2 as the
oxidant. These data suggest that rBfr is a functional iron storage
protein.

Bfr Induces IFN-β Expression in DF-1
Cells
Bfr is a major iron storage protein in bacteria (Velayudhan
et al., 2007). It was reported that iron could affect innate
immune response by influencing IFN-γ mediated pathways in
macrophages (Nairz et al., 2014). This information prompted
us to examine the effect of S. pullorum Bfr on the innate
immune response in host cells. We made a pEGFP-bfr expression
construct, and transfected DF-1 cells with pEGFP-bfr or
pEGFP-N1 as control. As shown in Figure 3A, both GFP-
Bfr and GFP were expressed well in the transfected cells as
demonstrated by Western Blot using anti-GFP monoclonal
antibody. Importantly, transfection of DF-1 cells with pEGFP-bfr
markedly enhanced activation of IFN-β promoter, but not IFN-α,
as compared to that of controls (Figures 3B,C). Consistent
with this observation, the mRNA expressions of IFN-β in
pEGFP-bfr transfected cells significantly increased as compared
to that of pEGFP-N1 transfected controls, but the mRNA
expression of IFN-α was unaffected (Figures 3D,E). These results
suggest that intracellular Bfr induces IFN-β response in host
cells.

FIGURE 1 | Identification of major antigens of Salmonella pullorum by
Pull-down assay. (A) Pull-down assay was performed to indentify major
antigens using extracts of S. pullorum with anti-S. pullorum Ab positive serum
of chickens and negative serum as controls. The pull-down pellets were
examined by SDS-PAGE. (B) The arrow-pointed band was cut down and
subjected to Mass Spectrometry analysis. (C) Recognition of recombinant
His-bacterioferritin (Bfr) fusion protein by anti-S. pullorum Ab positive serum.
Expressions of recombinant His-Bfr fusion protein were detected by Western
Blot using anti-S. pullorum Ab positive serum, negative serum and anti-His
McAb as control.

Amino Acids 1–50 of Bfr are Responsible
for Inducing IFN-β Expression
To determine the domain of Bfr that is responsible for
inducing IFN-β expression, we constructed pEGFP-truncated bfrs
encoding different lengths of Bfr as indicated in Figure 4A. We
transfected DF-1 cells with the constructs and performed real-
time PCR assay with specific primers. As shown in Figures 4B,C,
transfection of cells with the vectors carrying the full-length
and amino acids 1–50 portion of Bfr significantly induced IFN-
β expression as compared to that of pEGFP-N1 transfected
controls. In contrast, the construct without the gene encoding
the amino acids 1–50 portion of Bfr failed to induce IFN-β
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FIGURE 2 | Bacterioferritin uptakes iron in vitro. (A) Reaction of 0.5 μM
rBfr with 12 μM Fe2+ ions and 72 μM H2O2 in 0.2 M Mops buffer (pH 7) and
0.2 M NaCl was carried out, and BSA was used as a control. (B) The OD
optical density was examined at 200–400 nm in SpectraMax M5.

expression. These results indicate that the amino acids 1–50 of
Bfr is a critical domain responsible for inducing IFN-β response.

Bfr-Activated p38 MAP Kinase is
Involved in IFN-β Expression
It was reported that activation of p38 MAP kinase was required
for induction of ifnb gene expression in response to bacteria in the
cytosol (O’Riordan et al., 2002). To dissect the signaling pathways
involved in Bfr-induced IFN-β expression, we treated DF-1
cells for 1 h with the inhibitors of the key signaling molecules
including p38 MAPK, JNK MAPK or DMSO as controls before
pEGFP-bfr transfection. Twenty-four hours after transfection,
real-time PCR was performed to examine the mRNA levels of
IFN-β. As shown in Figure 5A, p38 MAPK inhibitor, but not
JNKMAPK inhibitor, significantly inhibited IFN-β expression in
cells with pEGFP-bfr transfection (p < 0.001). It is well known
that the activation of p38 pathway requires phosphorylation of
p38 (Wang et al., 1997). We therefore examined whether p38
is phosphorylated during Bfr expression. We transfected DF-
1 cells with pEGFP-bfr, and examined the phosphorylation of
p38 in pEGFP-bfr transfected cells with Western Blot using
specific antibodies against p-p38, p38, and GAPDH. As a result,
p38 phosphorylation was markedly enhanced in pEGFP-bfr
transfected cells (Figures 5B–D). Taken together, these results

FIGURE 3 | Expression of Bfr induces activation of IFN-β promoter and
enhances mRNA expressions of IFN-β in DF-1 cells. (A) DF-1 cells were
transfected with pEGFP-bfr or pEGFP-N1. Twenty four hours after
transfection, cell lysates were prepared and examined with Western Blot using
anti-GFP monoclonal antibody. (B,C) DF-1 cells were transfected with
pEGFP-bfr or pEGFP-N1 as controls. Twenty-four hours after transfection, cell
lysates were prepared and activation of IFN-α and IFN-β promoters were
examined with luciferase reporter gene assays. (D,E) DF-1 cells were
transfected with pEGFP-bfr or pEGFP-N1 as controls. Twenty-four hours after
transfection, cells were collected and mRNA expressions of IFN-α and IFN-β
were examined with qRT-PCR using specific primers. The expression levels of
mRNA were calculated in relation to the expression level of GAPDH. Results
are representative of three independent experiments. Data are represented as
mean ± SD, n = 3. ∗∗∗ p < 0.001.

clearly show that Bfr-induced phosphorylation of p38 is involved
in induction of IFN-β expression. Thus the p38 MAPK pathway
is essential for Bfr-induced IFN-β expression.

Bfr Plays a Critical Role in
S. pullorum-Induced IFN-β Expression in
Cells
The fact that Bfr induced expression of IFN-β in host cells
prompted us to examine the role of Bfr in S. pullorum-induced
IFN-β response in cells. We generated a Bfr-deficient S. pullorum
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FIGURE 4 | Bacterioferritin 1–50aa is responsible for the induction of
IFN-β expression in DF-1 cells. (A) Schematic diagrams showing the
structure of full-length Bfr and truncated Bfrs. (B) DF-1 cells were transfected
with indicated amounts of pEGFP-bfr, pEGFP-truncated bfrs or pEGFP-N1 as
controls. Twenty four hours after transfection, cells were collected and mRNA
expression of IFN-β was examined with qRT-PCR using specific primers. The
expression levels of mRNA were calculated in relation to the expression level
of GAPDH. (C) Schematic diagrams showing the IFN-β-inducing domain of
Bfr. Data are represented as mean ± SD, n = 3. ∗∗∗ p < 0.001.

strain using λ-Red-mediated recombination system according to
a simple gene disruption strategy (Figure 6A) and also generated
the �Bfr-complemented strain expressing Bfr by electroporation
of Bfr-deficient S. pullorum with pBR322-bfr. As shown in
Figures 6B,C, WT and the complemented S. pullorum strains
expressed Bfr very well. In contrast, Bfr-deficient S. pullorum
had no detectable Bfr as examined by PCR and Western Blot.
These results indicate that Bfr-deficient S. pullorum strain and its
complemented strain expressing Bfr were successfully generated.

We cultured WT, Bfr-deficient and the complemented
S. pullorum strains in culture medium, and compared their
growth at 0, 6, 12, and 24 h after culture. As a result, we
did not find any difference between WT, Bfr-deficient and the
complemented S. pullorum strains in terms of their growth (data

not shown), suggesting that deficiency of Bfr in S. pullorum does
not affect the bacterial replication. We infected DF-1 cells with
WT S. pullorum at anMOI of 1, 5, 20, 100, or 500. Eight hour after
infection, the mRNA expression of IFN-β was examined with
real-time PCR assay. As shown in Figure 7A, infection of DF-1
cells with WT S. pullorum markedly induced mRNA expression
of IFN-β in cells (p < 0.001). However, WT S. pullorum-induced
IFN-β expression was completely abolished by deletion (knock-
out) of bfr gene from the bacteria (Figure 7B), indicating that Bfr
is required for S. pullorum-induced IFN-β expression. Thus, Bfr
plays a critical role in S. pullorum-induced innate response in host
cells.

DISCUSSION

Salmonella pullorum is a worldwide distributed poultry pathogen
of considerable economic importance to the poultry industry,
particularly to that of developing countries. An increasing
number of S. pullorum strains were isolated in China, and many
of these bacteria showed antimicrobial resistance (Pan et al.,
2009). This pathogen causes high mortality in young chickens
and persistent infection in adult chickens with clinical signs of
decreased egg production and diarrhea. Although the humoral
immune response against S. pullorum cannot clear the pathogens
once the bacteria intrude host cells, the specific antibodies still
play an important role in mediating phagocytosis of extracellular
bacteria by phagocytes. In particular, the examination of anti-
S. pullorum antibodies is of clinically diagnostic importance.
Thus hemagglutination assay with the whole blood of chickens
is generally performed to screen for the S. pullorum-infected
chickens in flocks. Immunoprecipitation of whole bacterial cell
lysate by antibodies against S. pullorum (Pull-down assay) is
an efficient method that allows us to identify major antigens
of the microorganism that elicit humoral immune response.
The identified antigen would help to develop new diagnostic
methods or vaccine in control of the disease (Britton et al.,
1988; Sexton et al., 1991). High titers of anti-Salmonella IgY
were produced by birds infected with S. pullorum after 5 weeks
(Wigley et al., 2001). However, little information is available
regarding the major antigen of S. pullorum. In this study, a
major antigen Bfr that elicited antibody response was identified
with a pull-down assay and Mass spectrometric method. Our
results demonstrate that recombinant Bfr can be specifically
recognized by pullorum-positive serum. Thus, Bfr-induced
antibodies probably play an important role in host response
against S. pullorum infection.

Bfr, a 17-kDa protein that was previously identified as
an outer membrane protein of S. hadar, is composed of 24
identical subunits along with the usual ferroxidase sites that
have 12 binding sites for heme iron (Wong et al., 2009; Snoussi
et al., 2012). Bfr is also the major Fe storage protein in
Salmonella (Velayudhan et al., 2007). We could observe the
color of Fe3+ from the purified Bfr-his recombinant protein
in our experiments. Inactivation of Bfr induces intracellular
free Fe concentration and exhibits increased susceptibility to
oxidative stress (Velayudhan et al., 2007). It was found that the
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FIGURE 5 | Bacterioferritin induced IFN-β expression via p38 MAP Kinase signaling pathway. (A) Effects of p38 and JNK inhibitors on Bfr-induced IFN-β
expression. DF-1 cells were transfected with indicated amounts of pEGFP-bfr or pEGFP-N1 as controls, and treated with inhibitors of p38, JNK, or DMSO as
controls for 1 h. Twenty four hours after transfection, mRNA expression of IFN-β was examined with real-time PCR. (B–D) Effects of Bfr on phosphorylation of p38.
DF-1 cells were transfected with pEGFP-bfr or pEGFP-N1 as controls, Twenty four hours after transfection, cell lysates were prepared and examined with Western
Blot for the detection of p-p38, p38, GFP, GFP-Bfr, and GAPDH. The band density of p-p38, p38 and GAPDH in normal, pEGFP-bfr or pEGFP-N1 transfected cells
in (B) was quantitated by densitometry, and the relative levels of p-p38 in (B) were calculated as follows: band density of p-p38/band density of p38 (C) or GAPDH
(D). Results are representative of three independent experiments. Data are represented as mean ± SD, n = 3. ∗∗∗ p < 0.001 and ∗ p < 0.05.
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FIGURE 6 | Generation of Bfr-deficient S. pullorum strain by Red homologous recombination. (A) Schematic diagrams showing the strategy for the deletion
of bfr gene. (B) Identification of recombinant (KO) and complemented (RS) strains by PCR. PCR was performed to examine bfr gene in WT, KO, and RS S. pullorum
strains. (C) Examination of Bfr expressions in WT, KO, and RS S. pullorum strains. Cell lysates of WT, KO, and RS S. pullorum were prepared, and Bfr expressions
were examined with Western Blot using anti-Bfr monoclonal antibody.

transcription factor SsrB controls resistance to reactive oxygen
species through Bfr in Salmonella (Brown et al., 2014). This
information suggests that Bfr is involved in regulation of iron
homeostasis and protects against hydrogen peroxide toxicity in
bacteria. H2O2 can react with Fe2+ ions via Fenton and Haber-
Weiss reactions, producing ROS (reactive oxygen species) such
as hydroxyl radical or superoxide, which are capable of damaging
most cellular components, such as nucleic acids, protein or
membrane lipids (Timoteo et al., 2012). And Bfr binds to DNA
and reduces the damage of ROS by the rapid uptake and oxidation
of free Fe2+, using H2O2 as the oxidant (Timoteo et al., 2012).
Our results demonstrate that recombinant Bfr can mediate the
rapid uptake and oxidation of free Fe2+, using H2O2 as the
oxidant. Interestingly, we also found that Bfr could induce self-
activation in a yeast two-hybrid screening and apoptosis in DF-1
cells in this study (data not shown). This information suggests
that Bfr might be a muti-functional protein.

Bacterioferritin is an important factor in bacteria, but few
reports are available regarding the cell response to Bfr. Currently
it is known that Bfr is a T-cells antigen that induces a strong
IFN-γ production and the proliferation of lymphocytes (Denoel
et al., 1997; Al-Mariri et al., 2002; Lee et al., 2006). In addition,
Bfr induced humoral immune response in mice immunized with
DNA vaccine encoding the Bfr or recombinant Bfr proteins (Al-
Mariri et al., 2001a,b). The patient sera of M. leprae could react

with Bfr, and M. paratuberculosi antigen D was identified as
Bfr (Brooks et al., 1991; Spencer et al., 2011). These findings
suggest that Bfr plays an important role in acquired immunity.
However, little is known about the role of Bfr in the innate
immune response. Our data show that Bfr not only acts as a
potent antigen inducing humoral immune response but also
as an inducer for innate immune responses (inducing IFN-
β expression), indicating that Bfr is not merely a protein for
iron storage and detoxification (Bou-Abdallah et al., 2002).
Furthermore, we found that the amino acids 1–50 of Bfr were
responsible for induction of IFN-β expression. However, Bfr did
not affect the expression of IFN-α in cells. It seems that the role
of Bfr is specific, only for induction of IFN-β expression.

Recognition of bacterial products by host surveillance system
results in transcription of the ifnb gene, and the activation of
cytosol-specific signaling is associated with phosphorylation of
the p38 mitogen-activated protein (MAP) kinase (O’Riordan
et al., 2002). In this study, when DF-1 cells were treated with
p38 MAP Kinase inhibitor, Bfr-induced IFN-β expression was
markedly inhibited, indicating that Bfr might activate cytosol-
specific signaling. In contrast, JNK MAP Kinase inhibitor
had no effects on Bfr-induced IFN-β response. These results
suggest that Bfr induces IFN-β expression via the p38 signal
transduction pathway. As p38 MAP kinases are major players
during inflammatory responses, they can be activated by
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FIGURE 7 | A critical role of Bfr in S. pullorum-induced IFN-β
expressions. (A) DF-1 cells were infected with WT S. pullorum at an
indicated MOI, 8 h after infection, mRNA expressions of IFN-β in cells were
examined with qRT-PCR using specific primers. The expression levels of
mRNA were calculated in relation to the expression level of GAPDH. (B) DF-1
cells were infected with WT, KO, and RS S. pullorum strains at an MOI of 500.
Eight hours after infection, mRNA expressions of IFN-β in cells were examined
with qRT-PCR using specific primers. The mRNA expression levels of IFN-β in
cells were calculated in relation to the expression level of GAPDH. Results are
representative of three independent experiments. Data are represented as
mean ± SD, n = 3. ∗∗∗ p < 0.001 and ∗∗ p < 0.01.

environmental and cellular stresses including pathogens, heat
shock, growth factors, osmotic shock, ultraviolet irradiation
and cytokines (Yang et al., 2014). p38 kinases have two
domains: a 135 amino acid N-terminal domain and a 225
amino acid C-terminal domain. The phosphorylation lip
of p38 consists of 13 residues, Leu-171-Val-183, and the
protein is activated by phosphorylation of a signal threonine
(Thr-180) and a single tyrosine residue (Tyr-182) in the
lip (Wang et al., 1997). Furthermore, we found that p38
phosphorylation was induced by Bfr, indicating that p38 signal
transduction pathway is essential for IFN-β expression in
cells.

DF-1, an immortal chicken embryo fibroblast cell line, is
commonly used for the research of Salmonella (Li et al., 2006;
Szmolka et al., 2015) and type I interferon (Li et al., 2013).
Our data show that S. pullorum infection significantly induces
activation of the IFN-β promoter in DF-1 cells, supporting
the previous publication by Hess et al. (1989). In contrast,
S. pullorum-induced IFN-β expression was completely abolished
by deficiency of Bfr in the bacteria, indicating that Bfr is required
for S. pullorum-induced IFN-β expression in cells.

IFN-β is a key cytokine in the innate immune response,
mediating expression of hundreds of IFN-stimulated genes
(ISGs) that are responsible for the establishment of an
antimicrobial state in the infected tissue (Schmolke et al., 2014).
It was reported that IFN-β potently represses S. typhimurum-
dependent induction of IL-1 family cytokines and neutrophil
chemokines and IFN-β−/− mice exhibit greater resistance to oral
S. typhimurum infection and a slower spread of S. typhimurum
to distal sterile sites (Perkins et al., 2015). S. typhimurum
induces the production of IFN-β, which drives necroptosis
of macrophages and allows Salmonella to evade the immune
response that is detrimental to the survival of mice (Robinson
et al., 2012). Since Bfr induced IFN-β expression through the
p38 MAP Kinase signaling pathway in cells, several important
questions need to be addressed. For example, what is the host
protein directly targeted by Bfr? What is the role of IFN-β
induced by Bfr in host cell response to Salmonella infection?
Elucidation of these questions will further our understandings
of the mechanisms underlying pathogenesis of Salmonella
infection.

CONCLUSION

Our results demonstrate that Bfr is amajor antigen of S. pullorum.
Our data also show that Bfr induced IFN-β expression via its
amino acids 1–50 portion. Furthermore, we found that the p38
MAPK signaling pathway was essential for Bfr-induced IFN-β
expression. Importantly, S. pullorum induced-IFN-β was totally
abolished by deficiency of Bfr in the bacteria, indicating that Bfr
plays a critical role in S. pullorum induced-IFN-β expression in
DF-1 cells. Our findings provide new insights into the molecular
mechanisms of the host response to S. pullorum infection.
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