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Microcystis bloom, a cyanobacterial mass occurrence often found in eutrophicated water

bodies, is one of the most serious threats to freshwater ecosystems worldwide. In

nature, Microcystis forms aggregates or colonies that contain heterotrophic bacteria.

The Microcystis-bacteria colonies were persistent even when they were maintained in

lab culture for a long period. The relationship between Microcystis and the associated

bacteria was investigated by a metagenomic approach in this study. We developed a

visualization-guided method of binning for genome assembly after total colony DNA

sequencing. We found that the method was effective in grouping sequences and it

did not require reference genome sequence. Individual genomes of the colony bacteria

were obtained and they provided valuable insights into microbial community structures.

Analysis of metabolic pathways based on these genomes revealed that while all

heterotrophic bacteria were dependent uponMicrocystis for carbon and energy, Vitamin

B12 biosynthesis, which is required for growth by Microcystis, was accomplished in

a cooperative fashion among the bacteria. Our analysis also suggests that individual

bacteria in the colony community contributed a complete pathway for degradation of

benzoate, which is inhibitory to the cyanobacterial growth, and its ecological implication

for Microcystis bloom is discussed.

Keywords: metagenome, binning, Microcystis, bloom, symbiosis

INTRODUCTION

Cyanobacterial blooms are mass occurrence of cyanobacterial species in water bodies and are
serious threats to freshwater ecosystems worldwide (Bláha et al., 2009). Due to the increased input
of nutrients into lakes and rivers, eutrophication has become a global issue and it is recognized
as one of the most important factors in the formation of cyanobacterial blooms in freshwater
ecosystems. Among blooms of the several cyanobacterial genera, Microcystis blooms might be
the most widely spread globally. The problems caused by the Microcystis blooms include the
release of toxic secondary metabolites such as microcystins into the water environments that cause
intoxication of humans and animals (Sivonen and Jones, 1999; Falconer and Humpage, 2006) and
the formation of hypoxic zones in water bodies that lead to death of fish and other organisms.
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Accumulation of cyanobacteria and release of odorous materials
also cause technical problems in water treatment plants and
dramatically decrease the drinking water quality.

The formation of cyanobacterial blooms has been studied
extensively and much progresses are made in understanding
the relationships between the blooms and environmental factors
(Conley et al., 2009; Davis et al., 2009; Ma et al., 2014). Recently,
people have started to pay more attention to the importance of
symbiotic relationship between Microcystis and the associated
heterotrophic bacteria (Eiler and Bertilsson, 2004; Sigee, 2005;
Berg et al., 2008; Dziallas and Grossart, 2011, 2012; Shen et al.,
2011). It is desirable to obtain the genomes of these heterotrophic
bacteria and understand their ecological roles in Microcystis
colonies. However, because only a small portion of bacteria
in nature can be cultured in the lab and methods are quite
limited in isolating individual genomic DNA or RNA samples,
the complex structures of microbial interactions, including
Microcystis-bacteria associations, are not well understood. The
successful application of metagnomics in studies of microbial
communities, such as ocean water, natural acidophilic biofilm,
permafrost, acetate-amended aquifers, activated and sludge
bioreactors, has led to new insights and mechanisms for studying
bacterial communities in natural environments (Tyson et al.,
2004; Venter et al., 2004; Mackelprang et al., 2011; Wrighton
et al., 2012; Albertsen et al., 2013). The metagenomics approach
has also been applied to cyanobacterial blooms (Pope and Patel,
2008; Eiler et al., 2011; Li et al., 2011; Steffen et al., 2012; Mou
et al., 2013). These works have provided very useful information
on the microbial communities in Microcystis blooms. However,
due to the lack of whole genome information from the individual
members of the community, details on the metabolic pathways
and the relationships among members of the community are not
well understood.

In metagenomic analysis, grouping sequences from a
particular genome from microbial community sequencing data
is an important step referred to as binning (Kunin et al.,
2008; Mande et al., 2012). The binning process can greatly
reduce the complexity of metagenomics data by grouping similar
sequences together followed by assembly and annotation to
the individual genome bins. Therefore, it enables researchers
to decipher the functional roles of community members and
their interactions. Currently, there are several programs designed
to classify sequencing reads (Huson et al., 2007; Wu and Ye,
2011; Wang et al., 2012) from either metagenomic samples or
assembled scaffolds (Dick et al., 2009; Albertsen et al., 2013).
Recently, model-based clustering techniques, in particular the
multi-component Gaussian mixture model, have been employed
to bin metagenomic fragments (Alneberg et al., 2014; Laczny
et al., 2014; Wu et al., 2014).

Here, we present a novel visualization-guided and model-
based binning method. It was applied to the metagenomic
dataset generated from a Microcystis-dominated bloom in Lake
Taihu. The high-resolution binning results show that there
were at least seven bacteria species in stable cohabitation with
Microcystis species. The functional annotation and pathway
analysis provided an insight into the relationships among
Microcystis and the associated bacteria. It suggests that metabolic

pathway complementation plays an important role in stable
colony formation and the long-term domination of Microcystis
blooms. A possible impact of Microcystis-bacteria association on
health effects for both humans and animals is discussed.

MATERIALS AND METHODS

Strains
Microcystis wesenbergii T100 was isolated from Lake Taihu
in 2006, a freshwater shallow lake in East China in which
serious cyanobacterial blooms occur annually. Non-microcystin-
producing M. wesenbergii T100 forms large mucilaginous
colonies that have embedded several species of bacteria. The
cultures were maintained in BG-11 medium in an incubation
room at 25◦C under 25µM photons m−2 s−1 on a 12:12 light-
dark cycle. A flow diagram of the binning and downstream
analysis process was shown in Figure 1, and a step-by-step guide
is available at http://mingleir.github.io/meta-binning/.

Metagenomics DNA Sequencing
In 2009, the cells were harvested in the exponential phase
by filtering water samples through a 0.45-µm pore filter and
disrupted with Mini-Beadbeater (BioSpec Products, Elgin, IL,
USA) at maximum speed. Total DNA was extracted according
to Li et al. (2001) with modifications. Briefly, the sample was
suspended in TE buffer (pH 8.0) with 0.5% SDS and 1 mg/mL
lysozyme incubated at 37◦C for 1 h. Before digesting at 55◦C
for 2 h with 0.4 mg/mL proteinase K, 1% β-mercaptoethanol
was added to prevent pigment oxidation. The mixture was
purified with phenol-chloroform-isoamyl alcohol (25:24:1) and
washed with 70% ethanol twice. The final supernatant was
precipitated with isopropanol and dissolved in sterile water.
A 300-bp paired-end library and a 3-Kb mate-paired library
were constructed according to the manufacturer’s instructions
(www.Illumina.com). The libraries were sequenced on an

FIGURE 1 | Overview of the pipeline to bin genomes of each group

from the Microcystis-dominated bloom metagenome. The screenshots

in the left part of the figure correspond to the steps for analysis the datasets.

Following the process, the association between Microcystis and attached

heterobacteria on the metabolic level can be elucidated effectively.
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Illumina Genome Analyzer IIx following the manufacturer’s
instructions with 2× 81 bp read length.

Data Preprocessing and Assembly
Quality trimming was performed in Trimmomatic v0.32 (Bolger
et al., 2014) with reads shorter than 20 bp being discarded.
After filtering, we used SPAdes v3.0.0 (Bankevich et al., 2012)
to assemble the metagenomics data of cyanobacterial blooms in
Lake Taihu with different parameters. Optional parameters were
selected by considering the scaffolds N50 statistic, the number of
scaffolds, and the maximum scaffold length.

Data Visualization by Scatter Points
In the present study, we considered both sequence composition
and relative abundance in the community in the assembled
scaffold cluster analysis. GC content is the most fundamental
compositional feature of a genome and has long been used in
the identification of unknown DNA fragments (Karlin, 1998).
The most intuitive measure of abundance is coverage. Sequences
belonging to the same source population should have similar
coverage (Strous et al., 2012). Recently, inspired by the rapid
progress of RNA-sequencing, many statistical models have been
proposed to accurately quantify transcript relative abundances
(Pachter, 2011). Furthermore, the problem of estimating genome
relative abundances in a community is closely related to relative
transcript abundance estimation (Pachter, 2011). Fragments
per kilo base per million mapped reads (FPKM) (Trapnell
et al., 2010), defined as the read coverage normalized by
the total number of mapped reads and sequence lengths, are
widely accepted as a measure of quantifying relative transcript
abundance and we used FPKM as a proxy for relative genome
abundance in a community. We used Bowtie v. 1.0.1 (Langmead
et al., 2009) to count the reads mapped on the scaffolds and
eXpress v. 1.5.1 (Roberts and Pachter, 2013) to estimate the
FPKM of each scaffold.

To show the structure in the set of sequence features, two-
dimensional kernel density estimation was applied to the joint
density function of GC content and FPKM. Each scaffold was
weighted by its length because we investigated the distribution of
both features at the nucleotide level. Because bandwidth is critical
in the practical implementation of kernel density estimation
(KDE) (Rosenblatt, 1956; Parzen, 1962), a two-stage direct plug-
in bandwidth selector (Sheather and Jones, 1991; Wand and
Jones, 1995) was used to produce a bandwidth estimate for the
data set. We observed that sequence coverage contained outliers
with extremely large values, which can have considerable effects
on bandwidth selection. Therefore, we discarded scaffolds with
coverage >0.99 quantile. Furthermore, logit transformation was
applied to GC content, which was represented as proportion
data, so that it follows a normal distribution. Binned kernel
density estimation was applied to the transformed data (Wand,
1994; Wand and Jones, 1995). The standard bivariate normal
density was used as the kernel. The estimated density function
was visualized by contour plots. Guided by the graphs, the
correct density function value was selected to initially bin the
scaffolds.

Model-Based Clustering
From the initial binning graph described above, two facts
could be observed: (1) each group could be modeled by a
bivariate normal distribution; (2) a large number of data points
(scaffolds) were scattered among the initial groups. Based on
the observations, we modeled the data with a mixture of
two-dimensional Gaussian distributions

P (xi) =
∑G

k=1
τkφk (xi |µk,Σk ) i = 1, 2, . . . , N,

where G is the number of components, τk is the probability
that an observation belongs to the kth component (τk ≥

0;
∑G

k=0 τk= 1), xi represents the observation in the data, N is
the total number of scaffolds, and

φk (xi |µk,Σk ) = (2π)−
p
2 |Σk|

− 1
2

exp

{

−
1

2
(xi − µk)

TΣ−1
k (xi − µk)

}

.

The number of G components was set to the number of initial
groups plus one, which was added to accommodate data points
scattered among groups. The EM algorithm starting with M-step
implemented inmclust package (Fraley and Raftery, 2002; Fraley
et al., 2012) in R (Team, 2008) was applied to fit the mixed model.
Here, each scaffold was weighted by length, thus the complete
data log-likelihood is

lc =
∑n

i=1

∑G

k=1
zikwilog [τkφk (xi |µk,Σk )],

where n is the number of data points, zik is the conditional
probability that observation i belongs to group k, wi is the weight
of observation i, in this case wi = li/

∑n
i=1 li, and li is the length of

scaffold i. The algorithm requires initial estimates of conditional
probabilities. To simplify, we set the zik = 1, if observation i
belonged to group k in the initial binning and to 0 if it did not.

Population Genome Assembly Validation
Owing to the limited reference genome sequences, it is still
hard to investigate the completeness of each group from
metagenomics data. Generally, different types of conserved genes
have been chosen to validate the integrity of the genomic
fragments, such as ribosomal genes and core genes within related
organisms (Hess et al., 2011). However, ribosomal genes are
not sufficient to assess the real completeness and accuracy of a
metagenomics assembly, and the core genes are difficult to define.
In this study, we evaluated the completeness of each group by
107 essential single-copy genes, which were conserved in 95% of
all sequenced bacteria (Dupont et al., 2012). We referred to the
steps described in Albertsen et al. (2013). First, we predicted the
open reading frames (ORFs) of each group by Prodigal (Hyatt
et al., 2012), these ORFs were then searched against a set of 107
hidden Markov models (HMMs) of essential single-copy genes
by HMMER3 (Johnson et al., 2010) with the default settings.

Taxonomic and Functional Classifications
To understand the composition of this community, the predicted
ORFs of each group are aligned to the NCBI-NR database using
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BLASTP with a maximum e-value of 1e-5. The blast outputs were
then filtered (at least 40% amino acid sequence identity and 50%
length hit) and the filtered results (each line was repeated by its
FPKM) were imported into MEGAN5 (Huson et al., 2011) for
taxonomic classification. To be more exact, the 16S ribosomal
RNA genes of each group were predicted by RNAmmer (Lagesen
et al., 2007) and the 16S ribosomal RNA genes of their closest
neighbors were downloaded from the NCBI, the alignments
were run in MEGA5 (Tamura et al., 2011) (neighbor-joining) at
the default settings with 1 000 bootstraps. The predicted ORFs
of each group were annotated using the GhostKOALA service
(Kanehisa et al., 2012), and then the interesting KEGG pathways
were analyzed comparatively. For the KEGG classification, the
complementation ratio (the number of mapped genes divided
by the total number of genes involved in the respective
pathways) was counted (Endo et al., 2014). COGs (Clusters
of Orthologous Groups) were also used to assign function
(Tatusov et al., 2000).

RESULTS

Analysis of Metagenomics Data from
Microcystis Colonies with an Improved
Binning Method
Annual massive Microcystis blooms have become a severe
ecological problem for Lake Taihu, the second largest lake in
China. There are several species of Microcystis in the blooms
and they have different colony morphology. The species used
in this was M. wesenbergii T100 isolated from Lake Taihu. The
culture was maintained in the lab for 8 years and the colony
morphology was unchanged during the period of lab culture.
For metagenomics study, one paired-end (PE) library with a
300-bp insert and one mate-pair (MP) library with a long
insert (3 kb) were sequenced with 81 base PE reads, producing
6.6 and 3.2 Gb of raw data, respectively. After trimming and
filtering, a total of 84 million clean reads were assembled into
60 Mb of scaffolds ranging in size from 1 kb to 1.2 Mb using
SPAdes.

For the metagenomic datasets obtained from Microcystis-
bacteria colonies, we developed an improved binning method,
employing EM algorithm (Dempster et al., 1977) to assign
individual scaffolds to each genome. We first used two genomic
features, GC content and read coverage of each scaffold, as the
two coordinates to generate a two-dimensional scatter-plot after
DNA sequencing and assembly. The 2-D plot separated scaffolds
according to the intrinsic properties of each genome. However,
since the scaffolds with similar GC content and read coverage
would tend to group together in the plot, further separation was
needed. The values of GC content of scaffolds from a bacterial
genome would fluctuate around the GC content of the whole
genome. Statistically, a long scaffold would have a GC value
closer to the GC value of the genome than a short scaffold
and it is more reliable to assign long scaffolds to real genomic
fragments of individual species than short ones or misassembled
sequences. We therefore introduced scaffold length as another
parameter so that each scaffold was weighted by its length and

further separation of scaffolds on the 2-D plot could be achieved.
The number and position of population genome bins on the
graphic can be determined based on the contour plot of the joint
probability density function which is generated by kernel density
estimation (KDE) (Rosenblatt, 1956; Parzen, 1962). Wemanually
determined the value of contour level for binning so that the
individual bin position can be separated in the best way from the
others.

We tested this binning method first with a published
simulated dataset in the article (Wu et al., 2014), which was
generated from 10 species by MetaSim (Richter et al., 2008). The
binning results showed that the assembly was regrouped into
10 genome bins (representing 10 genomes), and the majority
of each bin was correctly assigned (Supplementary Figure S1).
The performance of our binning method is comparable with
MaxBin’s (Wu et al., 2014), particularly for the species with high
abundance.

The sequencing results of M. wesenbergii colonies mentioned
previously were analyzed with our binning method. Based on
the contour-plot results (Supplementary Figure S2), we applied a
Gaussian mixture model to obtain the optimal scaffold clusters.
The final binning result was visualized by a scatterplot with
different colors representing different population genome bins
(Figure 2). In total, nine genome bins (Supplementary Table 1)
were identified and the population scaffolds with a coverage of
70.88% of all clean reads. The basic information of the groups
(e.g., length, GC content, and the numbers in each group)
is shown in Table 1. To identify these groups taxonomically,
we analyzed them by the program MEGAN5 (Supplementary
Figure S3). At the phylum level, six of the nine groups were
Proteobacteria, which are the most abundant in Lake Taihu
(Steffen et al., 2012), two were Bacteroidetes and one was the
group of Cyanobacteria. At the order level, eight of the nine
groups were classified to the relevant order with maximum
probability, except for Group 3, which could contain more than

FIGURE 2 | Scatterplot of the final binning results for the

metagenomics sample based on the Gaussian mixture model. The

points in the figure represent scaffolds assembled from the microbial

community and the point size indicates the length of scaffolds. The colored

clusters on the graph are potential genomes of each group. The gray points

dispersed around the clusters are scaffolds that were difficult for the model to

assign.
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TABLE 1 | The basic statistics for each group of Microcystis colonies.

Group No. contigs Length (bp) GC content No. essential genes Relative Genus Phylogenetic affiliation

abundance*(%) (phylum)

Group1 443 3,239,598 33.95 100/105(95.24) 0.5 Flavobacterium Bacteroidetes

Group2 943 2,750,644 53.05 46/106(43.4) 0.5 Limnobacter Betaproteobacteria

Group3 5810 10,026,678 64.26 91/105(86.67) 1.8 Rhizobium Alphaproteobacteria

Group4 53 3,406,030 52.26 106/106(100) 4.4 Limnobacter Betaproteobacteria

Group5 1000 4,081,424 68.5 93/105(88.57) 2.3 Methylobacterium Alphaproteobacteria

Group6 150 4,587,864 61.67 104/105(99.05) 4.9 Agrobacterium Alphaproteobacteria

Group7 3 4,737,723 41.25 105/105(100) 14.8 Lacibacter Bacteroidetes

Group8 73 4,214,643 64.34 105/105(100) 6.4 Pseudomonas Gammaproteobacteria

Group9 163 4,195,911 43.06 95/106(89.62) 31.6 Microcystis Cyanobacteria

*Relative abundance was calculated as the percentage of reads of a genome bin in the total number of reads.

FIGURE 3 | Phylogenetic inference of Group 7 using 16S rRNA gene sequences. Neighbor-joining phylogenetic tree is constructed based on 16S rRNA gene

sequences showing the position of Group 7 among related species. Numbers at nodes indicate bootstrap percentages (based on 1000 replicates); only values >50%

are shown. Bar, 0.01 substitutions per nucleotide position.

one order with similar GC content and abundance. At the genus
level, Group 6, 7, 8, and 9 were from Agrobacterium, Niastella,
Pseudomonas, and Microcystis, respectively. Group 1 and 5 were
from genera that are closely related to Flavobacterium and
Methylobacterium. Group 2 and 4 were both from Limnobacter
and they had similar GC contents. Group 7 was classified to
Niastella genus according to the result of MEGAN, but when the
confirmation was performed based on the 16S ribosomal RNA,
phylogenetic analysis showed that it was closer to Lacibacter
genus (Figure 3). And one bacterium in the Lacibacter genus
was isolated from the surface layer sediment of Lake Taihu
and identified as Lacibacter cauensis NJ-8T (Qu et al., 2009).
To date, there is no reference genome for the Lacibacter
genus, and our method provides near-complete chromosomes
for this genus. This conflict between taxonomy assignments
was due to the limitation of reference genomes in the analysis
of metagenomics. The genomes of eight of the nine groups
were estimated to be over 85% completed when compared
with the number of essential genes of all sequenced bacteria
at the phylum level (Dupont et al., 2012). Among the eight,
five were over 95% complete (Table 1). The copy numbers of

the essential genes, which indicate how well the genomes are
separated from one another, were also examined and the results
(Supplementary Table 2) suggested that each group except Group
3 had little contamination from other genomes. As mentioned
above, Group 3 could contain more than one bacterium since
the number of its essential genes was much higher. Overall,
our method effectively separated groups with different GC
contents and abundances, while maintaining the integrity of each
group.

Functional Analysis of the
Microcystis-Dominated Community
To understand the biological functions of the microbial
community, genes from all groups were assigned to broad
functional categories (COGs) (Supplementary Figure S4). With
the exception of general function prediction only (R) and
function unknown (S), most of the genes were involved in amino
acid transport and metabolism (E), cell wall/membrane/envelope
biogenesis (M) and translation, ribosomal structure and
biogenesis (J), inorganic ion transport and metabolism (P), and
energy production and conversion (C). The result shows that
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FIGURE 4 | The analysis of metabolic pathways among the microbial community. The circles in the figure represent the intermediates, the rectangles

represent the enzymes. Different filled colors of rectangles represent the groups from the community, among which the white color indicates the absence of the

corresponding enzyme in this group. (A) The aerobic biosynthesis pathway of Vitamin B12. The enzymes tagged by red rectangles are absent in Group 5, while the

enzymes tagged by blue rectangles are absent in Group 6, but the pathway is completed with the combination of Group 5 and 6. (B) The metabolic pathway of

benzoate degradation. In the metabolic diagram, only Group 5 and 8 participate consistently in the process of converting benzoate to 3-oxoadipate, while Group 3

and 6 then catalyze it to 3-oxoadipul-CoA with EC 2.8.3.6, which is absent in both Group 5 and 8 in our analysis. Through this kind of cooperation, the whole

community can adapt for the complex environment.

the quantity of each category in the Group 3 was three to four
times more than that from other groups, suggesting this group
containedmore than one bacterium. This suggestion is supported
by the result of taxonomic assignment (Table 1).

Microcystis is the only photoautotrophic bacterium and the
other bacteria are all heterotrophic in the Microcystis-bacteria
colonies (Cole, 1982). Since the culture was maintained with a
minimal medium, these heterotrophic bacteria depended on both
carbon and energy source from Microcystis. On the other hand,
analysis ofMicrocystis genomes showed that it had a methionine
biosynthesis pathway that has a type-II MetH enzyme which
needs vitamin B12 as cofactor (Croft et al., 2005; Kaneko et al.,
2008; Helliwell et al., 2011). During the subculture, no vitamin
B12 was added to culture. The possible explanation of the fact
was that these heterotrophic bacteria are the likely candidates that

providing vitamin B12 for Microcystis. An alternative was that
these bacteria could provide methionine directly to Microcystis
cells. In either case, Microcystis benefited from being associated
with these bacteria. Therefore, the relationship between the
heterotrophic bacteria andMicrocystis is mutually beneficial. The
contribution of each individual bacterium in the colonies to the
biosynthesis of vitamin B12 was analyzed and the results showed
that none of group could complete the aerobic biosynthesis
pathway of vitamin B12 independently. The complementation
ratio of the vitamin B12 biosynthesis pathway of the colonies
(Supplementary Figure S5) calculated according to Endo et al.
(2014) suggested that two groups, such as Group 5 and Group
6 (Figure 4A), or more of the bacteria were required for the
vitamin B12 synthesis in the colonies. The complementation
ratio of benzoate degradation pathway was also indicative of
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mutualism. Group 5 and 8 could be responsible for converting
benzoate to 3-oxoadipate (Harayama et al., 1991), Group 3 and
6 then could catalyze it to 3-oxoadipul-CoA with EC 2.8.3.6,
which is absent from Group 5 and 8 (Figure 4B). While the
cellular mechanisms of the metabolic complementation require
more studies, our analysis implied that benzoate can be degraded
to acetyl-CoA and succinyl-CoA through cooperated actions of
these species.

The harmful effects of Microcystis blooms to human
and animal health are noteworthy, including the release of
toxic microcystins and lipopolysaccharides (LPS). A typical
LPS molecule is composed of three parts: lipid A, core
polysaccharides, and O-antigen repeats. Lipid A is located in the
outer leaflet of the outer membrane, while core polysaccharides
and O-antigen repeats lie on the surface of the bacterial cells
by attaching to lipid A. Although Microcystis LPS have been
reported to cause some serious health issues, their synthesis are
not well understood (Raziuddin et al., 1983; Snyder et al., 2009).
We analyzed the LPS biosynthesis pathways (Supplementary
Figure S6) and found that Microcystis only had genes for
synthesis of lipid A and lacked the genes responsible for synthesis
of other components of LPS. Figure S6 also shows that the
associated bacteria had almost complete composition of LPS,
suggesting that the LPS-related health problems were caused by
theMicrocystis-bacterial colonies.

DISCUSSION

Colony formation is one of the key features inMicrosystis blooms
and it has been shown that heterotrophic bacteria play important
roles in the colony formation (Shen et al., 2011; Wang et al.,
2015). The M. wesenbergii T100 was isolated from Lake Taihu
and it maintained the ability to form colonies in subculture.
The lab maintained colonies are less complex and their bacterial
composition is less variable than the ones in nature and therefore
they are more suitable for our initial metagenomics study of
colony structures.

In analysis of metagenomic data, sequence binning is one of
the most important steps for obtaining more information about
composition and structure themicrobial community. Comparing
with single bacteria genome assembly, metagenomic assembly
is more fragmental and it generates more small scaffolds. How
to assign small scaffolds, which have been often treated as
noise, to a respective genome is a challenge for metagenomic
binning. The N50 values (a statistic of a set of contig or
scaffold lengths, widely used in genome assembly) of individual
population genome bins in metagenomic assembly vary in a
wide range. The scaffold number of each genomics bin varies
from one to thousands, causing various problems for model-
based binning. Our binning method employed the EM algorithm
(Dempster et al., 1977) to assign the assembled scaffolds, which
were derived from individual genomes, to their respective groups.
The parameters used in our method are GC content, contig
coverage and contig length. GC content is one of the most
intrinsic compositional features of genomes and it is often used
in the identification of unknown DNA fragments (Karlin, 1998)
and contig/scaffold coverage level has been used in other binning

methods (Wrighton et al., 2012; Albertsen et al., 2013). A big
difference between our binning approach and other methods
based on mixture model is that the joint distribution of sequence
features, GC content and abundance, was dissected at nucleotide
level instead of sequence level and it was accomplished by
introduction of contig length as the third parameter. The finer
granularity could provide higher resolution and reduce the noise
of poor-assembled short scaffolds. With accurate initial values
of parameters obtained by kernel density estimation (KDE)
(Rosenblatt, 1956; Parzen, 1962), the number of iteration in
calculation could be kept minimal. It brought a big improvement
in binning and made the following EM algorithm calculation
more reliable.

Our metagenomics study of the Microcystis colonies showed
that various species were associated with the colonies following
subculturing. While the dominant organism in the Microcystis
colonies was Microcystis wesenbergii as expected, at least 8 other
microbes were found. Analysis of the published metagenomic
samples from Lake Taihu showed that these bacteria were present
in natural environments (Li et al., 2011; Steffen et al., 2012),
suggesting that they were associated with Microcystis colonies
before the colonies were isolated (Supplementary Table 3). For
example, Li et al. (2011) studied the microbial and functional
diversity of a bloom in Lake Taihu by Roche 454 platform,
eight groups (bacteria species) associated withMicrocystis in our
results were consistent with the taxonomic groups detected by
the 454 platform. Our results were also in agreement with the
taxonomy of heterotrophic bacteria isolated from Microcystis
colonies (Shen et al., 2011). Another example is that Group 8
was assigned to Pseudomonas, which is a common genus in the
phycosphere (Wu et al., 2007; Berg et al., 2008; Li et al., 2011).

A mutually beneficial relationship among the bacteria in
the colonies is observed. The energy and carbon flows among
the bacteria in the colonies are predictable since Microcystis
was the only photoautotrophic species in the colonies and the
other heterotrophic bacteria depend on Microcystis for growth
under the culture conditions. On the other hand,Microcystis was
dependent upon the heterotrophic bacteria for vitamin B-12 that
is required for its growth. Analysis of metabolic pathways based
on genome information suggested that more than one member
of heterotrophic bacteria was involved in biosynthesis of vitamin
B12 in the colonies (Figure 4A).

Besides M. wesenbergii T100, we have obtained other
Microcystis from Lake Taihu, including M. aeruginosa, and they
can be kept forming colonies in the lab. However, when a
strain of M. aeruginosa was isolated (Yang et al., 2013, 2015)
and kept in a bacterium-free condition, it produced much less
extracellular polysaccharides and lost the ability to form colony.
This observation and the reports that bacteria play a role in
colony formation (Shen et al., 2011; Wang et al., 2015) led
us speculate that extracellular polysaccharides of Microcystis
colonies could be synthesized by more than one member of
the colony. This view is supported by our analysis of synthesis
of lipopolysaccharides (LPS) in the colonies. Among harmful
substances produced by Microcystis blooms, LPS are classified as
endotoxin (Raetz et al., 2007; Wang and Quinn, 2010) and can
cause severe diseases in humans and animals (Stewart et al., 2006;
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Kusumoto et al., 2010). Our metabolic analysis showed that it
was unlikely that the Microcystis endotoxins were produced by
Microcystis alone since it didn’t contain all the genes required for
LPS biosynthesis and one or more members of the Microcystis-
bacteria community are involved in the process (Best et al., 2003;
Bernardová et al., 2008).

Our study demonstrated a mutually beneficial and inter-
dependent relationship among the bacteria in Microcystis
colonies maintained in a subculture condition. It should be
realized that theMicrocystis blooms are more complex and there
might be some bacteria that disassociated from the colonies after
the long subculture in the lab. It is also worthwhile to note that
while our binning method is well suitable for datasets derived
frommicrobial communities with stable species composition (up
to 30 species based on the test of published data) (Supplementary
Figure S7, Supplementary Table 4), the resolving power of this
method could be limited in situations where the species in a
community are closely related in phylogeny, or a large number
of species is present in a community and co-assembly problem
could not be prevented. Nevertheless, the metagenomic approach
reported in this study and the results of metabolic pathway
complementation could serve as a basis for future study of a
more complex interaction betweenMicrocystis and the associated
bacteria in natural environment.

CONCLUSION

Here, we presented a visualization-enhanced binning method
and applied it to analyze cyanobacteria-dominated bloom
communities from Lake Taihu, China, reconstructing individual
bacterial genomes frommetagenomic assembly. By analyzing the
metabolic pathways of the microbial community, cooperative
interactions among the complex species were indicated, which
provided insight into the formationmechanism of cyanobacterial
blooms.
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