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Ionic liquids discovery has celebrated 100 years. They consist solely of ions, one
of which is typically organic and asymmetrical. Remarkable physical and chemical
properties stirred their use as alternative solvents in many chemical processes. The
recent demonstration of their occurrence in nature might boost their interest in biological
sciences. In the search of mechanistic understandings of ionic liquids’ ecotoxicological
impacts in fungi, we have analyzed the proteome, transcriptome, and metabolome
responses to this chemical stress. Data illuminated new hypotheses that altered
our research path – exploit ionic liquids as tools for the discovery of pathways
and metabolites that may impact fungal development and pathogenicity. As we get
closer to solve the primary effects of each ionic liquid family and their specific gene
targets, the vision of developing antifungal ionic liquids and/or materials, by taking
advantage of elegant progresses in this field, might become a reality. Task-designed
formulations may improve the performance of conventional antifungal drugs, build
functional coatings for reducing allergens production, or aid in the recovery of antifungal
plant polymers. The frontier research in this cross-disciplinary field may provide us
unforeseen means to address the global concern of mycotic diseases. Pathogenic
and opportunistic fungi are responsible for numerous infections, killing annually nearly
1.5 million immunocompromised individuals worldwide, a similar rate to malaria or
tuberculosis. This perspective will review our major findings and current hypotheses,
contextualizing how they might bring us closer to efficient strategies to prevent and fight
mycotic diseases.
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Ionic liquids, which consist entirely of ionic species, are conventionally defined as salts that are
liquid below 100◦C. Their history started in 1914 when the physical properties of ethylammonium
nitrate were first reported (Plechkova and Seddon, 2008). Nonetheless, only in the last decades
the term ionic liquid emerged and a new scientific area arose. Their generic – yet not universal –
properties include features such as negligible vapor pressure, conventional non-flammability and
excellent solvation potential (Endres and Zein El Abedin, 2006), which do not occur concurrently
either in molecular compounds or in crystalline salts. These properties boosted the interest of
chemists and chemical engineers, and were the basis for the classification of ionic liquids as green
solvents (Earle and Seddon, 2000). Their potential was further emphasized with the insight that
numerous structural variations can be obtained via relatively simple synthesis, categorizing ionic
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liquids as designer solvents (Ranke et al., 2007). Such subtle
structural variations in the composing ions allow fine-tuning
their physical and chemical properties to promote them as task-
designed solvents.

These liquid salts have been widely investigated and several
hundred are already chemically well characterized. By now,
numerous applications of ionic liquids have been proposed,
impacting diverse relevant areas, such as Catalysis, Separations,
Materials, Sustainable Energies, Biorefineries, Renewable Fuels,
and Chemicals, just to name a few. Some remarkable examples
include ionic liquids in membranes for gas separation (Tomé
et al., 2014), and for the extraction of disease biomarkers
and antibodies (Taha et al., 2015). Unfortunately, only a few
applications have successfully reached the industrial panorama
(Plechkova and Seddon, 2008), e.g., BASILTM and cellulose
reshaping (BASF, Germany), dye sensitizing solar cells (G24i
Power, UK) and – certainly one of the most fascinating – the use
of mercury grabbing ionic liquids to clean natural gas streams
(Abai et al., 2015), commercialized as HycaPure Hg by Clariant
(Switzerland).

As a scientific topic, ionic liquids are likely among the most
intensely researched ones, especially in the Chemistry, Physics,
and Materials disciplines. Over 10000 publications on ionic
liquids can be found in the Web of Knowledge but little more
than 10% intersect with the Life Sciences. So the question that
rises from all the above is why should any environmentalist,
biologist or biochemist care about ionic liquids at first? Perhaps the
demonstration that ionic liquids might occur in nature sounds
appealing. In a recent study, it was suggested that an ionic
liquid is formed during the confrontation of two ant species,
Nylanderia fulva and Solenopsis invicta, as a form of defense
mechanism of the former against the venom of the latter ant
species (Chen et al., 2014). In line with this idea, it was shown
that certain metabolites abundant in plants become liquid when
mixed together (Choi et al., 2011). These so-called natural deep
eutectic solvents, with properties strongly resembling those of
ionic liquids, would ensure cellular processes involving water-
insoluble compounds. The likelihood of naturally occurring ionic
liquids creates a new paradigm – they are not exclusively man-
made chemicals – and fosters a new boost of interest in their
research.

Ionic liquids and life sciences intertwined for the first time,
however, to answer a very fundamental need: understanding
ionic liquids’ environmental impact. Our initial motivation,
similar to tens of other research laboratories worldwide, was
partially due to the fact that, despite being classified as green
solvents, these organic salts comprise a disparate group of
compounds that are not all intrinsically green. Many have been
shown to be toxic and recalcitrant to biodegradation. Data
collected so far has been compiled in a series of elegant and
comprehensive reviews on their environmental impact (Petkovic
et al., 2011) and biodegradability (Coleman and Gathergood,
2010). The large majority of early studies on ionic liquids’
toxicity aimed at defining their inhibitory concentrations to
very distinct organisms, essentially as to guide chemical research
efforts toward more sustainable formulations. These studies
have ascertained that different testing models exhibit fairly

diverse susceptibilities to ionic liquids, however, often suggesting
a similar mechanism of toxicity or cytotoxicity, i.e., plasma
membrane permeabilization and oxidative stress (Yu et al., 2009;
Petkovic et al., 2011). Unsurprisingly, the chemical nature of
the ions rules their specific molecular and/or cellular mode of
action. Most toxicity assays, if not all, were based on aqueous
systems, in which the composing ions were fully solubilized in
water. By accepting this principle, the biological effect of an ionic
liquid should consider the individual contributions of its ions.
Among the most common cations, the aromatic ones appear to
be more toxic than the alicyclic or the quaternary ammonium
(Stolte et al., 2007a,b). Nevertheless, the prevailing idea around
ionic liquid’s mechanism of toxicity is that, in either of the
composing ions, the length of the alkyl chain is directly correlated
with lipophilicity and permeabilization of biological membranes,
leading to cell death (Zhao et al., 2007). This seems valid
only for lipophilic cations, since our most recent data showed
that permeabilization by long chain anions (i.e., alkanoates) is
hindered by negative charges in the membrane outer surface
(Hartmann et al., 2015). These were great news since we have
been for long pursuing the use of cholinium alkanoates as novel
biocompatible solvents for plant polyesters (Garcia et al., 2010).
This idea has been nurturing our research in identifying task-
designed ionic liquids for the hydrolysis of structural polymers
in plant cell walls, i.e., cutin and suberin. Our goal was to
preserve the native properties of the polyesters, particularly their
function as barriers to microbial pathogens (Ranathunge et al.,
2011). In some ways unpredictably, an ionic liquid – cholinium
hexanoate – provided us the right means for that. It plays the
dual role of solvent and catalyst, promoting the specific cleavage
of particular ester bonds of suberin (Ferreira et al., 2014). This
ensures the partial preservation of its tridimensional structure,
hence the spontaneous formation of films with potentially broad
antimicrobial properties (Garcia et al., 2014).

Notwithstanding significant progresses in the field of ionic
liquids’ toxicity, our curiosity did not allow us to stop there.
We wanted to seek for better mechanistic understandings
of how these allegedly man-made chemicals would impact
living organisms at a cellular and molecular level. Our front-
runner candidates for study organisms were undoubtedly
filamentous fungi. Fungi, which are unique and remarkable
eukaryotic organisms, act as key colonizers of the soil and
ensure major ecosystem functions, including the mitigation
of hazardous chemicals (Harms et al., 2011; Varela et al.,
2015). Moreover, these organisms are well known as proficient
producers of enzymes and metabolites of great biotechnological
and pharmacological interest. Several studies revealed that fungal
strains commonly found in soil can resist high concentrations
of ionic liquids (Petkovic et al., 2009; Singer et al., 2011;
Simpson, 2012). In particular our study also demonstrated that
all the tested compounds could completely alter the fungal
metabolic footprint, i.e., the diversity of diffusible smallmolecules
(Petkovic et al., 2009). These promising and stimulating findings
constituted a foundation for our subsequent research efforts.

Looking for a holistic view of the impact of these organic
ions in fungal metabolism, we decided to perform a proteomic
analysis of model filamentous fungi exposed to ionic liquids
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(Martins et al., 2013). We specifically selected cholinium
chloride and 1-ethyl-3-methylimidazolium chloride, which carry
cations currently attracting most academic and industrial
interest. These compounds have been previously observed to
display very distinct antifungal activities and biodegradability
potential (Coleman and Gathergood, 2010; Petkovic et al., 2011).
Aspergillus nidulans and Neurospora crassa – prime model
fungal systems for genetic, cellular, and biochemical research –
are very dissimilar when accounting for their halo-tolerance
(Gunde-Cimerman et al., 2009) and secondary metabolite
producing capacity (Khaldi et al., 2010; Inglis et al., 2013).
The differential proteome showed that several critical biological
processes and pathways were affected by either cation, reflected
in the accumulation of numerous stress-responsive proteins and
osmolytes, and in the alteration of developmental programs
in both fungi. Encouragingly, in this study we observed the
accumulation of proteins likely involved in the biosynthesis of
non-proteinogenic amino acids in N. crassa in the presence of
either cation. These rare amino acids are found in secondary
metabolites with potent biological activity, e.g., neoefrapeptins
and acretocins (Degenkolb et al., 2007; Degenkolb and Bruckner,
2008). Another promising example is the case of A. nidulans,
which genome has nearly 70 genes coding for multi-domain
enzymes likely involved in secondary metabolite biosynthesis
(Inglis et al., 2013). Through whole-genome profiling, our
recent research efforts revealed that, upon exposure to certain
organic ions, this fungus up-regulated a series of secondary
metabolism backbone genes (Petkovic and Silva Pereira, 2012).
This resulted in a differential metabolic profile that conceals small
compounds with biological activities of high pharmacological
value (unpublished data). These promising findings open new
perspectives on ionic liquids’ potential in the discovery of natural
compounds.

The large amount of data that emerge from proteomics or
transcriptomics analyses can provide fundamental information
on very specific scientific questions. As an excellent example,
the resistance of the bacterium Enterobacter lignolyticus to 1-
ethyl-3-methylimidazolium chloride was in part unraveled using
whole genome profiling (Khudyakov et al., 2012). This study
arose from the question of how this solvent – able to efficiently
dissolve cellulose from plant biomass – could impact biological
and fermentation processes. The authors showed that bacteria
partially circumvent the toxicity of the cation by increasing
membrane transporters and the concentrations of osmolytes.
These findings further inspired the design of biofuel cells where
ionic liquids are employed for biopolymer dissolution (Ruegg
et al., 2014).

As we gather more data from global analyses of the impact
of these organic ions, we move deeper into exploring these
compounds as tools to solve fundamental questions in fungal
biology. Our group rapidly advanced from a rather simplistic
view of morphological alterations perceived microscopically
(Petkovic et al., 2012) to evaluate, at a gene expression level,
membrane and cell wall damage induced by ionic liquids
(Hartmann and Silva Pereira, 2013). Fungi can alter the
composition of their membranes, regulating its fluidity to
overcome adverse environments. The membrane fluidity, which

is inversely related to its resistance to permeabilizing compounds,
is essentially controlled by the levels of ergosterol and by the
balance between saturated and unsaturated fatty acids. The
fungal cell wall, on its turn, is responsible for maintaining
cell shape, counteracting the turgor pressure and protecting
the plasma membrane. Upon damage to the cell wall, fungi
respond by activating several genes involved in its biosynthesis,
creating conditions that allow them to re-establish its integrity,
through the so-called cell wall integrity pathway. This salvage
mechanism, better understood in the yeast Saccharomyces
cerevisiae, remains poorly characterized in filamentous fungi
(Fujioka et al., 2007; Valiante et al., 2015). We have demonstrated
that some ionic liquids can cause membrane and cell wall damage
in A. nidulans, most likely activating an alternative cell wall
integrity pathway, yet to be characterized (Hartmann and Silva
Pereira, 2013). More intriguing is the fact that these organic
ions can also activate sphingolipid biosynthesis, leading to the
differential accumulation of intermediates, including unknown
species (Hartmann and Silva Pereira, 2015). These molecules
may participate in the stress response of A. nidulans, including
the activation of the cell wall integrity pathway. These are
noteworthy results, not only for the prospect of unraveling a
cross-talk mechanism between the cell wall integrity pathway and
sphingolipids biosynthesis, but also because both pathways have
for long been considered to be excellent candidate targets for the
development of new antifungal agents.

Conventional antifungals, which target, directly or indirectly,
the fungal plasma membrane or cell wall, are limited to just
a few classes (viz. azoles, echinocandins and polyenes) (Odds
et al., 2003). New generations of the classical antifungal drugs, as
well as non-conventional agents and targets are already available,
such as flucytosine and sordarins, which act by inhibiting
DNA and protein synthesis, respectively, (Odds et al., 2003).
However, clinical development and implementation of new
drugs is notoriously long. Hence, the current challenge is to
better understand the biology of filamentous fungi, aiming at
the discovery of novel targets and the development of new
effective drugs and antifungal strategies (Ostrosky-Zeichner et al.,
2010; Denning and Bromley, 2015). We hope to make further
evident how our cross-disciplinary research will provide means
to address these global concerns. As long-term perspective, we
seek to deepen our knowledge on fungal biology by exploring
organic ions as the right stimuli for deciphering key cellular
and molecular processes. We now rely on proteomic tools and,
more specifically, phosphoproteomics, to attain deeper insights
on the potential elements of the cell wall integrity pathway,
as a foundation to solve the puzzling roles of sphingolipids in
filamentous fungi.

Although debatable, the intriguing application of ionic liquids
in pharmaceuticals development – often mentioned as third
evolution of ionic liquids – has produced so far notable
improvement of drugs solubility, delivery and biological activity
through their conversion to a salt form (Hough et al., 2007).
This seems a rather interesting prospect, especially when applied
to the salt form of the antifungal drug amphotericin B to
overcome its low solubility (Petkovic et al., 2015). Nevertheless,
the fundamental question we are trying to address is how

Frontiers in Microbiology | www.frontiersin.org 3 February 2016 | Volume 7 | Article 111

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Hartmann et al. Ionic Liquids to Fight Mycotic Diseases

ionicity impacts the drug primary mode of action. Another
path being investigated by us is the use of ionic liquids to
reduce the negative impact of pathogens as Aspergillus fumigatus
by targeting allergen production. There are nearly twenty fully
described allergen peptides in this fungus and as many predicted
ones (Kurup, 2005; Fedorova et al., 2008). Transcriptomic data
suggested that exposure of fungi to certain ionic liquids can
strongly reduce the expression of genes coding for putative
allergenic peptides (unpublished data). The current challenge is
to identify, supported by immunoproteomics, organic ions that
strongly interfere with the biosynthesis of allergenic peptides
in A. fumigatus. This constitutes another elegant example of
cell biochemistry manipulation using chemical stimuli and may
inspire the use of ionic liquids for developing novel antifungal
materials/coatings.

Life-threatening fungal infections present an uprising burden
that affects millions of individuals, with more than 2 million
invasive fungal infections reported every year worldwide (Brown
et al., 2012). Fungi constitute a high risk to immunocompromised
individuals of all ages, such as HIV/AIDS, cancer, transplant,
and diabetes patients, which represent a significant percentage
of the world population. The healthcare costs are enormous,
estimated to billions of dollars per year on antifungal drugs only.
Mortality rates often exceed 50% even with the current treatment
options. This reality is aggravated when considering that the
available therapies are sometimes inadequate, as many resistant
strains (Anderson, 2005) and emerging fungal pathogens (Fisher
et al., 2012) are now being discovered at a regular basis. The
identification of new potential risk groups, from asthma sufferers
to gastric ulcer patients, further emphasizes the need for efficient

antifungal drugs (van Woerden et al., 2013). Our vision is
to produce valuable far-reaching insights to advance on the
identification and development of novel antifungal strategies to,
ultimately, fight fungal pathogenicity.
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