
ORIGINAL RESEARCH
published: 09 February 2016

doi: 10.3389/fmicb.2016.00106

Edited by:
Julianne Teresa Djordjevic,

Sydney Medical School – The
University of Sydney & The Westmead

Institute, Australia

Reviewed by:
Andrew Alspaugh,

Duke University School of Medicine,
USA

Yong-Sun Bahn,
Yonsei University, South Korea

Lukasz Kozubowski,
Clemson University, USA

*Correspondence:
Ling Lu

linglu@njnu.edu.cn

Specialty section:
This article was submitted to
Fungi and Their Interactions,

a section of the journal
Frontiers in Microbiology

Received: 08 November 2015
Accepted: 20 January 2016

Published: 09 February 2016

Citation:
Cai Z, Chai Y, Zhang C, Feng R,

Sang H and Lu L (2016) Molecular
Characterization of Gβ-Like Protein

CpcB Involved in Antifungal Drug
Susceptibility and Virulence

in A. fumigatus.
Front. Microbiol. 7:106.

doi: 10.3389/fmicb.2016.00106

Molecular Characterization of
Gβ-Like Protein CpcB Involved in
Antifungal Drug Susceptibility and
Virulence in A. fumigatus
Zhendong Cai1, Yanfei Chai1, Caiyun Zhang2, Ruoyun Feng1, Hong Sang2 and Ling Lu1*

1 Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for
Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China, 2 Department of Dermatology, Jinling
Hospital, School of Medicine, Nanjing University, Nanjing, China

Aspergillus fumigatus is an airborne human fungal pathogen that can survive in a wide
range of environmental condition. G protein complex transduces external signals from
a variety of stimuli outside a cell to its interior effectors in all eukaryotes. Gβ-like CpcB
(cross pathway control B) belongs to a WD40 repeat protein family with the conserved
G–H and W–D residues. Previous studies have demonstrated that Gβ-like proteins
cooperate with related signal transduction proteins to function during many important
developmental processes in A. fumigatus. However, the molecular characteristics of
Gβ-like CpcB have not yet been identified. In this study, we demonstrated that the G–H
residues in WD repeat 1, 2, 3, and the W–D residue in WD repeat 2 of CpcB are required
not only to control normal hyphal growth and conidiation but also to affect antifungal
drug susceptibility. The enhanced drug resistance might be due to reduced intracellular
drug accumulation and altered ergosterol component. Moreover, we find that the first
G–H residue of CpcB plays an important role in the virulence of A. fumigatus. To our
knowledge, this is the first report for finding the importance of the conserved G–H and
W–D residues for a Gβ-like protein in understanding of G protein functions.

Keywords: Gβ-like CpcB, G protein, drug susceptibility, virulence, Aspergillus fumigatus

INTRODUCTION

Aspergillus fumigatus is a saprophytic fungus with a large number of buoyant airborne conidia,
and it plays an essential role in carbon and nitrogen recycling due to its characteristic metabolic
ability to assimilate organic carbon and some non-elemental sources of nitrogen (Tekaia and
Latge, 2005; Lapp et al., 2014). Moreover, thermo-tolerance enables it to survive in a broad
range of environmental conditions and, accordingly, to be abundant in organic debris in soil and
decaying vegetation (Haines, 1995; Seyedmousavi et al., 2015). Compared with other Aspergilli,
the conidia of A. fumigatus that are released into the atmosphere have a diameter that is small
enough (2–3μm) to penetrate deep into the lung alveoli, whichmay contribute to the pathogenicity
of this fungus (Latgé, 1999; Brookman and Denning, 2000). As an important opportunistic
pathogen, A. fumigatus has become the most prevalent airborne fungal pathogen, causing
severe and usually fatal invasive infections in immunocompromised hosts, especially individuals
with cancer, leukemia, AIDS, organ transplantation, and chronic granulomatous disease (CGD)
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(Dagenais and Keller, 2009; Hillmann et al., 2015; Throckmorton
et al., 2015). Previous studies have demonstrated that virulence
determinants ofA. fumigatus aremultifactorial and are associated
with the biological characteristics of the fungus and the immune
status of the individual. The virulence-related genes can be
classified according to the process they are associated with, such
as thermotolerance, cell wall integrity, toxins, nutrient uptake
during invasive growth, stress response, and allergens (Abad
et al., 2010). In addition, proteins involved in calcium signaling
and G protein signaling, which play important roles in detecting
and transmitting environmental signals, have been shown to be
important for virulence (Abad et al., 2010).

WD repeat proteins are members of a large protein family
with a common beta-propeller structure based on the presence
of four or more repeating units. The WD repeat (also known as
the WD40 or β-transducin repeat) is composed of a 44–60-long
sequence of residues with the Gly-His (G–H) dipeptide at the
N-terminus and the Trp-Asp (W–D) dipeptide at the C-terminus,
often terminating in a W–D dipeptide. Neither the G–H nor
the W–D dipeptide is absolutely conserved with the WD repeats
exhibiting a variable length in the N-terminal and C-terminal
regions (Neer et al., 1994; Smith et al., 1999). Thus, they are found
in all eukaryotes and are linked to a wide variety of functions
such as signal transduction, transcriptional regulation, cell cycle
control and apoptosis (Neer et al., 1994; Smith et al., 1999).
Moreover, WD proteins are involved in fungal virulence, such
as FSR1 (Fusarium stalk rot 1) in Fusarium verticillioides and
F. graminearum, and Rak1 (mammalian RACK1 homolog) in
Ustilago maydis (Shim et al., 2006; Wang et al., 2011). In addition,
a previous study demonstrated that histidine of G–H residues
and tryptophan of W–D residues are important for hydrogen
bonding and for stabilizing the toroidal structure (Sondek et al.,
1996), which may be broadly applicable to conserved WD repeat
proteins across fungal species.

Among the WD repeat proteins, the Gβ subunit of
heterotrimeric G proteins, which functions as a tight dimer
with Gγ subunit (Gβγ), is one of the most well characterized
WD repeat proteins with a known three-dimensional structure
(Sondek et al., 1996; Downes and Gautam, 1999; Smith et al.,
1999). To date, it has been found that mammalian genomes
encoding multiple forms of WD repeat proteins possess six
characterized Gβ subunits, while the genome of the yeast
Saccharomyces cerevisae containing twelve seven-WD-repeat
proteins encodes one Gβ subunit and one Gβ-like protein
Asc1/Cpc2 (Whiteway et al., 1989; Smith et al., 1999; Valerius
et al., 2007). CpcB, a homolog of Asc1, is a Gβ-like protein and
belongs to a family of WD40 repeat proteins in A. fumigatus.
Based on bioinformatics analyses, CpcB is highly conserved in
eukaryotes with Gβ-like homologs exhibiting identities ranging
from 60.4 to 95.6% (Cai et al., 2015). Previous studies have
demonstrated that CpcB plays important roles in hyphal growth
and conidiation in A. fumigatus (Kong et al., 2013; Cai
et al., 2015). Despite its important functions, the molecular
characterization of CpcB has not been performed. In the present
study, using molecular techniques and phenotype analysis,
we verified the function of the conserved G–H and W–D
residues of CpcB. Based on the transcriptome analysis and

drug susceptibility testing, we demonstrated that Gβ-like CpcB
is involved in the maintenance of normal antifungal drug
susceptibility, which is associated with the functions of necessary
G–H and W–D residues. Moreover, we validated the relevance of
the virulence of selected G–H residue mutant through virulence
testing of the cpcB mutants. To our knowledge, this is the first
study to demonstrate the important functions of conserved G–H
andW–D residues in Gβ-like homologs.

MATERIALS AND METHODS

Strains, Oligonucleotides, Media, and
Transformation
A list of all A. fumigatus strains and oligonucleotides used in
this study is provided in Table 1 and Supplementary Table 1,
respectively. Parental wild-type (WT), �cpcB mutant and cpcB-
reconstituted strains used in the present study were identical
to those referred to as A1160C’, CZ01, and CZ02, respectively

TABLE 1 | Aspergillus fumigatus strains used in this study.

Strain Genotype Reference

A1160C’ �ku80;A1160::pyrG Jiang et al., 2014

CZ01 �ku80; pyrG; �cpcB::pyr4 Cai et al., 2015

CZ02 �ku80; pyrG; �cpcB::pyr4; cpcB
(p)::cpcB

Cai et al., 2015

CZA01 �ku80; pyrG; �cpcB::pyr4; cpcB
(p)::cpcB(�N)

This study

CZA02 �ku80; pyrG; �cpcB::pyr4; cpcB
(p)::cpcB(�WD2-4)

This study

CZA03 �ku80; pyrG; �cpcB::pyr4; cpcB
(p)::cpcB(�WD5-6)

This study

CZA04 �ku80; pyrG; �cpcB::pyr4; cpcB
(p)::cpcB(�C)

This study

CZA01-GFP �ku80; pyrG; �cpcB::pyr4; cpcB
(p)::cpcB(�N)::GFP

This study

CZA02-GFP �ku80; pyrG; �cpcB::pyr4; cpcB
(p)::cpcB(�WD2-4)::GFP

This study

CZA03-GFP �ku80; pyrG; �cpcB::pyr4; cpcB
(p)::cpcB(�WD5-6)::GFP

This study

CZA04-GFP �ku80; pyrG; �cpcB::pyr4; cpcB
(p)::cpcB(�C)::GFP

This study

CZA05 �ku80; pyrG; �cpcB::pyr4; cpcB
(p)::cpcB(G13A,H14E)

This study

CZA06 �ku80; pyrG; �cpcB::pyr4; cpcB
(p)::cpcB(G61A,H62E)

This study

CZA07 �ku80; pyrG; �cpcB::pyr4; cpcB
(p)::cpcB(G103A,H104E)

This study

CZA08 �ku80; pyrG; �cpcB::pyr4; cpcB
(p)::cpcB(G146A,H147E)

This study

CZA09 �ku80; pyrG; �cpcB::pyr4; cpcB
(p)::cpcB(G190A,H191E)

This study

CZA10 �ku80; pyrG; �cpcB::pyr4; cpcB
(p)::cpcB(W83R,D84K)

This study

CZA11 �ku80; pyrG; �cpcB::pyr4; cpcB
(p)::cpcB(W170R,D171K)

This study

CZA12 �ku80; pyrG; �cpcB::pyr4; cpcB
(p)::cpcB(W219R,D220K)

This study
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(Jiang et al., 2014; Cai et al., 2015). All colonies of the
A. fumigatus strains were grown on YAG, which contains
2% glucose, 0.5% yeast extract, trace elements, and 2% agar.
For the YG liquid medium, the agar was removed from the
YAG. Mycelia were harvested from liquid Minimal Medium
(MM), which contains 1% glucose, trace elements, and 50 ml
L−1 20 × salt. Transformation was performed according to a
previously described method (Osmani et al., 1988; May, 1989).

Construction of the Plasmids and Strains
for the GFP-Labeled Truncation
Experiment for CpcB
To construct the specific CpcB-GFP plasmids with the truncated
region of CpcB shown in Figure 2A, we first generated the CpcB-
GFP plasmid (pCA01) embedded with a full-length CpcB fused
to the GFP gene as follows. The 5′ flanking region (3030 bp, the
cpcB promoter sequences and the full-length cpcB ORF without
the stop codon) and the 3′ flanking region (739 bp, 3UTR)
were amplified from A. fumigatus A1160 genomic DNA (gDNA)
with the primer pairs CZ-P01/CZ-P07 and CZ-P05/CZ-P08,
respectively. A 752-bp GFP fragment was amplified from plasmid
pFNO3 using the primers GFP-F and GFP-R. The three PCR
products were fused using the nested primer pair CZ-P02/CZ-
P03 to generate a fusion fragment (4094 bp). As a selectable
marker, a 4269-bp hygromycin fragment (hygB) was amplified
from plasmid pAN7-1 with the primers Hyg-F and Hyg-R. The
final 8120-bp PCR products were generated by fusion PCR
using the primers CZ-P04 and CZ-P06, and then cloned using
the pEASY-Blunt Cloning Kit (TransGen Biotech) to generate
plasmid pCA01.

The CpcB-GFP reconstruction plasmid pCA02 (�N) carrying
the N-terminal deletion of CpcB–GFP was generated as follows.
Using plasmid pCA01 as the template, 1397-bp and 6453-
bp DNA fragments were amplified with the primer pairs
CZ-P06/N-R and CZ-P04/N-F, respectively. The final 7850-kb
DNA fragment was generated from these two DNA fragments
through fusion PCR using the primers CZ-P04 and CZ-
P06. Next, the fragment was cloned using the pEASY-Blunt
Cloning Kit (TransGen Biotech) to generate plasmid pCA02
(�N). A similar strategy was used to construct plasmids
containing CpcB-GFP with deletions of WD repeat 2–4,
WD repeat 5–6 and the C-terminal truncation excluding the
stop codon, which were denoted pCA03 (�WD2-4), pCA04
(�WD5-6), and pCA05 (�C), respectively. The GFP-labeled
strains of CZA01-GFP (�N), CZA02-GFP (�WD2-4), CZA03-
GFP (�WD5-6), and CZA04-GFP (�C) were generated by
transforming plasmids pCA02 (�N), pCA03 (�WD2-4), pCA04
(�WD5-6), and pCA05 (�C), respectively, into the �cpcB
mutant. The transformants were screened on MM containing
150 μg/ml hygromycin B.

Immunoblotting Experiment
As previously described (Zhong et al., 2014; Cai et al., 2015)
for protein extraction from A. fumigatus mycelia, conidia were
inoculated into liquid MM and shaken at 220 rpm on a
rotary shaker at 37◦C for 20 h. The tissue was ground in

liquid nitrogen and rapidly suspended in ice-cold extraction
buffer [50 mM HEPES (pH 7.4), 137 mM KCl, 10% glycerol,
1 μg/ml pepstatin A, 1 μg/ml leupeptin, 1 mM PMSF].
Equal amounts of protein (40 μg) per lane were subjected
to 10% SDS-PAGE and then transferred to a polyvinylidene
difluoride (PVDF) membrane (Immobilon-P; Millipore) in
384 mM glycine, 50 mM Tris (pH 8.4), and 20% methanol
at 250 mA for 1.5 h. The membrane was blocked with
phosphate-buffered saline (PBS) containing 5% milk and 0.1%
Tween 20. Next, the membrane was probed sequentially with a
1:3,000 dilution of anti-GFP antibody (Roche Applied Science)
and horseradish peroxidase-conjugated goat anti-rabbit IgG
diluted in PBS containing 5% milk and 0.1% Tween 20. The
blot was developed using enhanced chemiluminescence (ECL;
Amersham).

Construction of Plasmids and Strains for
the CpcB Truncation Experiment
The CpcB reconstruction plasmid pCA06 (�N) with the deletion
in the N-terminus of CpcB was generated as follows. Using gDNA
as the template, 1589-bp and 1911-bp DNA fragments were
amplified with the primer pairs CZ-P01/N-R and CZ-P05/N-F,
respectively. The two PCR products were fused together with
primers CZ-S and CZ-A. The resulting 3053-bp DNA fragment
containing the promoter sequence, truncated ORF and 3′UTR
was cloned into plasmid pAN7-1 using the ClonExpress II One
Step Cloning Kit (VazymeTM, C112-02) to generate plasmid
pCA06 (�N). A similar strategy was used to construct the
plasmids with deletions of WD repeat 2–4, WD repeat 5–6,
or the C-terminal truncation excluding the stop codon, which
were referred to as pCA07 (�WD2-4), pCA08 (�WD5-6), and
pCA09 (�C), respectively. The truncation strains CZA01 (�N),
CZA02 (�WD2-4), CZA03 (�WD5-6), and CZA04 (�C) were
generated by transforming the respective related plasmids into
the �cpcB mutant. The transformants were screened on MM
containing 150 μg/ml hygromycin B.

Construction of Plasmids and Strains for
the CpcB Point Mutation Experiment
The CpcB reconstruction plasmid pCA10 carrying a mutation
in the first G–H residue in WD repeat 1 was constructed
as follows. Using gDNA as the template, 1616-bp and 2154-
bp DNA fragments were amplified with primer pairs CZ-
P01/1 G–H–R and CZ-P05/1 G–H–F, respectively. The two
PCR products were fused together with primers CZ-S and
CZ-A. The resulting 3323-bp DNA fragment (the complete ORF
harboring a G–H mutation, promoter sequence and 3′UTR)
was cloned into plasmid pAN7-1 using the ClonExpress II One
Step Cloning Kit (VazymeTM, C112-02) to generate plasmid
pCA10 (1 G–H mutation). A similar strategy was used to
construct the plasmids carrying mutations in the second to the
fifth G–H residues and the first to the third W–D residues,
which were referred to as pCA11 (2 G–H mutation), pCA12
(3 G–H mutation), pCA13 (4 G–H mutation), pCA14 (5 G–
H mutation), pCA15 (1 W–D mutation), pCA16 (2 W–D
mutation), and pCA17 (3 W–D mutation), respectively. The
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strains containing point mutation of the first to the fifth
G–H residues, CZA05-CZA09, and the first to the third W–D
residues, CZA10–CZA12, were generated by transforming the
plasmids for the G–H mutation pCA10–pCA14 and the W–D
mutation pCA15–pCA17 into the �cpcB mutant, respectively.
The transformants were screened on MM containing 150 μg/ml
hygromycin B.

Measurement of R6G Uptake and
Glucose-Induced Efflux
Intracellular R6G was evaluated using a previously described
protocol (Maesaki et al., 1999) with some modifications. Briefly,
conidia were inoculated into YG medium at approximately
5 × 106 fresh conidia/ml and allowed to germinate for
approximately 5 h. The conidia were then harvested and
centrifuged at 9000 g for 2 min. The pellets were washed twice
with glucose-free PBS, and re-suspended in glucose-free PBS at
a concentration of 5 × 106 conidia/ml. To assess the uptake
of R6G, R6G was added to the conidial suspension at a final
concentration of 10 μM and incubated for 1 h at 37 ◦C. To
remove extracellular R6G, 1 ml of the equilibrated cells were
washed and re-suspended in 1 ml of glucose-free PBS buffer. The
absorption of the resulting cell suspension (1 ml) was measured
at 527 nm. To assess energy-dependent efflux, R6G was added
to the conidial suspension at a final concentration of 10 μM
and incubated for 1 h at 37◦C. Next, 0.1 g/ml of glucose was
added to the sample, followed by an incubation for 0.5 h at 37
◦C. One milliliter of the equilibrated cells were then washed and
re-suspended in 1 ml of glucose-free PBS buffer to measure the
absorption. The flow cytometric analysis was performed using an
Accuri C6 instrument and analyzed with BD Accuri C6 software
(BD Biosciences).

MIC Assay
Equal number of conidia (4× 103) from the parental WT,�cpcB,
1 G–H mutant strains were cultured in a 96-well plate at 37◦C
for 24 h in YG liquid medium without or with drugs at three
indicated concentrations, respectively. O.D value was detected at
530 nm by SpectraMax M2 system and data were analyzed with
the SoftMax Pro v5.0.1 software package.

Total Ergosterol Extraction
Total ergosterol in the A. fumigatus strains was extracted using a
previously described protocol (Alcazar-Fuoli et al., 2008). Briefly,
mycelia were cultured for 18 h in 100 ml of liquid MM media.
Subsequently, they were harvested, dried and ground to a fine
powder. Two hundred milligrams of the ground mycelia were
treated with 3 ml of 25% alcohol potassium hydroxide solution
(3:2 methanol:ethanol) and mixed by vortexing for 1 min. After
the mixture was incubated in an 85 ◦C water bath for 1 h, the
ergosterol was treated with 1 ml of sterile distilled water and
3 ml of pentane followed by vigorous vortexing for 3 min. The
upper pentane layer was transferred to a clean glass tube and
evaporated in a fume hood at room temperature. The dried-down
samples were re-dissolved in 1 ml of methanol and syringe-
filtered through 0.2 μm-pore-size filters. Total ergosterol was

analyzed using HPLC (Agilent Technologies) and detected at
280 nm using an AQ-C18 column (250 mm by 4.6 mm, 5 μm).
Elution was conducted at a flow rate of 1 ml min−1 with a
mobile phase containing water andmethanol eluent (100%HPLC
grade).

Virulence Test
Animal infection experiments were conducted following the
guidelines and approved protocols of the Jiangsu Province
Experiment Animal Care and Use Committee. Using an
immunosuppressed murine model, the virulence assay was
performed according to similar approaches described previously
(Cai et al., 2015). White male ICR mice (6 weeks old, 20–
22 g) were injected intraperitoneally with cyclophosphamide
at 150 mg/kg of body weight on days-3 and -1, followed by
75 mg/kg of body weight on days 3, 6, and 9. In addition to
cyclophosphamide, hydrocortisone acetate was also administered
to immunosuppressed mice via subcutaneous injection at
40 mg/kg of body weight only on day-1. And then mice were
anesthetized with pelltobarbitalum natricum by intraperitoneal
injection for minutes on day 0. In 15 mice in each group, 30 μl
of saline containing 2.5 × 106 conidia from the parental WT or
the relative cpcB mutant strains were inoculated into the mice of
the respective group via endotracheal intubation; the saline group
received 30 μl of saline without conidia as the control. The mice
weremaintained in sterile conditions and fed with sterilized water
containing tetracycline (1 mg/ml, Sigma) to prevent bacterial
infection. The survival rate was monitored daily until day 10
after inoculation. Lungs were removed from the dead animals and
maintained in 4% formaldehyde for fixation before periodic acid–
Schiff staining, according to a standard procedure (Schmalhorst
et al., 2008).

RESULTS

Structural Features of the WD40 Repeat
Protein CpcB
Bioinformatics analyses revealed thatA. fumigatus CpcB contains
the conserved G–H and W–D residues that are ubiquitous
in WD family proteins. However, the structure and function
of the G–H and W–D residues remain to be unclear yet.
Therefore, we chose a structurally conserved CpcB homolog,
the Oryctolagus cuniculus 40S ribosomal protein RACK1, as
the template for constructing a 3D homology model using
an automated protein homology-modeling SWISS MODEL1.
Amino acid sequence alignment of CpcB and RACK1 revealed
a high level of sequence conservation with an identity of
72.7% (Supplementary Figure 1). In addition, information for
the secondary structural elements of both proteins indicated
that they have a common structure of 28 β-strands, suggesting
that RACK1 is a highly conserved homolog of CpcB and may
possess a similar crystal structure (Supplementary Figure 1).
Using the SWISS MODEL, the resulting three-dimensional CpcB
model was manipulated and rendered with the biomolecular

1http://swissmodel.expasy.org/
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FIGURE 1 | Three-dimensional CpcB model manipulated and rendered in PyMOL using SWISS-MODEL with the Oryctolagus cuniculus 40S ribosomal
protein RACK1 as a template. (A) Ribbon diagram of the structure of CpcB showing seven β-propeller blades defined by the seven-numbered WD repeats
highlighted in different colors from red to tinted wheat. (B) The G–H and W–D residues are colored in red and blue, respectively. (C) The G–H residues and W–D
residues located on the 3D surface are shown in red and blue, respectively.

visualization program PyMOL (Bramucci et al., 2012). As shown
in Figure 1A, CpcB exhibits a seven-bladed β-propeller structure,
with the seven-propeller blades defined by its sevenWD sequence
repeats. Each propeller blade contains four-stranded antiparallel
β sheets, which are composed of the last strand of one blade
and the first three strands of the next blade. Although each
WD sequence repeat (highlighted in different colors) corresponds
to four β strands (highlighted in the same color), it does not
correspond exactly to each blade. To better display the position
of the conserved G–H and W–D residues, which are common
features of WD repeat proteins, we highlighted the G–H residues
in red and the W–D residues in blue (Figure 1B). Notably,
all five G–H dipeptides of CpcB occurred in the loop region
connected to the adjacent β strands. In comparison, the W–D
residues located at amino acids positions 83–84 and 170–171
were also located in the loop region, excluding the W–D residue
at position 219–220 located in the β propeller (Figure 1B).
Further analysis indicated that the G–H residues at positions

13–14, 61–62, and 103–104 were exposed to the surface of the
structure, while those at positions 146–147 and 190–191 were
partially buried in the structure (Figure 1C). Additionally, in
contrast to position 170–171, the W–D residues at positions
83–84 and 219–220 were separated by other residues (Figure 1C).
Based on the structural characteristics, we found that the G–H
and W–D residues at the N-terminus were exposed to the
structural surface, while those near the C-terminus were more
buried in the structure, suggesting that the G–H and W–D
residues at different positions may have different functions and
importance.

The Truncation of WD Repeats in CpcB
Affects Normal Hyphal Growth and
Conidiation
To identify the function of WD repeats, we performed a serial
truncation according to the predicted region of each WD repeat,
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FIGURE 2 | Deletion of the WD repeats caused severe defects in conidiation and hyphal growth. (A) Schematic representation of the serial WD repeat
deletions in CpcB. �N: deletion of the region from the second amino acid to WD repeat 1 (2–44 aa); �WD2–4: deletion of WD repeat 2–4 (52–178 aa); �WD5–6:
deletion of WD repeat 5 and 6 (181–260 aa); �C: deletion of the region from WD repeat 7 to the terminal amino acid (272–316 aa). (B) Colony morphology of the
truncated cpcB mutants on YAG solid medium at 37◦C for 2.5 days. (C) Western blotting performed using the anti-GFP antibody showed the predicted molecular
masses as indicated.

as shown in Figure 2A. We divided seven WD repeats into three
regions including N-terminus, middle region and C-terminus.
WD repeat 1 and 7 belonged to N-terminus and C-terminus,
respectively. Considering the middle region containing WD
repeat 2–6 might be large, we made two separate truncations
encompassing the WD 2–4 and WD 5–6 domains. Since the
GFP-labeled strain can be used to detect not only the expression
but also the fluorescence localization of GFP-labeled protein, we
constructed related truncated GFP-labeled strains using the same
approach used for CpcB-GFP (Cai et al., 2015). For constructing
these strains, the CpcB–GFP fusion constructs harboring the
corresponding truncated CpcB were transformed into the �cpcB
mutant to generate strains CZA01-GFP (�N), CZA02-GFP
(�WD2-4), CZA03-GFP (�WD5-6), and CZA04-GFP (�C)

with the GFP tag fused at the C-terminus of the truncated CpcB
under the control of the native cpcB promoter. The phenotype
assays revealed that all of the truncated GFP-labeled strains
displayed �cpcB-like defects in radial growth and conidiation
on YAG solid medium, which was significantly different from
the complemented strain transformed with the full-length cpcB
gene showing a colony phenotype of WT-like hyphal growth and
conidiation (Figure 2B). These data suggest that truncated WD
repeats in CpcB affect normal hyphal growth and conidiation.
Microscopic observation indicated that all the truncated mutants
had the GFP fluorescence signal (Supplementary Figure 2). Using
Western blotting analysis, we previously demonstrated that the
CpcB–GFP fusion protein is a polypeptide of approximately
62 kDa (35.0 kDa of CpcB plus 26.9 kDa of GFP). To examine
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whether the truncated CpcB protein was correctly expressed, we
detected the mass of the GFP fusion protein in the GFP-labeled
strains by Western blotting analysis with an anti-GFP antibody.
Actin was used as a loading control to make sure each lane
had the same amount of proteins. As shown in Figure 2C, all
truncation proteins showed the predicted molecular masses at
a position of approximately 57 for CZA01-GFP, 48 for CZA02-
GFP, 53 for CZA03-GFP, and 58 kDa for CZA04-GFP, indicating
all protein truncation were successful and predicted. Most likely,
the weak band near 25 kDa was GFP protein degraded from
CpcB–GFP fusion protein. There were same amount of loading
protein samples in each lane from actin antibody staining.
However, all four truncated protein chimeras were expressed
at significantly lower levels as compared to the wild type,
which might have contributed to growth and conidiation defects.
These findings suggest that the CpcB protein truncation may
affect the protein expression. To rule out a possible artificial
effect of GFP, we next constructed additional complementation
strains referred to as CZA01 (�N), CZA02 (�WD2-4), CZA03
(�WD5-6), and CZA04 (�C), using approaches similar to
those used to construct the aforementioned CpcB–GFP strains
except for the exclusion of the GFP tag. Compared with the
cpcB-reconstituted strain complemented with full-length cpcB,
which could completely restore the growth and conidiation
defects to wild type levels, all of the CZA01-CZA04 strains still
exhibited severe growth and conidiation defects, which was in
line with that observed for corresponding GFP-labeled strains
(Figure 2B).

The N-Terminal G–H and W–D Residues
of CpcB Play More Important Roles than
Their C-Terminal Counterparts
To analyze that loss of function might be due to a conformational
change in CpcB caused by the truncation, which was unable
to truly reflect the function of the truncated WD repeats, we
introduced point mutations at the sites of five G–H and three W–
D residues in the WD repeats, which may have differential effects
on the function of CpcB based on the analyses of the structural
characteristics. To assess the roles of the G–H residues, we
generatedmutant alleles by substituting Gly-His (G–H) with Ala-
Glu (A–E) for all G–H residues in WD repeat 1 to 5 (Figure 3A).
In these mutants, we individually reintroduced the cpcB allele
carrying the site-directed mutagenesis driven by the endogenous
cpcB promoter into the �cpcBmutant, and referred to the strains
as CZA05 (G 13 A, H 14 E), CZA06 (G 61 A, H 62 E), CZA07
(G 103 A, H 104 E), CZA08 (G 146 A, H 147 E), and CZA09
(G 190 A, H 191 E). As shown in Figure 3B, colonies of the first
and second G–Hmutation strains, CZA05 and CZA06, exhibited
severe phenotypic defects similar to those observed for the�cpcB
mutant, while the third G–H mutation strain, CZA07, also
displayed significantly reduced conidiation and growth defects
to some extent. In comparison, there were no detectable defects
in the phenotypes of the fourth and fifth G–H mutation strains,
CZA08 and CZA09, compared with their control parental WT
strain (Figure 3B). Using quantitative testing, the production of
conidia was found to be less than 50% in the first three G–H

mutation strains, while it was more than 80% in the last two G–
H mutation strains versus the parental WT strain (Figure 3C).
Similar to that observed for conidiation, the radial diameter of
the hyphal growth was significantly altered in the first three
G–H mutation strains compared with the last two mutation
strains (Figure 3C). In addition, the transcription of cpcB in the
first three G–H mutation strains, CZA05-CZA07, by RT-PCR
confirmed that it was expressed at normal levels (Supplementary
Figure 3). These results indicate that any of the first three G–
H mutations but not the fourth or the fifth G–H mutation has
the ability to induce defective conidiation and growth. Therefore,
these data indicate that the first three G–H residues at positions
13–14, 61–62, and 103–104 in WD repeat 1, 2, and 3 are required
for normal hyphal growth and conidiation, compared with the
fourth and fifth G–H residues.

To further test the functional importance of W–D residues
in WD repeat 2, 4, and 5 (Figure 3A), we substituted Trp-
Asp (W–D) with Arg-Lys (R–K) to generate strains CZA10
(W 83 R, D 84 K), CZA11 (W170R, D171K), and CZA12
(W219R, D220K) using the same approach employed to assess
the G–H residues. After spotting onto YAG solid medium,
the second and the third W–D mutation strain CZA11 and
CZA12 displayed WT-like growth and conidiation, probably
CZA12 had a modest effect (if any), suggesting that they
might not contribute to the function of CpcB (Figure 3B).
In contrast, the first W–D residue mutation strain, CZA10,
showed remarkably defective growth and conidiation, similar
to that of the mutant carrying the full-length cpcB deletion.
These results suggest that the first W–D residue at amino acid
position 83–84 play a more important role in hyphal growth
and conidiation than the second and the third W–D residues.
The quantification data indicated that CZA10 produced 48% of
the conidia and 77% of the colony diameter of the parental WT
strain; the third W–D residue mutation strain, CZA12, produced
approximately 85% of the conidia and 98% of the colony
diameter of its parental WT strain (Figure 3C). These results
further suggest that the first W–D residue at position 83–84
in WD repeat 2 have a more significant effect on conidiation
and hyphal growth than others. Taken together, on the basis
of the structural characteristics of exposure surface of CpcB
combined with phenotypes in site-mutations, the N-terminal
G–H and W–D residues of CpcB are required in hyphal growth
and conidiation. However, it could not exclude the possibility
that site-mutations may affect the colony growth through the
decreased protein expressions which are similar to that of
truncated CpcB.

Defects in Full-Length CpcB or
N-Terminal G–H and W–D Residues
Result in Multidrug Antifungal
Resistance
Several lines of evidence support the notion that G protein-
mediated signaling contributes to the antifungal drug response
(da Silva Ferreira et al., 2006; Lafayette et al., 2010). To
verify whether Gβ-like CpcB participates in the antifungal
drug susceptibility, we performed a transcriptome analysis to
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FIGURE 3 | Comparison of function based on colony phenotypes between the N-terminal G–H and W–D residues and their C-terminal counterparts.
(A) Illustration of the amino acid sequences of CpcB protein consisting of the seven WD repeats, including the five G–H and the three W–D residues. (B) Colony
phenotypes of the parental wild-type (WT) strain and cpcB mutants. Equal numbers of conidia (2 × 104) were spotted onto YAG solid medium at 37◦C for 2.5 days.
(C) Quantitative data for the hyphal growth diameters and conidiation after culturing at 37◦C for 2.5 days. Values with the same letter are not significantly different,
while different letters indicate a significant difference among the tested strains with respect to conidiation and growth (Duncan’s test, P < 0.05).

Frontiers in Microbiology | www.frontiersin.org 8 February 2016 | Volume 7 | Article 106

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Cai et al. Gβ-Like CpcB in Aspergillus fumigatus

identify a possible link between CpcB and drug susceptibility
resulting from the differential expression of genes related
to the drug response. As shown in Supplementary Table 2,
ergosterol biosynthesis-related genes, the putative erg5, erg10,
and erg26 orthologs and the ABC multidrug transporter
gene-mdr1 in A. fumigatus, were significantly differentially
expressed in the �cpcB mutant compared with the control
parental WT strain. To verify a potential link between these
changes in expression and drug responses, we performed
drug susceptibility testing using three classes of antifungal
compounds, including triazoles (voriconazole and bifonazole),
the non-azole ergosterol inhibitors allylamines (terbinafine) and
polyenes (amphotericin B). Conidia from the parental WT,
�cpcB mutant, and cpcB-reconstituted strains were serially
diluted and spotted onto YAG solid medium with or without
drug addition. Although it displayed small colonies on YAG
solid medium, the �cpcB mutant exhibited a measurable
increase in drug resistance compared with the parental WT
and cpcB-reconstituted strains under all of the tested antifungal
drug conditions, especially on medium containing voriconazole,
in which all three droplets of the �cpcB mutant conidia
produced visible colonies (Figure 4A). However, even for the
maximum droplet of conidia, the parental WT and the cpcB-
reconstituted strains failed to show any detectable colonies
under the same condition. These results suggest that the
�cpcB mutant has the enhanced resistance ability against
voriconazole, bifonazole, terbinafine, and amphotericin B. To
further examine whether antifungal drug resistance could
occur under the liquid culture condition, we examined the
growth of the �cpcB mutant in YG liquid medium in the
presence or absence of the above-mentioned antifungal drugs.
Consistent with the previous findings, the �cpcB mutant
exhibited a phenotype with shortened hyphae compared with
the parental WT and cpcB-reconstituted strains in liquid
YG medium without any antifungal drug. In comparison,
the �cpcB mutant exhibited more robust growth than the
parental WT and cpcB-reconstituted strains in the presence
of all of the tested drug culture conditions (Figure 4B),
suggesting that the deletion of cpcB results in increased
drug resistance under the liquid drug culture conditions. To
further quantify the resistance ability in these mutants, the
minimal inhibitory concentration (MIC) assay was used. All
data for the growth optical density (O.D) percentage ratio
with drug versus without drug in cpcB mutants at three
tested drug concentrations (except for BFZ at the concentration
of 0.16 μg/ml, and AMB at 88 μg/ml) were significantly
higher than that in parental WT strain, suggesting the cpcB
mutants enhanced resistance against voriconazole, bifonazole,
and amphotericin B (Table 2). Further analysis by MIC
E-test strips showed that the value of VRC in �cpcB mutant
was higher than that in its parental WT strain based on
observed cleared areas that represent fungal growth inhibition
by VRC (Figure 4C). Taken together, these results suggest that
CpcB is responsible for maintaining normal antifungal drug
susceptibilities.

Because the aforementioned data indicated that mutations in
G–H and W–D residues correlated with the function of CpcB

in growth and conidiation, we wondered whether G–H and
W–D residues are involved in CpcB-mediated drug responses.
Thus, we performed drug susceptibility assays. As shown in
Figure 5, cpcB mutants including the first three G–H residues
and the first one W–D residue mutation strains (labeled in the
red frame) showed comparable drug resistance phenotypes to
the �cpcB mutant in response to the selected drug conditions,
despite exhibiting relatively slow hyphal growth on YAG solid
medium without drug addition. In line with the observed
resistance phenotype, the first G–H mutation strain showed an
increase of MIC for VRC with E-test strips than the parental
strain did (Figure 4C). These results suggest that the first
three G–H and the first one W–D dipeptides play a crucial
role in drug responses, followed by the third W–D residue.
The mutants labeled in the blue frame exhibited WT-like
colony phenotypes regardless of the presence or absence of
drugs. These results suggest that the second W–D and fourth
and fifth G–H residues might not confer CpcB-mediated drug
susceptibility. Therefore, we conclude that the N-terminal G–H
and W–D residues that are required for growth and conidiation
are also necessary for maintaining normal antifungal drug
susceptibility.

cpcB Mutants Cause the Decrease in
R6G Accumulation as Well as the Altered
Ergosterol Component
To identify the possible causes of the drug resistance, we
examined the intracellular accumulation of antifungal drugs,
which is one of the main mechanisms of drug susceptibility
across fungal pathogens (Sanglard and Odds, 2002; Chamilos
and Kontoyiannis, 2005; Prasad and Kapoor, 2005). The
accumulation of drug in the cell results from the balance between
import into and efflux out of the cell. Therefore, we investigated
both the influx and efflux of the drug using a fluorescent dye-
rhodamine 6G (R6G), which is a drug molecule-mimicking
substrate and is extruded by transporters from cells in an energy-
dependent manner (Maesaki et al., 1999; Mailloux et al., 2014).
Among the cpcB mutants that showed a correlation with drug
susceptibility, we chose the first G–H mutation strain as a
representative mutant to analyze the drug susceptibility. The
autofluorescent signal generated by unlabelled cells without R6G
was used as a negative control for each tested sample. As shown
in Figure 6, the ratio of the intracellular R6G fluorescence
intensity to the total intracellular fluorescence intensity was
27.5% in the �cpcBmutant and 29.1% in the first G–Hmutation
strain CZA05; however, it reached 63.1% in the parental WT
strain and 67.8% in the cpcB-reconstituted strain. Consistent
with these ratios, the relative mean fluorescence intensity of
R6G accumulation was 51.6 ± 3.1 arbitrary units for the WT
strain, which was more than double the amount determined
for the �cpcB mutant (23.7 ± 1.7 arbitrary units) or the
first G–H mutation strain CZA05 (22.6 ± 2.0 arbitrary units),
suggesting that significantly reduced R6G uptake/influx occurred
in both cpcB mutants compared with the parental WT and cpcB-
reconstituted strains based on three independent experiments.
After glucose-induced R6G efflux, the ratio was comparatively
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FIGURE 4 | cpcB mutants caused multidrug resistance based on the results of the drug susceptibility assays. (A) Equal numbers of conidia (2 × 104)
were inoculated onto YAG solid medium without drug at 37◦C for 1.5 days or with drug at 37◦C for 2 days. The following antifungal drugs were used: 0.35 μg/ml
voriconazole (VRC), 1.5 μg/ml bifonazole (BFZ), 0.45 μg/ml terbinafine (TRB), and 10 μg/ml amphotericin B (AMB), respectively. (B) Equal numbers of conidia were
cultured at 37◦C for the indicated times in YG liquid culture without drug addition or with 0.18 μg/ml voriconazole (VRC), 0.8 μg/ml bifonazole (BFZ), 0.25 μg/ml
terbinafine (TRB), or 10 μg/ml amphotericin B (AMB), respectively. (C) MIC E-test strips impregnated with a gradient of VRC were placed onto a YUU agar plates
containing a lawn of conidia cultured for 48 h at 37◦C before observation.

lower in cpcB mutants compared to its parental WT and cpcB-
reconstituted strains. Therefore, we concluded that both the
�cpcB mutant and the first G–H residue mutant CZA05 had
a decrease in R6G accumulation, which might account for the
enhanced drug resistance.

In addition to the reduced intracellular accumulation of
antifungal drugs, modification of the ergosterol biosynthetic

pathway is another possible explanation for the observed
antifungal resistance (Prasad et al., 1995; Sanglard et al.,
1995; White, 1997; Sanglard, 2002; Chamilos and Kontoyiannis,
2005). Thus, we compared the levels of ergosterol in parental
WT strain, �cpcB mutant, cpcB-reconstituted strain, and the
selected G–H mutation strain CZA05 by high-performance
liquid chromatography (HPLC) analysis. Total ergosterol in the
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TABLE 2 | The drug susceptibility analysis in a liquid 96-well culture plate.

Drug concentration
(μg/ml )

O.Ddrug/O.Dno drug × 100% ± SDa

Wt �cpcB 1 G–H mutant

VRC 0 100 100 100

0.045 81.91 ± 0.24 91.12 ± 0.49∗ 87.66 ± 0.22∗

0.09 77.86 ± 0.20 90.42 ± 0.23∗ 85.57 ± 0.40∗

0.18 75.96 ± 0.54 85.04 ± 0.78∗ 81.92 ± 0.64∗

BFZ 0 100 100 100

0.16 53.72 ± 0.48 47.28 ± 0.40∗ 53.88 ± 0.32∗

0.32 31.38 ± 0.05 38.52 ± 0.11∗ 38.41 ± 0.22∗

0.64 32.82 ± 0.42 37.56 ± 0.22∗ 36.79 ± 0.15∗

TRB 0 100 100 100

1 49.80 ± 0.82 51.54 ± 0.29∗ 62.11 ± 0.70∗

2 34.52 ± 0.98 45.07 ± 0.36∗ 53.64 ± 0.58∗

4 30.38 ± 0.30 33.68 ± 0.03∗ 34.87 ± 0.17∗

AMB 0 100 100 100

88 40.65 ± 0.06 40.85 ± 0.05 41.13 ± 0.06

176 36.26 ± 0.02 41.26 ± 0.06∗ 41.48 ± 0.17∗

352 40.24 ± 0.10 45.41 ± 0.04∗ 46.15 ± 0.36∗

aData are shown as means ± SD for three independent replicates. Asterisk
represents the significant difference from the parental wild-type (Wt) strain under
the same drug concentration. (Duncan’s multiple range tests, P < 0.05).

A. fumigatus strains was extracted after 18 h of growth in liquid
MM using a previously described method (Alcazar-Fuoli et al.,
2008). We observed a major increase at approximately 11.25 min
of retention time, indicating an increase in ergosterol content
in the cpcB mutants compared with the parental WT and cpcB-
reconstituted strains based on repeated tests (Supplementary
Figure 4A). According to the quantitative analysis of ergosterol
content, the �cpcB mutant displayed a significantly different
change for this increasing peak compared with both the control
parental WT and the cpcB-reconstituted strains; however, the
G–H mutation strain did not exhibit any apparent changes
compared with other strains (Supplementary Figure 4B). Further
analysis showed that the ratio of the two main peaks in
Supplementary Figure 4A was significantly different in both
cpcB mutants compared with the parental WT and cpcB-
reconstituted strains, respectively (Duncan’s test, P < 0.001;
Supplementary Figure 4C). Therefore, we conclude that both the
strains carrying the cpcB deletion and the first G–H mutation
have altered ergosterol contents, which might correlate with
the increase in drug resistance observed in the related cpcB
mutants.

Mutation of the First G–H Residue
Results in Significantly Attenuated
Virulence in an Immunosuppressed
Mouse Model
Because the mutants at the first three G–H residues in WD
repeat 1–3 and the W–D residue in WD repeat 2 showed not
only defective hyphal growth and conidiation but also enhanced
drug resistance, similarly to the cpcB full-length deletion mutant,

we wondered whether they would show differences in virulence,
which was significantly decreased in the�cpcBmutant compared
to the parental WT strain and the cpcB-reconstituted strain (Cai
et al., 2015). Since the mice infected by cpcB-reconstituted strain
had a similar survival curve to that of the parental WT (Cai et al.,
2015), we established the mice virulence test only including cpcB
deletion mutant, 1G–Hmutant and the parental WT strain using
highly immunosuppressedmice. According to the same approach
described previously (Cai et al., 2015), conidia of parental WT,
�cpcB mutant and G–H mutant strains were inoculated into
the immunocompromised mice via endotracheal intubation, and
the mice in the saline group received 0.3 ml of saline alone.
Based on the survival curve (Figure 7A), more than 50% of
the mice inoculated with the G–H mutant but only 35% of
those inoculated with the control parental WT strain survived
to the experimental end-point. Moreover, Kaplan–Meier log-
rank analysis showed there was a significant difference between
these two groups (P-value = 0.002), further suggesting that
the survival rate of mice infected with the G–H mutant was
significantly higher than that of the mice infected with the control
parental WT strain. In comparison, mice infected with the G–
H mutant had a similar survival rate to the mice infected with
the �cpcB mutant (P value = 0.633, log-rank test). To further
dissect the difference between the G–H mutant and the parental
WT strain, we conducted histopathological analyses using the
lungs of mice sacrificed at day 5 post-inoculation. Periodic acid-
Schiff (PAS) staining revealed that the lungs of mice inoculated
with the parental WT strain had aggressive fungal growth that
spread into the lung parenchyma compared with the marginal
growth in the lungs of mice inoculated with the G–H mutant,
suggesting that the G–H mutant was efficiently controlled by the
host immune system (Figure 7B). These data suggest that the first
G–H residue of CpcB play an important role in the virulence of
A. fumigatus.

DISCUSSION

Invasive fungal infections pose a serious health risk to
immunocompromised individuals. However, specific antifungal
drugs with few side effects remain limited due to the limited
fungal-specific drug targets because of the close evolutionary
relationships of these eukaryotic pathogens with their hosts
(Hill et al., 2013). Therefore, it is urgently necessary to
evaluate specific peptide regions in drug target proteins and
virulence-related proteins to target regions that can kill or
inhibit pathogen viability while causing fewer side effects in
the host. To achieve this goal, molecular characterization
is widely used to identify key motifs of virulence-related
proteins. Despite its important functions in hyphal growth,
conidiation, and virulence, the molecular characterization
of CpcB has not been yet conducted; thus, the relative
functional motifs and crucial peptides in this protein remain
unknown. In the present study, we demonstrate that the G–
H residues in WD repeat 1, 2, 3, and the W–D dipeptide
in WD repeat 2 are required not only to control normal
hyphal growth and conidiation but also affect antifungal
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FIGURE 5 | Phenotypic characterizations of G–H and W–D mutation strains grown in the presence of the tested drugs. Equal numbers of conidia
(2 × 104) were inoculated onto YAG solid medium at 37◦C for 1.5 days in the absence of drug or in the presence of 0.35 μg/ml voriconazole (VRC) and 0.45 μg/ml
terbinafine (TRB) at 37◦C for 2 days.

drug susceptibility, suggesting that N-terminal G–H and W–D
peptides play crucial roles in the function of CpcB, especially
in virulence. Our findings reveal the function of G–H and W–
D residues of CpcB, which may have a broad spectrum of
importance for conserved Gβ-like homologs and WD repeat
proteins in fungal pathogens. However, further biochemical
evidence and the crystal structure of CpcB will provide a
better understanding of the importance of G–H and W–D
residues.

The heterotrimeric G protein complex comprises Gα, Gβ,
and Gγ subunits and transduces signals to effectors in all

eukaryotes (Shukla et al., 2014; Dohlman, 2015; Walther and
Ferguson, 2015). The circular β-bladed propeller structure of
the Gβ protein confers interactions of Gβγ with a variety
of proteins to perform diverse functions (Chen et al., 2004).
In addition, the Gβ-like/RACK homolog Gib2 functions as a
scaffold protein and interconnects diverse cellular processes
in Cryptococcus neoformans (Ero et al., 2015). Furthermore,
crystal structure of Gib2 showed its versatile functions as a
ribosome-bound scaffold to recruit various proteins to ribosomes
functioning in ribosomal biogenesis and protein translation
(Ero et al., 2015). Gβ-like CpcB that is abundantly distributed
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FIGURE 6 | Comparative analyses of the cpcB mutants and parental strain by flow cytometry. The cpcB mutants showed a decrease in R6G accumulation.
FL1-A on the X-axis represents the relative fluorescence intensity value.

in the cytoplasm and possesses a similar crystal structure of
Gib2 may interconnect ribosome proteins in a similar manner.
Based on the 3D homology model of CpcB, functional G–H
and W–D residues are mainly located in the loop region
and exposed to the surface of the structure. Therefore, we
deduced that the exposed G–H and W–D residues are accessible
for protein–protein interactions and that mutation of these
sites might change the conformation of the loop region,
preventing the mutual recognition, interaction and thus signal
transduction.

Moreover, based on the 3D model hypothesis for CpcB’s
function, we firstly demonstrated the functional importance
of WD repeats by truncation experiment. However, we found
four truncated CpcB mutants could cause the significantly
lower protein expression, which resulted in growth defects
compared to that of their parental WT strain. Although there
were some of degraded GFP fragment proteins in mutants,
compared to the parental WT strain, all generated truncated
CpcB were expressed at significantly lower levels as compared
to the parental WT strain, therefore, it remains to be unsure

whether the correlations can be established between the defective
phenotypes and WD repeats truncations due to the lower CpcB
protein level caused by truncation. Therefore, the defects of
hyphal growth and conidiation might be a consequence of
either protein truncation or lower protein expression or both in
truncated mutants. It also indicates limitations for interpreting
truncation approaches for studying the function of CpcB. On
the other hand, there was another possibility that cpcB mutants
grew very slowly and sick compared to its parental strain,
and possibly it was due to the different development stages
with different protein levels between the cpcB mutants and the
parental WT strain. Therefore, we switched to make site-direct
mutants. Our experimental data showed that the mutants
carrying modifications in the N-terminal G–H and W–D
residues had similar defects in hyphal growth and conidiation to
that carrying the full-length cpcB deletion. Because the protein
levels of CpcB were not estimated in the point mutants, it is
unsure whether the sick phenotype also resulted from decreased
protein expression similar to that in truncated mutants. Further
study using fusion tag will address this puzzle. In addition,
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FIGURE 7 | Virulence testing of the strain carrying the first G–H
mutation in an immunosuppressed mouse model. (A) The strain carrying
the first G–H mutation showed attenuated virulence, similar to the �cpcB
mutant based on data for the survival rate. (B) Histopathological analyses of
lung tissue from mice sacrificed at day 5 post-inoculation were conducted
using Periodic acid-Schiff (PAS) staining. Compared with the WT strain, the
lungs from mice inoculated with the strain containing the G–H mutation
exhibited clearly reduced invasive fungal growth compatible to that observed
for the �cpcB mutant.

the drug susceptibility testing exhibited multidrug antifungal
resistance in cpcB mutants, reflected by enhanced resistance to
kinds of antifungal drugs belonging to the triazole, polyene, and
allylamine drug classes, which are widely used for the treatment
of invasive aspergillosis (Alcazar-Fuoli and Mellado, 2012).
Among the triazole antifungals, bifonazole, and voriconazole
inhibit ergosterol synthesis through P-450 cytochrome-mediated
lanosterol demethylation (the drug target is Cyp51/Erg11),
leading to toxic sterol accumulation and cell death (Ghannoum
and Rice, 1999; Martel et al., 2010; Alcazar-Fuoli et al., 2011). The
allylamine terbinafine inhibits the enzyme squalene epoxidase
(Erg1) at the early stage of ergosterol biosynthesis (Liu et al.,
2004; Ruckenstuhl et al., 2007). The polyene amphotericin B
functions via channel-mediated membrane permeabilization,
leading to fungal cell death (Gray et al., 2012). In addition,
the resistance phenotype to amphotericin B associated with
mutations in erg3 has been extensively investigated in yeasts
(Kelly et al., 1997; Morio et al., 2012; Zavrel and White, 2015).
Based on the analysis of drug targets, we conclude that all three

major groups of antifungal agents owe their antifungal activities
to the inhibition of ergosterol synthesis or direct interaction
with ergosterol, which is the major component of the fungal
cell membrane. Therefore, we speculate that CpcB is involved
in various steps of the regulation of the ergosterol biosynthetic
pathway. Ergosterol, the main component of fungal membranes,
is essential for developmental growth and is well known as
the target of many clinically used antifungals. Based on the
multidrug resistance phenotype associated with cpcB mutation,
we hypothesize that the ergosterol synthesis in the cpcB mutants
was influenced significantly. To verify our hypothesis, we
examined the ergosterol content by HPLC analysis, and the
cpcB mutants displayed significant changes in ergosterol peaks
compared with the parental WT strain. Since they had enhanced
ergosterol contents and Erg11 (14-α sterol demethylase) is a
target of azole drugs. Most likely, the expression of Erg11 could
be increased in cpcB mutant. However, as shown in Figure 4,
the cpcB mutants could result in multidrug antifungal resistance
not specific for azole antifungals. Therefore, it suggests that
probably there are multiple resistance mechanisms. On the other
hand, our flow cytometry analysis data indicated a reduced
uptake of the drug molecule-mimicking substrate-R6G by
the cpcB mutants compared with the control parental strain,
suggesting that the deletion of cpcB might result in structural
or component changes in plasma membrane. Furthermore, the
transcriptome data showed that CpcB affects the transcription
of a large number of genes, including undefined genes with
various biological functions such as metabolic processes,
oxidation reduction processes, transmembrane transport, and
response to stress by the analyses of Gene Ontology (GO)
classification (Supplementary Table 3; Priebe et al., 2011).
The raw Illumina sequencing data were deposited in SRA2 at
NCBI with accession numbers SRR3098053 and SRR3098040.
These findings suggest that in addition to being a member
of the G protein signaling system in A. fumigatus, CpcB may
play multiple unexplored roles during the antifungal drug
response.

A few studies have suggested that G protein signaling
pathways are associated with antifungal drug susceptibility. For
example, the cAMP-PKA signaling pathway mediates azole drug
susceptibility in Candida albicans, S. cerevisiae, and A. fumigatus
(Kontoyiannis and Rupp, 2000; Jain et al., 2003; da Silva Ferreira
et al., 2006). Moreover, Lafayette et al. (2010) demonstrated
that PKC signaling regulates drug resistance via the circuitry
consisting of Mkc1, Calcineurin, and Hsp90 in C. albicans.
Based on our data for Gβ-like CpcB-mediated drug susceptibility
together with the results of others, we conclude that the G protein
complex plays important roles in maintaining antifungal drug
susceptibility.
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