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Bacillus cereus, a food poisoning bacterium closely related to Bacillus anthracis,
secretes a multitude of virulence factors including enterotoxins, hemolysins, and
phospholipases. However, the majority of the in vitro experiments evaluating the
cytotoxic potential of B. cereus were carried out in the conditions of aeration, and the
impact of the oxygen limitation in conditions encountered by the microbe in natural
environment such as gastrointestinal tract remains poorly understood. This research
reports comparative analysis of ATCC strains 11778 (BC1) and 14579 (BC2) in aerobic
and microaerobic (static) cultures with regard to their toxicity for human lung epithelial
cells. We showed that BC1 increased its toxicity upon oxygen limitation while BC2 was
highly cytotoxic in both growth conditions. The combined effect of the pore-forming,
cholesterol-dependent hemolysin, cereolysin O (CLO), and metabolic product(s) such
as succinate produced in microaerobic conditions provided substantial contribution to
the toxicity of BC1 but not BC2 which relied mainly on other toxins. This mechanism
is shared between CB1 and B. anthracis. It involves the permeabilization of the cell
membrane which facilitates transport of toxic bacterial metabolites into the cell. The
toxicity of BC1 was potentiated in the presence of bovine serum albumin which
appeared to serve as reservoir for bacteria-derived nitric oxide participating in the
downstream production of reactive oxidizing species with the properties of peroxynitrite.
In agreement with this the BC1 cultures demonstrated the increased oxidation of the
indicator dye Amplex Red catalyzed by peroxidase as well as the increased toxicity in
the presence of externally added ascorbic acid.

Keywords: Bacillus cereus, culture filtrates, cytotoxicity, lung epithelial cells, cereolysin O

INTRODUCTION

Bacillus cereus is a Gram-positive spore-forming bacterium widely present in the environment.
It is a soil saprophyte that can adapt and proliferate in the lower sections of the human
gastrointestinal tract. It is also an opportunistic pathogen responsible for local and systemic
infections as well as food poisoning of an emetic or diarrheal type (Stenfors Arnesen et al., 2008).
B. cereus secretes a multitude of pathogenic factors that were suggested to contribute synergistically
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toward its toxicity. These factors reflecting diverse lifestyles of the
microbe include metalloproteases, collagenase, phospholipases,
emetic toxin, enterotoxins, and hemolysins (Gohar et al., 2005).
The diarrheal syndrome is attributed to enterotoxins: hemolysin
BL (Hbl), non-hemolytic enterotoxin (Nhe), and cytotoxin K
(CytK). These pore-forming toxins (PFTs) disrupt the membrane
of epithelial cells lining the gastrointestinal tract (Senesi and
Ghelardi, 2010). Other enterotoxins: FM (EntFM), S (EntS), and
T (BceT) may also contribute to the pathogenicity (Asano et al.,
1997; Lund et al., 2000; Hansen and Hendriksen, 2001; Fagerlund
et al., 2004; Kim et al., 2015). B. cereus secretes additional two
beta-barrel pore-forming hemolysins, cereolysin O (CLO) and
hemolysin II (HlyII), that are non-diarrheal (Bernheimer and
Grushoff, 1967; Andreeva et al., 2006; Ramarao and Sanchis,
2013). Virulence of the emetic strains is related to cereulide, a
thermostable cyclic dodecadepsipeptide synthesized by a non-
ribosomal peptide synthetase encoded by ces genes (Ehling-
Schulz et al., 2005, 2006). Products from other genes such as
hemolysin A (hlyA), hemolysin III (hlyIII), phosphatidylinositol-
specific phospholipase C (plcA), cereolysin A or phospholipase
C (cerA), cereolysin B or sphingomyelinase (cerB), and Immune
inhibitor A (InhA) are also involved in the pathogenesis of
B. cereus (Baida and Kuzmin, 1995; Schoeni and Lee Wong, 2005;
Hendriksen et al., 2006; Stenfors Arnesen et al., 2008; Oda et al.,
2012; Doll et al., 2013).

The biological significance of the above factors in the context
of their contribution to bacterial virulence and persistence
in the particular environmental conditions is not completely
understood. A closely related human pathogen Bacillus anthracis
adopted a different strategy with a lesser number of pathogenic
factors. Both microbes were previously considered the same
species (Helgason et al., 2000). DNA sequencing of the
B. anthracis and B. cereus type strains (Ivanova et al., 2003)
confirmed high similarity or their genomes, but revealed a
number of important differences. In contrast to the majority
of B. cereus strains, the higher pathogenicity of B. anthracis
seems to rely on the contribution of the plasmid-born Lethal
and Edema Toxins and the poly-γ-D-glutamic acid capsule.
However, this distinction is not absolute, and recent studies
identified B. cereus pathogenic isolates expressing homologs of
Lethal Toxin and polysaccharide capsules functionally similar
to the poly-γ-D-glutamic one (Hoffmaster et al., 2004, 2006).
On the other hand, B. anthracis’s potency to produce hemolytic
factors is considerably lower compared to B. cereus. The former
does not contain the enterotoxins (except Nhe reported by
Mendelson et al., 2004) and the activity of the CLO analog,
anthrolysin O (ALO), is restricted to the anaerobic conditions
(Klichko et al., 2003). However, the activity of ALO seems to
be important for B. anthracis. Experiments in vivo with ALO-
null mutants revealed substantial contribution of ALO together
with phospholipases to the virulence (Heffernan et al., 2007).
Cowan et al. (2007) reported high toxicity of intravenously
administered ALO, and Nakouzi et al. (2008) demonstrated a
protective effect of monoclonal antibodies against ALO in mice
challenged intravenously with vegetative bacteria.

We previously reported a novel mechanism of B. anthracis
metabolic toxicity mediated by ALO and succinate as a

TABLE 1 | Virulence factors in B. cereus ATCC 11778 and 14579.

Virulence factor Size (kDa) ATCC strain

11778 (BC1) 14579 (BC2)

Immune inhibitor A (InhA) 87.9 + +
Phospholipase C (PLC) 23.0 + +
Sphingomyelinase (SMase) 34.0 + +
Cereolysin AB (CerAB) 67.0 + +
Collagenase 109.0 + +
Cereulide 1.2 – –

Hemolysin BL (Hbl) 45.0 (L2) – +
36.0 (L1)

35.0 (B)

Non-hemolysin E (Nhe) 41.0 (A) + +
39.8 (B)

36.5 (C)

Cytotoxin K (CytK, HlyIV) 34.0 – +
Cereolysin O (CLO, HlyI) 52.5 + +
Hemolysin II (HlyII) 45.6 + +
Hemolysin III (HlyIII) 24.4 + +
+/– Denotes whether gene is present in strain (Hansen and Hendriksen, 2001;
Gohar et al., 2005; Kumar et al., 2010; Kim et al., 2015).

fermentation product produced by bacteria in the conditions of
reduced oxygen availability (Popova et al., 2011). The combined
effect of ALO and succinate results in the permeabilization of the
cell membrane and oxidative stress in the exposed lung epithelial
cells. In addition, it was discovered that the presence of bovine
serum albumin (BSA) potentiates the toxicity of the B. anthracis
(Popova et al., 2011; St John et al., 2013). It was suggested that
BSA could concentrate in its hydrophobic core the nitric oxide
(NO) produced by bacteria, followed by the micellar catalysis of
NO conversion into reactive species such as peroxynitrite in the
host cells under oxidative stress.

In this study, using two B. cereus strains expressing different
sets of pathogenic factors (Table 1) we wanted to determine
to what extent these mechanisms of B. anthracis toxicity are
relevant to B. cereus. Specifically we were interested in evaluating
the contribution of CLO to the host cell membrane damage
relative to other PFTs as well as the impact of reduced oxygen
availability on B. cereus toxicity. Most of the previous B. cereus
toxicity studies were conducted in aerobic conditions and
therefore did not reflect significant changes in the levels of
pathogenic factors which can take place in response to redox state
of the environment. Since B. cereus infections typically occur in
anoxic or hypoxic conditions such as those in a gastrointestinal
tract, it adapts its metabolism and regulates its proteome in
response to changes in oxygen pressure (Ouhib-Jacobs et al.,
2009; Clair et al., 2010; Laouami et al., 2014). In connection with
the role of reactive nitrogen species generated by B. anthracis and
reports on release of peroxynitrite by B. cereus in microaerobic
cultures (Mols et al., 2010; Mols and Abee, 2011) we also
investigated the effect of BSA on the toxicity of B. cereus. We
report a novel mechanism involving synergistic activity of the
pore-forming toxin andmetabolic products of B. cereus enhanced
by serum albumin in microaerobic conditions.
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MATERIALS AND METHODS

Reagents
All reagents used were from Sigma–Aldrich unless specified
otherwise. Cholesterol was dissolved in ethanol at 1 mgmL−1and
then further diluted into bacterial culture supernatants (Sups).
Ham’s F-12 cell culture medium and Complete Serum-Free
Medium (CSFM) were from Mediatech Inc., Manassas, VA, USA.
Formulated Dulbecco’s Modified Eagle Medium (DMEM) came
from Sigma–Aldrich. BSA was of >98% purity and essentially
free from globulins and fatty acids. Amplex Red (AR) dye was
from Invitrogen. The CytoTox-ONE Homogeneous Membrane
Integrity Assay came from Promega,Madison,WI, USA. Succinic
acid (SA) concentration was measured using SA assay kit
from Megazyme. Protein concentration was estimated using the
Bradford protein assay from Bio-Rad. Rabbit anti-streptolysin O
antibody was from B-Bridge International, Santa Clara, CA, USA.
Anti-rabbit IgG, HRP-linked antibody came from Cell Signaling
Technology.

Assay Kits
The listed kits were performed according to the manufacturers’
protocols unless otherwise indicated. Cell permeability was
measured using the CytoTox-ONE Homogeneous Membrane
Integrity Assay which indicated the amount of lactate
dehydrogenase (LDH) secreted from cells with a damaged
membrane. LDH was measured with a 10-minute coupled
enzymatic assay that results in the conversion of resazurin into
fluorescent resorufin detected at 530/590 nm. The extent of
permeability was calculated as fluorescence relative to completely
lysed cells.

For determining the presence of hydrogen peroxide and
peroxynitrite the dye AR from Invitrogen was used with a
modified protocol. AR (N-acetyl-3,7-dihydroxyphenoxazine) is
a colorless derivative of dihydroresorufin that when oxidized
produces a colorful fluorescent product resorufin which is
detectable at 571 nm. AR and horseradish peroxidase (HRP) were
added to DMEM without Phenol Red indicator supplemented
with 1 g L−1 of BSA at a concentration of 0.1 mM and
0.2 U mL−1, respectively, prior to inoculation with bacteria
as described below. Cultures were collected every hour,
centrifuged at 10,000 × g for 5 min, and the Sups were
removed. The absorbance of Sups was read at 571 nm via
spectrophotometer.

Bacterial Strains, Culture Conditions,
and Preparation of Culture Sups
The following procedure for bacterial propagation was used for
every experiment unless stated otherwise. B. cereus strains 11778
and 14579 (designated by us as BC1 and BC2, respectively)
were from the ATCC collection (Manassas, VA, USA). They
were grown on agar plates containing Luria broth. Agar plates
were re-streaked every seven days and were kept at 8◦C until
inoculation. Single colonies were used to inoculate into Luria
broth and cultures were kept in an incubator shaker at 200 rpm,
37◦C for 18 h. Overnight culture at 1:100 dilution was inoculated

into either 10 mL of Complete Serum-Free Medium (CSFM),
a nitrate rich medium containing 1 g L−1 of BSA, or DMEM
supplemented with 1 g L−1of BSA. Cultures were grown either
under microaerobic (stationary) conditions, in a 6-well plate in
an incubator at 37◦C, 5% CO2, or under aerobic conditions,
in loosely capped 50 mL tube shaken at 200 rpm at 37◦C for
20 h unless specified otherwise. Under stationary conditions,
the bacteria consume available oxygen and gradually become
hypoxic, thus representing a microaerobic environment. Cultures
were collected and the optical density (OD) of 200μL of bacterial
suspensions in a 96-well plate were measured in triplicates using
a microplate reader at 600 nm.

Bacterial suspensions were centrifuged at 3000 × g
for 15 min and Sups were removed from the bacterial
pellet. Penicillin (100 μg mL−1) and streptomycin (100 U
mL−1) were added to Sups to prevent any bacterial
contamination. Fresh Sups were used immediately for challenge
experiments.

Cell Cultivation and Toxicity Studies
Human small-airway epithelial cells (primary HSAECs) were
from Cambrex Inc., Walkersville, MD, USA. Cells were
cultured in Ham’s F-12 medium containing 10% fetal bovine
serum, non-essential amino acids, L-glutamine, and pyruvate
and grown in 37◦C in a 5% CO2 atmosphere. Cells were
seeded into a 96-well plate at a density of 2.5 × 104
per well and grown to confluence. For cytotoxicity assays,
200 μl of bacterial culture Sups were added per well and
incubated for 20 min at 37◦C, 5% CO2 without shaking.
After cell exposure, the plate was spun at 2000 × g for
5 min, Sups were removed, and 200 μL of 5% resazurin,
a redox dye, dissolved in CSFM was added to each well.
Resazurin measures cell survival because cellular metabolism
breaks down the dye changing its color and fluorescence.
Fluorescence was measured with an excitation at 530 nm and
emission at 590 nm via a fluorescence reader to determine the
differences in cell viability after 2-h incubation with resazurin.
Viability was calculated as fluorescence relative to mock-
treated cells. Overall, the assay generated consistent results;
however, some variability in Sup toxicity was noticed between
independently grown HSAEC cultures. This effect was not
studied further.

Sup Fractionation
For size exclusion chromatography experiments, bacteria were
cultured in DMEM with or without BSA (1 g L−1) in 6-well
plates under microaerobic conditions at 37◦C, 5% CO2 for 20 h.
Sups were collected and concentrated eightfold, via SpeedVac
at 32◦C. 1 mL of Sup concentrate was injected into a HiPrep
16/60 Sephacryl S-200 HR column (GE Healthcare Life Sciences)
and run at a rate of 4 mL min−1 in a 50 mM Tris running
buffer, pH 7.5. Flow-through fractions were collected every 2 min
between a run time of 13 and 135 min. The toxicity of fractions
to HSAECs was assessed immediately using the 100 μL fractions
which were added to a 96-well plate of confluent HSAECs
containing 100 μL of DMEM per well. Cells were exposed for
1 h and resazurin was used as an indicator for cell survival.
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The fractions were stored at –20◦C for mass spectrometry (MS)
analysis.

MS Analysis
To determine the protein composition of fractions, samples were
prepared for liquid chromatography-tandem mass spectrometry
(LC-MS/MS). Fractions were first concentrated 10-fold via
SpeedVac at 32◦C. Samples were resuspended and reduced
in an 8 M urea/10 mM DTT mix for 30 min, alkylated by
50 mM iodoacetamide in the dark for 30 min, and then
finally digested by trypsin (Thermo Fisher Scientific) at 37◦C
overnight. Peptides were purified via Zip-Tip (Millipore) and
samples were analyzed by LC-MS/MS using a linear ion-trap
mass spectrometer (LTQ, Orbitrap). After sample injection, the
column was washed for 5 min with mobile phase A (0.4%
acetic acid) and peptides eluted using a linear gradient of 0%
mobile phase B (0.4% acetic acid, 80% acetonitrile) to 50%
mobile phase B in 30 min at 250 nL/min, then to 100% mobile
phase B for an additional 5 min. The LTQ mass spectrometer
was operated in a data-dependent mode in which each full
MS scan was followed by five MS/MS scans where the five
most abundant molecular ions were dynamically selected for
collision-induced dissociation using normalized collision energy
of 35%. Tandem mass spectra were collected by Xcalibur 2.0.2
and searched against the NCBI mouse protein database using
SEQUEST (Bioworks 3.3.1 software from Thermo Fisher) using
tryptic cleavage constraints. Mass tolerance for precursor ions
was 5 ppm and mass tolerance for fragment ions was 0.25 Da.
SEQUEST filter criteria were: Xcorr vs. charge 1.9, 2.2, 3.5 for 1+,
2+, 3+ ions; maximum probability of randomized identification
of peptide <0.01.

SDS-PAGE, Native PAGE, and Western
Blotting
For native PAGE and SDS-PAGE, protein fractions were mixed
with a DNA-loading buffer for native PAGE or with 2x Laemmli
sample buffer supplemented with 50 mM DTT for SDS-PAGE.
Fractions for SDS-PAGE were boiled with the buffer for 5 min.
Samples were separated using 4–20% Tris-Glycine gels and
then transferred to nitrocellulose membranes using iBlot Dry
Blotting System (Life Technologies). Membranes were blocked
with 5% BSA in PBS with 0.01% Tween 20 (PBST) for 1 h,
and then incubated in a rabbit anti-streptolysin O antibody
(1:1000) overnight. Membranes were washed in PBS with 0.05%
Tween-20 and then incubated with an anti-rabbit IgG, HRP-
linked antibody (1:5000) for 1 h at room temperature. Western
blots were developed using SuperSignal West Dura Extended
Duration Substrate (Thermo Fisher Scientific) and then imaged
using ChemiDoc XRS+ System (Bio-Rad).

Statistical Analysis
Each measurement was done in triplicate and experiments
were performed at least twice for consistency. In figures,
error bars indicate 95% confidence intervals of mean (two-tail
t-test).

RESULTS

BC1 and BC2 Cultures Grown in
Microaerobic and Aerobic Conditions
Accumulate High Levels of Toxicity
To determine bacterial culture supernatant (Sup) toxicity toward
HSAECs we used two B. cereus non-emetic strains, ATCC 11778
and 14579 (designated BC1 and BC2, respectively). The BC2
was reported to express full toxinogenic potential including
enterotoxins Hbl, Nhe, CytK, BceT, phospholipases, and the
pore-forming CLO (Gohar et al., 2005). BC1 does not express
enterotoxins except Nhe (Hansen and Hendriksen, 2001; Gohar
et al., 2005), and our preliminary data indicated that it produced
CLO (not shown). We compared the acidification and toxicity
of Sups grown in aerobic and microaerobic conditions. The
aerobic culture was shaken to allow gas diffusion throughout the
volume of the bacterial culture. In the microaerobic conditions
the amount of oxygen available to bacteria sedimented to
the bottom of the wells is strongly limited by diffusion. The
onset of anaerobic fermentation was detectable as a reduction
of culture pH approximately after 4-h incubation. After 10-
h inoculation the pH of microaerobic Sups was close to 5.3,
whereas aerobic Sups showed only a small shift from 7.0 to 6.8.
Sups demonstrated a detectable cytotoxicity as early as 2 h post-
inoculation corresponding to early exponential phase (Figure 1).
The release of toxic factors continued upon further incubation.
As shown in Figure 2A, the Sups of both strains after 20 h had to
be diluted with freshmedium in order to be tested in the dynamic
range of the resazurin cell viability assay. BC2 showed the highest
toxicity in aerobic cultures killing almost all HSAECs at 32-fold
dilution when the exposure time was reduced to 20 min from
2 h (Figure 2). Less toxic BC1 Sups showed higher activity in
microaerobic conditions compared to aeration.

Cholesterol Partially Inhibits the
Permeabilization Activity and Toxicity of
Microaerobic Sups Toward HSAECs
To reveal the contribution of CLO to the toxicity of BC1 and BC2
the Sups of microaerobic and aerobic cultures were incubated
with 10 μg mL−1of cholesterol for 1 h prior to HSAEC exposure.
CLO is a thiol-activated PFT that is known to be inhibited
by the addition of cholesterol (Tweten, 2005). Results from
Figure 2B demonstrate cholesterol caused a substantial reduction
in the toxicity of microaerobic Sups from both strains. The
incubation of cholesterol with Sups from aerobic cultures had
little effect (data not shown) consistent with downregulation of
CLO expression or/and its inactivation by oxygen (Tweten, 2005).
The partial abrogation of Sup toxicity indicated contribution of
other virulence factors in addition to CLO.

To evaluate the effect of B. cereus PFTs on host cell membrane
the amount of cell permeability in the Sup-treated HSAECs was
measured using the Cytotox Homogenous Membrane Integrity
Assay (Promega) which is based on the amount of released LDH.
Both strains demonstrated a concentration-dependent increase
in cell permeability, although the BC2 Sup required much lower
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FIGURE 1 | The growth (dashed lines) and toxicity (solid lines) of BC1 (A) and BC2 (B) under microaerobic and aerobic conditions (filled and open
circles, correspondingly). Overnight cultures were grown in aerated LB medium and used to inoculate CSFM (1:100). For static microaerobic cultures the
inoculated medium was dispensed into 24-well plate (2 mL per well) and incubated at 37◦C and 5% CO2 without shaking. For aerobic cultures, 20 mL of inoculated
CSFM in a 50 mL Falcon tube were shaken at 200 rpm and 37◦C. The cultures were harvested every hour post-inoculation and their OD measured at 600 nm.
Bacteria were pelleted and the Sups were used to expose HSAECs for 2 h at 37◦C. Cell viability was assessed relative to untreated HSAECs using resazurin as
described in the Section “Materials and Methods.”

concentration (higher dilution) to reach the effect comparable
with BC1 Sup (Figure 3). The permeabilizing activity of BC1 Sup
was almost completely inhibited in the presence of cholesterol
(Figure 3A) while the BC2 Sup demonstrated only a partial
cholesterol dependence (Figure 3B). The major drop in viability
of exposedHSAECs for both strains took place at rather low levels
of permeability when only a fraction of killed cells demonstrated
LDH release. These results may be explained by a relatively high
contribution of non-permeabilizing toxic factors. It is also likely
that the membrane pores produced by the Sups were too small
for the efficient translocation of LDH (which is a rather big
tetrameric enzyme) but sufficient for the toxic effect of bacterial
metabolic products (Walev et al., 2001).

The MS Analysis of Size-Exclusion
Column Filtrates of Microaerobic Sups
Identifies Proteins Present in the Toxic
Fractions
In order to further characterize virulence factors responsible
for toxicity, microaerobic BC1 and BC2 cultures were grown,
and the Sups from these cultures were concentrated and then
fractionated using column chromatography. Sup fractions were
added to HSAECs and the toxicity of eachwasmeasured using the
redox-sensing resazurin dye. For both strains the main portion
of toxicity was found in a peak corresponding to the proteins
of approximate molecular mass of 50–60 kDa overlapping with
the tail of the BSA peak (data not shown). LC-MS/MS analysis
of the toxic fractions revealed a list of candidate toxic proteins
(Table 2) along with the corresponding numbers of spectral
counts (identified tryptic peptides) which can serve as a semi-
quantitative measure of the protein abundance. Among the

known pathogenic factors the fractions contained large amounts
of collagenase, all three Hbl subunits, CLO and a hemolytic
sphingomyelinase. No Nhe binding subunit, NheC, necessary for
the enterotoxin activity was identified in either toxic fraction.
It is plausible that the Nhe migrated through the column as
dissociated individual subunits and therefore the NheC was
separated from NheAB.

Bacterial Propagation in Medium
Supplemented with BSA Potentiates the
Cytotoxicity of Sups
Previous research reported that supplementation of culture
medium with BSA enhances the toxicity of the Bacillus species
(Elleboudy et al., 2011; Popova et al., 2011; St John et al., 2013).
To investigate this effect, cultures of BC1 and BC2 were grown
in microaerobic conditions in DMEM supplemented with or
without 1 g L−1 of BSA. Figure 4 demonstrates BSA significantly
increased the toxicity of bacterial Sups from both strains. The
OD of these cultures indicated minor differences in growth that
were not significant (0.72 OD600 in DMEM versus 0.80 OD600 in
DMEM with BSA). Sups from BC1 cultures grown without BSA
retained toxicity up to a fourfold dilution compared to the 32-fold
dilution for the Sups from cultures grown in the presence of BSA.
Reduction of the Sup pH from 6.9 to 5.4 was also noticed in the
cultures grown in the presence BSA indicative of the stimulation
of acidic anaerobic fermentation (Popova et al., 2011).

BSA Prevents the Inactivation of the
Reduced Isoform of CLO
It was previously discovered that the effect of BSA may
be relevant to stabilization of secreted CLO. Under certain
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FIGURE 2 | BC1 and BC2 cultures accumulate high levels of toxicity
when grown in microaerobic and aerobic conditions for 20 h (A). The
toxicity of microaerobic Sup can be partially abrogated by cholesterol (B).
(A) BC1 and BC2 were cultured in CSFM as described in the Figure 1
legend. The Sups were collected, serially diluted in CSFM, and used to treat
HSAECs for 20 min. The viability was assessed with resazurin relative to
unexposed cells. (B) Where indicated, cholesterol was added to microaerobic
Sups at 10 μg mL−1 for 1 h. For each strain the data for two dilutions in the
dynamic range of the assay are shown.

conditions, CLO monomers spontaneously undergo pre-
oligomerization which renders it unable to bind to cholesterol
located on the cell membrane, resulting in reduced membrane
permeabilization (Cowell et al., 1978; Gilbert, 2005).
Additionally, CLO was reported to have two conformations
depending on the oxidation or reduction of its cysteine residue.
The active form contains a free sulfhydryl group and, if oxidized,

FIGURE 3 | The activity of Sups results in cell membrane damage of
the exposed HSAECs. Sups from microaerobic cultures of BC1 (A) and BC2
(B) in DMEM supplemented with 1 g L−1 of BSA were serially diluted with
fresh medium and incubated with 10 μg mL−1 of cholesterol (ch) for 1 h at
room temperature. Then 100 μl of Sups at the indicated dilutions were added
to the monolayers of HSAECs and incubated for 20 min. The cell membrane
permeability was assessed with the CytoTox-ONE Homogeneous Membrane
Integrity kit (Promega) based on the release of LDH. Toxicity toward HSAECs
was analyzed using resazurin. The viability and permeability corresponding
assays were calculated as fluorescence relative to the untreated control or
completely lysed cells, respectively.

results in protein inactivation. To determine the contribution
of the above mechanisms to the CLO stabilization by BSA, BC1
cultures were grown in the presence or absence of BSA and
concentrated by membrane filtration. To test if the concentration
of Sups caused CLO inactivation the retentates were diluted
with corresponding fresh media to the original volume and
their toxicities were assessed after incubation in the presence or
absence of cholesterol. After concentration, CLO only remained
functional in Sups grown in the presence of BSA (Figure 5A).

The retentates were run on PAGE gels in native and
denaturing conditions to analyze the protein mobility and
pattern. Standard western blotting conditions were followed
using antibody against highly homologous streptolysin O

Frontiers in Microbiology | www.frontiersin.org 6 February 2016 | Volume 7 | Article 69

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Kilcullen et al. Toxicity of B. cereus ATCC 11778 and 14579

TABLE 2 | Pathogenic factors identified in the toxic size-exclusion
chromatography fractions of Sups.

Known virulence factor Spectral count

BC1 BC2

Bacillolysin 1 0

Collagenase 22 25

Hemolysin BL binding component
precursor

0 10

Hemolysin BL lytic component L1 0 12

Hemolysin BL lytic component L2 0 15

Non-hemolytic enterotoxin Nhe lytic
component A

19 10

Non-hemolytic enterotoxin lytic Nhe
component B

12 5

Cereolysin O precursor 11 5

Sphingomyelin phosphodiesterase 2 0

(Heffernan et al., 2007). On SDS-PAGE gel in the presence of
DTT the protein demonstrated a single band corresponding
to dimer with approximately 120 kDa in size (left panel in
Figure 5B). The presence or absence of BSA appeared to have
no effect on dimer formation in Sups. Right panel in Figure 5B
demonstrates a native PAGE gel containing samples run without
a reducing buffer. Sups from cultures grown in the presence of
BSA had two bands of CLO, indicating different charged forms
of the toxin. Previous research has identified the oxidized form of
CLO migrates faster than its reduced form (Cowell et al., 1976).
These results suggested BSA did not prevent CLO dimerization
but instead protected an active conformation of CLO from being
oxidized. BC2 strain demonstrated similar behavior; however, the
amount of produced CLO was substantially reduced (data not
shown).

FIGURE 4 | The cultivation of B. cereus in medium supplemented with
BSA enhances the cytotoxicity of Sups. DMEM was supplemented with or
without 1 g L−1 of BSA and Sups were generated from 20-h microaerobic
cultures. Dilutions were prepared with the medium used for growing cultures
and their toxicity to HSAECs assessed in triplicates using resazurin.

FIGURE 5 | CLO is inactivated in Sups concentrated in the absence of
BSA. (A) Sups from BC1 microaerobic cultures grown in DMEM with or
without 1 g L−1 of BSA were filtered using Amicon centrifugal filters with a
3 kDa cut-off pore size. The retentates were diluted with corresponding
medium to the original volume and assayed for CLO activity in triplicates after
incubation with or without 10 μg mL−1 cholesterol for 1 h at room
temperature. (B) Retentates from filtration were run on SDS-PAGE gels and
transferred to nitrocellulose membranes. Membranes were blocked with 5%
BSA in PBST and reacted with rabbit polyclonal anti-streptolysin O antibody
followed by an anti-rabbit IgG, HRP-linked antibody. Blots were developed
using SuperSignal West Dura Extended Duration Substrate (Thermo
Scientific).

Metabolic Product Succinic Acid Acts as
a Pathogenic Factor and is Enhanced by
BSA
Bacillus species can undergo anaerobic fermentation that results
in the generation and secretion of acidic metabolic products. Sups
from BC1 grown in microaerobic conditions were titrated to pH
5.4, supplemented with SA and incubated with HSAECs. The pH
value of 5.4 in Sups indicate SA which has pKas of 4.2 and 5.6
could be a potential contributor in its partially protonated state.
The concentration of SA in Sups was found to be 1.4 ± 0.1 mM
(mean ± SD) regardless of BSA supplementation. To determine
if succinate could potentiate B. cereus virulence, cells were
briefly exposed to Sups which were then removed and replaced
with medium containing different concentrations of SA. The
supplementation with SA significantly enhanced the cytotoxicity
of Sups (Figure 6).

BSA Potentiates the Toxicity of B. cereus
Mediated by Reactive Chemical Species
Previous research demonstrated that microaerobic cultures of
B. anthracis generate NO and its derivatives such as NO2
and peroxynitrite. These substances enhance bacterial virulence
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FIGURE 6 | Succinic acid (SA) increases the toxicity of microaerobic
Sups grown in medium containing BSA. Strain BC1 was inoculated into
DMEM medium with 1 g L−1 of BSA and grown under microaerobic
conditions for 20 h. Sups were diluted in DMEM titrated using HCl to the pH
of Sups (5.4). After 20-min HSAECs exposure, Sups were removed and the
cells were further incubated for 2 h at 37◦C, 5% CO2 in DMEM supplemented
with 0, 2, or 5 mM SA. After incubation, medium was removed and cell
viability was assessed using resazurin. Controls included the same
concentration of SA in the medium titrated to pH 5.4.

through induction of mitochondrial stress in the exposed
host cells (St John et al., 2013). The release of reactive
species is detectable as a capacity of bacterial cultures to
oxidize the dye AR as a test substrate (St John et al., 2013).
Since B. cereus was also reported to produce peroxynitrite
in microaerobic cultures and conditions of mild acid stress
(Mols et al., 2010; Mols and Abee, 2011) we assessed the
level of B. cereus-generated reactive substances using the AR
test.

AR is a colorless and non-fluorescent derivative of
dihydroresorufin that generates a red derivative of resorufin
when oxidized by hydrogen peroxide or peroxynitrite in the
reaction catalyzed by HRP. Aliquots of bacterial cultures
grown in the presence of AR and HRP were collected every
hour and the color intensities of Sups were measured.
A medium containing both AR and HRP reagents served
as a control. Figure 7 illustrates BC1 and BC2 microaerobic
cultures generated significant amounts of oxidized AR. Upon
a prolonged incubation with BC2 the intensity of released
red color declined. This effect is typically associated with
consumption of available oxygen (Towne et al., 2004). In
addition, resorufin can be converted into a colorless product by
peroxidase.

To further elucidate the nature of the oxidizing substances,
HSAECs were incubated with Sups supplemented with ascorbic
acid (AA), a commonly used biologically relevant antioxidant
(Bendich et al., 1986). For example, AA is effective in providing
complete scavenging of NO-derived radicals from solution
(Balavoine andGeletii, 1999). On the other hand, intracellular AA
was reported to work as a pro-oxidant enhancing susceptibility
of cells to the toxic effect of peroxynitrite in mitochondria
(Guidarelli et al., 2001). We added AA to microaerobic Sups for
2 h at 0, 0.5, 1, and 2 mM concentrations and the viability of
HSAECs was tested after 20-min exposure. Sups supplemented
with ascorbate were considerably more toxic, and the BC1

FIGURE 7 | B. cereus produces reactive oxidizing species under
microaerobic conditions. BC1 and BC2 microaerobic cultures were grown
in DMEM with 1 g L−1 of BSA, 0.1 mM of AR reagent, and 0.2 U L−1 of HRP
using 24-well plates (1 mL per well). Sups were collected every hour and their
absorbance was read in triplicates, via spectrophotometer at 571 nm. The
reaction mixture including all components except the bacterial inoculum was
used as a control.

Sup demonstrated the highest effect (Figures 8A,B). Control
cells exposed to the AA-supplemented culture medium were
non-toxic in spite of some acidification of the Sups by AA
(Figure 8 legend). The BC1 toxicity-enhancing effect of AA took
place only in the presence of BSA (Figure 8C) in agreement
with the previous studies implicating BSA in the capture and
stabilization of reactive substances in Sups (St John et al.,
2013).

DISCUSSION

The high toxicity of the B. cereus culture filtrates (Sups) in mice
and cultured host cells was reported in several publications in
the 1960s (Bonventre and Eckert, 1963a,b; Eckert and Bonventre,
1963; Bonventre, 1965). In comparison, Sups of B. anthracis
cultures were almost completely non-toxic. This finding was
rather unexpected, taking into account that commonly isolated
B. cereus strains are not as virulent as B. anthracis. The
conundrum remained unresolved as the attention of researchers
shifted toward experiments with rats uniquely susceptible to
anthrax Lethal Toxin. At that time a side-by-side comparison of
B. anthracis and B. cereus required to characterize commonalities
and differences between the pathogenic mechanisms employed
by these microbes was complicated by the absence of genome
sequence information. Current data demonstrate that many
B. cereus strains possess a number of pathogenic factors with
high cytotoxic potential and some of the recently discovered
isolates display virulence in vivo comparable with B. anthracis
(Hoffmaster et al., 2006; Oh et al., 2013). On the other hand,
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FIGURE 8 | Ascorbic acid (AA) potentiates the toxicity of Sups in
BSA-dependent manner. (A,B) Strains BC1 and BC2 were inoculated into
DMEM medium with 1 g L−1 of BSA and grown under microaerobic
conditions. Dilutions were made with medium titrated using HCl to the pH of
grown cultures. Then, 100 mM stock of ascorbic acid in water was prepared
and added to Sups at a concentration of 0, 0.5, 1, and 2 mM and incubated
for 2 h at room temperature. The corresponding pH values were 5.42, 5.34,
5.28, and 5.08 in the case of BC1 and 5.35, 5.29, 5.11, and 4.96 in the case
of BC2. HSAECs were exposed to the Sups for 20 min and viability was
determined. (C) Strain BC1 was grown with and without BSA, and the effect
of added AA was assessed as in (A) and (B). Controls represent viability of
mock-treated HSAECs.

it is now understood that B. anthracis virulence seems to rely
more on the immunomodulatory function of Lethal and Edema
toxins rather than their direct cytotoxicity (Tournier et al.,
2009).

Recent studies emphasized the importance of hypoxic
conditions for the expression of B. anthracis pathogenic factors
(Klichko et al., 2003; Popova et al., 2011, 2015; St John et al.,

2013) thus providing rational explanation to the early reports
which employed static (microaerobic) cultures (Thorne et al.,
1960; Bonventre and Eckert, 1963a,b; Eckert and Bonventre,
1963). In the case of B. cereus there were conflicting studies
regarding the influence of oxygen on enterotoxin production
(Christiansson et al., 1989; Duport et al., 2004, 2006; Zigha et al.,
2006; Van Der Voort and Abee, 2009). The regulation of these
pathogenic factors has been shown to depend on the complex
interaction of environmental parameters including bacterial
density, oxygen availability, redox potential, temperature, glucose
availability, and pH (Garcia-Arribas and Kramer, 1990; Glatz
and Goepfert, 1976). The ResDE two-component system, as
well as the anaerobic regulator Fnr, were found to exert major
control on both fermentative growth and enterotoxin expression
that function partially independently of the pleiotropic virulence
gene regulator PlcR (Duport et al., 2006; Zigha et al.,
2007).

In this study, we carried out a side-by-side analysis of
cytotoxicity of two B. cereus strains in the conditions previously
used to generate cytotoxic B. anthracis Sups due to expression
of factors distinct from the Lethal and Edema toxins. Among
the enterotoxin genes the strain BC1 (ATCC 11778) possesses
the genes for CLO and Nhe while the strain BC2 has additional
genes for Hbl, BceT, and CytK. We used HSAECs originating
from the lung airways because the lung is uniquely susceptible
to the Sups intravenously administered to mice and rats (in
the cases of B. cereus and B. anthracis, respectively; Bonventre
and Eckert, 1963a,b; Eckert and Bonventre, 1963). We found
that for both strains a limited supply of oxygen in microaerobic
(static) cultures delayed growth (Figure 1). However, both
microaerobic and aerobic conditions resulted in a quick onset
of HSAEC cytotoxicity within 2 to 4 h during a log-phase of
growth. The effect of oxygen on the cytotoxic effect of Sups
was strain-dependent: a microaerobic environment, compared
to aeration, stimulated the toxicity of BC1, in contrast to BC2
which was more toxic upon aeration. However, irrespective of
the influence of oxygen, the strain BC2 was substantially more
toxic than BC1 judging by higher dilutions of the Sups required
to reach a comparable effect on HSAECs (Figure 2). Based on
the cholesterol inhibition of Sups’ toxicity we concluded that
approximately half of the cytotoxic potential of both strains in
microaerobic conditions (Figure 2B) depends on the activity of
the CLO, assuming that other known toxins of B. cereus are
not cholesterol-sensitive. In comparison, the effects of cholesterol
on the toxicity of B. cereus and B. anthracis Sups are similar,
but B. anthracis demonstrates markedly different time course of
the exotoxin production. In microaerobic conditions B. anthracis
displays no toxicity until a stationary phase, a finding that
is consistent with the anaerobic control of ALO expression
(Klichko et al., 2003). In line with this, aeration abrogates the
activity of B. anthracis Sups which would otherwise require
a 2-h cell exposure to elicit a toxic effect (Popova et al.,
2011).

The activity of B. cereus PFTs in Sups was also demonstrated
in experiments which evaluated the extent of cell membrane
permeability based on the amount released LDH. Consistent
with the toxic effect of small metabolic bacterial products,
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the large pores permeable to big LDH molecules were not
necessary for the cell killing by Sups. The MS identification
of the toxic products in the size exclusion column fractions
confirmed the expression in BC2 Sups (but not BC1 Sups)
of all three components of Hbl required for its activity
(Sastalla et al., 2013). The Nhe and CLO were present in the
Sups of both strains. The effect of cholesterol indicated CLO
played a predominant role of membrane permeabilization by
microaerobic BC1 Sups (Figure 3A). This finding is at odds
with a conclusion on a major role of Nhe by Fagerlund et al.
(2008). The discrepancy likely arises from the fact that the
authors used aerobic cultures and therefore did not take into
account the effect of toxic factors produced under anaerobic
control.

A number of studies have reported BSA can significantly
enhance the virulence of bacteria (Dubos, 1947; Liu, 1973;
Elleboudy et al., 2011; St John et al., 2013; Kruczek et al., 2014).
Research on B. cereus has found that medium supplemented
with BSA increases the production of bacterial phospholipases
(Elleboudy et al., 2011); however, we did not find the
phospholipases in the toxic fractions of Sups (Table 2). Our
experiments showed an additional mechanism in which BSA
contributed to the maintenance of the active CLO conformation
in Sups. Although CLO is believed to be primarily monomeric
in solution (Cowell et al., 1978; Gilbert, 2005), our data indicate
that in the Sups it was present in a dimeric form. BSA did not
prevent CLO dimerization but instead protected the CLO dimer
from being oxidized (Figure 5).

Additionally, serum albumin could concentrate NO and O2 in
its hydrophobic core followed by the micellar catalysis of NO into
N2O3 or NO2 which are more stable products (Nedospasov et al.,
2000). Research further investigating this effect found NO may
be responsible for downstream formation of toxic peroxynitrite
and protein modifications negatively interfering with the host
cell (St John et al., 2013). These authors found that the BSA
supplementation into culture medium potentiated B. anthracis
toxicity because of the BSA globule’s ability to concentrate and
stabilize volatile NO bacterial products. We found that B. cereus
displayed a metabolic toxicity similar to B. anthracis which was
dependent on the presence of BSA. In line with the previous
data, we confirmed that B. cereus generated oxidizing species with
the properties of peroxynitrite (Mols and Abee, 2011; St John
et al., 2013) which could be detected with the AR dye. The toxic
potency of Sups was enhanced by SA, a metabolic by-product of
bacteria under anaerobic conditions. In the case of Bacteroides
species, SA is a known virulence product at pH of 5.5 but not
at pH of 7.0 (Rotstein et al., 1987). The mechanism behind SA-
induced toxicity involves reduction of intracellular pH which
facilitates irreversible respiratory burst in the mitochondria.
As it was suggested by Popova et al. (2011), in the presence
of NO the burst may result in the formation of more toxic
peroxynitrite.

To obtain additional evidence in favor of this mechanism
we tested the effect of externally added AA which was reported
to enhance the damaging effect of low concentrations of
peroxynitrite (Guidarelli et al., 2001, 2014). AA, also known
as vitamin C, is a very important water-soluble vitamin.

Intracellular AA is involved in a large variety of biochemical
reactions and generally displays antioxidant properties associated
with prevention of the deleterious effects mediated by a large
variety of reactive species. However, growing experimental
evidence documents an unexpected ability of AA to enhance
a peroxynitrite-dependent superoxide/H2O2 formation in the
mitochondrial respiratory chain with the release of secondary
species responsible for DNA damage and toxicity (Guidarelli
et al., 2014). Indeed, addition of AA to the BC1 Sups reduced
viability of HSAECs in the BSA-dependent manner (Figure 8)
indicating participation of BSA in the chemical reactivity of
Sups and supporting the previous data on the contribution
of peroxynitrite (St John et al., 2013). However, AA did not
increase the toxicity of BC2 Sups which therefore employ a
mechanism different from BC1. Research in this direction is
forthcoming.

In summary, our analysis demonstrates high potency of
B. cereus strains BC1 (ATCC 11778) and BC2 (ATCC 14579)
to produce secreted products with cytotoxic activity against
lung epithelial cells in microaerobic and aerobic conditions
strongly exceeding the previously reported activity of B. anthracis
Sterne. In the case of both strains the PFTs contribute
substantially to the mechanism involving permeabilization of
the target cell membrane combined with the effect of acidic
metabolic products and the host serum albumin in microaerobic
environment. With regard to our findings, we hypothesize that
the tested strains of B. cereus and B. anthracis evolved to
rely on different pathogenic strategies in which the former
one emphasizes a direct cytotoxicity while the latter one is
much less cytotoxic but strongly immunomodulating. Our results
were obtained with only one cell type and therefore do not
reflect a potential variety of cell-specific features of B. cereus
pathogenic factors. Nevertheless, the behavior of epithelial
cells well known to be highly susceptible to PFTs is relevant
to different biological scenarios. Further characterization of
B. cereus strains in different environmental conditions is required
to fully understand pathogenic mechanisms employed by this
microbe.
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