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Cryptococcus sp. are responsible for around 1 million cases of meningitis every year.
Fluconazole (FLU) is commonly used in the treatment of cryptococcosis, mainly in
immunocompromised patients and the resistance is usually reported after long periods
of treatment. In this study, the morphological characterization and virulence profile of
FLU-susceptible and FLU-resistant clinical and environmental isolates of C. neoformans
and C. gattii were performed both in vitro and in vivo using the Galleria mellonella model.
FLU-susceptible isolates from C. neoformans were significantly more virulent than the
FLU-resistant isolates. FLU-susceptible C. gattii isolates showed a different virulence
profile from C. neoformans isolates where only the environmental isolate, CL, was more
virulent compared with the resistant isolates. Cell morphology and capsule size were
analyzed and the FLU-resistant isolates did not change significantly compared with the
most sensitive isolates. Growth at 37◦C was also evaluated and in both species, the
resistant isolates showed a reduced growth at this temperature, indicating that FLU
resistance can affect their growth. Based on the results obtained is possible suggest that
FLU resistance can influence the morphology of the isolates and consequently changed
the virulence profiles. The most evident results were observed for C. neoformans
showing that the adaptation of isolates to antifungal selective pressure influenced the
loss of virulence.

Keywords: Cryptococcus sp., resistance, fluconazole, virulence, Galleria mellonella

INTRODUCTION

Cryptococcus neoformans and Cryptococcus gattii are the main etiologic agents of cryptococcosis.
This infection occurs after inhalation of basidiospores, which are found in the environment
(Martinez and Casadevall, 2006; Giles et al., 2009; Negroni, 2012). The clinical manifestations
usually occur in pulmonary and cerebral forms and may ultimately progress to the most severe of
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the disease, meningoencephalitis (Chau et al., 2010; Kessler et al.,
2010; Negroni, 2012). Globally, approximately one million cases
of cryptococcal meningitis occur each year, the majority of which
occur in sub-Saharan Africa (Park et al., 2009).

Cryptococcus neoformans has a worldwide distribution and
mainly affects immunocompromised patients, causing high
morbidity and mortality in these individuals (Li and Mody, 2010).
C. gattii infections have historically been prevalent in regions with
tropical and subtropical climates; however, outbreaks in humans
and animals in temperate countries have been observed, which
demonstrates that the fungus can adapt to new environments
(Kidd et al., 2004; Byrnes and Heitman, 2009; Hagen et al.,
2012). C. gattii is traditionally associated with immunocompetent
individuals, but immunocompromised patients are also at risk of
infection (Jobbins et al., 2010; Harris et al., 2011).

Some authors have reported that the sensitivity to azoles
and virulence profiles can vary depending on the geographic
region that the yeast is isolated, whether the isolate is clinical or
environmental and on the molecular fungus type (Bovers et al.,
2008a; Espinel-Ingroff et al., 2012a,b).

Currently, the Cryptococcus species complex is comprises
in two species, C. neoformans serotypes A, D, and AD and
C. gattii serotypes B and C (Boekhout et al., 1997, 2001;
Kwon-Chung and Varma, 2006). C. neoformans consists of
two varieties, C. neoformans variety grubii (serotype A) and
C. neoformans variety neoformans (serotype D; Franzot et al.,
1999). However, in the last years, several studies using molecular
techniques have questioned the currently used of two species
concept in the Cryptococcus species complex (Boekhout et al.,
2001; Kidd et al., 2004; Bovers et al., 2008b; Meyer et al.,
2009; Hagen et al., 2010, 2015). C. neoformans var. grubii
is represented by AFLP1/VNI and two minor genotypes
AFLP1A/VNII (VNB) and AFLP1B/VNII (Barreto de Oliveira
et al., 2004; Litvintseva et al., 2006). C. neoformans var.
neoformans is represented by AFLP2/VNIV and the hybrid (AD)
by AFLP3/VNIII genotype (Trilles et al., 2003; Meyer et al.,
2009). C. gattii is divided into five genotypes, AFLP4/VGI,
AFLP6/VGII, AFLP7, and AFLP10/VGIV (serotypes B and
C) and AFLP5/VGIII (Fraser et al., 2005; Hagen et al.,
2010). Recently, Hagen et al. (2015) through phylogenetic
and genotyping analysis, proposed to recognize the current
C. neoformans var. grubii and C. neoformans var. neoformans
as two separate species and, C. gattii in five separated
species.

The increase in invasive fungal infections and the
development of resistance mechanisms by some fungal species
is of great concern given that antifungal treatment is usually
aggressive, toxic, and inefficient (Spinello, 2013). Although the
detection of resistance to antifungal agents is difficult, increased
rates of fungal infections by resistant isolates and changes in
breakpoints have been reported in patients exposed to long-term
therapies (Fera et al., 2009; Wilke, 2011).

Virulence factors are mechanisms that allow the fungus
to cause damage to the host (Casadevall and Pirofski, 1999,
2003). Many phenotypes have been specifically correlated with
the virulence of C. neoformans, such as capsule production,
melanin formation, and protein secretion. Furthermore, cell

characteristics such as the cell wall and morphogenesis play an
important role in host-fungus interactions (Alspaugh, 2014).

Murine animal models have been used in several studies to
evaluate virulence and the efficacy of antifungal agents against
different fungal species (Okawa et al., 2008); however, there is
currently a particular interest in developing alternative models
for studying microbial virulence (Mylonakis and Aballay, 2005;
Chrisman et al., 2011; Muhammed et al., 2012). These models
have provided considerable knowledge on different aspects of
microbial infection (Fedhila et al., 2010) and were developed to
present numerous advantages over mammalian models, such as
low cost, ease of use, potential to conduct large-scale studies,
and compliance with global trends regarding animal welfare and
bioethics issues (Jacobsen, 2014).

Galleria mellonella is a lepidopteran that has been successfully
used as a model to study the virulence of pathogenic fungi
such as C. neoformans and C. gattii (Mylonakis et al., 2005;
García-Rodas et al., 2011; Firacative et al., 2014), Candida
albicans (Brennan et al., 2002; Rueda et al., 2014), and Aspergillus
fumigatus (Cheema and Christians, 2011; Gomez-Lopez et al.,
2014). Moreover, it has also been used to investigate the efficacy of
antifungal therapy (Cowen et al., 2009; Mesa-Arango et al., 2012;
Scorzoni et al., 2013).

It is known that the adaptation capacity of C. albicans to
host environment through virulence factors can be modified
in the presence or absence of a drug (Schulz et al., 2011). In
bacteria, the development of antibiotic resistance mechanisms
can generate a cost in adaptation (Levin et al., 1997; Andersson
and Levin, 1999), especially by reducing the rate of bacterial
growth (Andersson and Hughes, 2010). The impact of antifungal
acquired resistance on virulence in some microorganisms, such
as A. fumigatus, is still not well-understood. However, it is
known that acquisition of resistance by specific mechanisms may
result in phenotypic changes, such as, germination rate, hyphal
growth, or growth rate of the resistant isolates. These changes,
in turn, may result in a significant loss of virulence (Gomez-
Lopez et al., 2014). These hypotheses show to us the importance
further studies to better understand the relationship between the
resistance to antifungal agents and the adaptation of the fungus
to the host environment. Thus, in this study, we evaluated the
impact of the development of resistance to fluconazole (FLU) by
isolates of C. neoformans and C. gattii both on virulence and on
morphological changes in vitro and in vivo using the G. mellonella
model.

MATERIALS AND METHODS

Strains and Growth Conditions
Three sequential clinical isolates of C. neoformans var. grubii
(AFLP1VNI) were collected and classified according to the
in vitro susceptibility to FLU as follows: resistant (30R),
susceptible dose-dependent (27SDD), and susceptible (26S).
Isolates were recovered from an HIV-positive patient with
a history of relapses associated with treatment failure and
were characterized by molecular typing and susceptibility to
antifungal therapy. Additionally, the isolates were analyzed
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by RAPD (random amplified polymorphic DNA) and showed
identical genetic profiles (data not shown). In addition, two
environmental C. gattii isolates (isolated from a psittacine bird;
AFLP6/VGII) were evaluated, one with reduced susceptibility to
FLU (118R; Raso et al., 2004) and one with susceptibility to FLU
(CL).The strains C. neoformans ATCC 90112 (AFLP1/VN1; The
American Type Culture Collection) and C. gattii ATCC 56990
(AFLP4/VGI) were used. All species were obtained from the
collection of the Laboratory of Clinical Mycology, Department
of Clinical Analysis, Faculty of Pharmaceutical Sciences, UNESP,
Araraquara.

Antifungal Susceptibility
To confirm the phenotype obtained initially, antifungal
susceptibility tests were conducted for all isolates using FLU and
amphotericin B (Amb), according to M27-A3 document from
the Clinical and Laboratory Standards Institute. The range of
antifungal concentrations used was 128–0.125 µg/ml for FLU
and 16–0.0321 µg/ml for Amb.

Cryptococcus sp. Growth Curve at Different
Temperatures
For each assay, 104 cells/mL were inoculated in 100 mL of
Sabouraud broth. One milliliter of these cultures was collected
after 3, 6, 9, 12, 24, 48, and 72 h and the optical density
was determined at 600 nm using a spectrophotometer (Thermo
Scientific Genesis). The Sadouraud broth was used as control in
order to normalize readings.

Cryptococcus sp. In Vitro Capsule Induction
For in vitro morphological analysis, we induced capsule growth in
all isolates as described by Zaragoza and Casadevall (2004). First,
Cryptococcus sp. were cultivated in Sabouraud broth overnight at
30◦C. Next, the inocula were concentrated in PBS (1 mL) and
100 µl were transferred to 10% Sabouraud buffered at pH 7.3
with 50 mM MOPS (3-(N-Morpholino) propanesulfonic acid, 4-
Morpholinepropanesulfonic acid) and incubated for 24 h at 37◦C
with shaking at 150 rpm. Yeast cells were then suspended in India
ink and photographed using a Leica DMI3000B microscope.
Cell size was measured using Adobe Photoshop CS3 software.
Statistics were performed by ANOVA with Tukey’s post-test.

Galleria mellonella Rearing and Larvae Manipulation
For all experiments, we used G. mellonella in the larval stage
(Alcotán, Valencia, Spain). The larvae were fed with wax and
pollen and maintained at 25◦C (Ramarao et al., 2012) until
reaching 0.2–0.3 g. Before infection, larvae pro-legs were cleaned
with 70% ethanol and yeast suspensions were injected into larvae
pro-legs using 10 µl Hamilton syringes (Hamilton, USA). Before
all experiments, larvae were incubated at 30 or 37◦C overnight
and protected from light. Each experiment was performed in
triplicate.

Survival Assay
Galleria mellonella larvae were infected with 106, 5 × 106, 107,
2.5 × 107, and 5 × 107 cells per larva and larval death was
monitored over a period of 8 days. Lack of movement was the

criterion used to define larval death. Larvae were incubated at
30 or 37◦C. PBS-injected larvae and groups inoculated with
C. neoformans ATCC 90112 of and C. gattii ATCC 56990 were
used as controls. Statistics were analyzed using the Log-rank
(Mantel–Cox) test.

Hemolymph Melanization
The melanization assay was performed as described by Scorzoni
et al. (2013). Briefly, 10 larvae were infected with 107 cells/larvae
and incubated at 37◦C. The hemolymph was collected after
1 and 5 h of infection and 10 µl of the hemolymph was
diluted 1:10 in cold PBS and centrifuged at 10,000 rpm for
5 min. The supernatants were transferred into a 96-well plate
and read at 405 nm in a spectrophotometer (Thermo Scientific
Genesis). PBS-injected larvae were used as a control. Statistics
were performed by ANOVA with Tukey’s post-test.

Cryptococcus sp. Cell and Capsule Size Alterations
After Infection in G. mellonella
Larvae were infected with 106 cells per larva and incubated at
37◦C. Immediately after infection as well as 1 and 3 days post-
infection, larvae were homogenized in 100 mm pore nylon filters
(Falcon, BD, USA) with 1 mL of PBS. The resulting fluid was
collected and centrifuged. The cell pellet was washed (1x) and
suspended in 300 µl of PBS. Subsequently, an aliquot of the cell
sample was stained with India ink and visualized using a Leica
DMI 3000B microscope. Adobe Photoshop CS3 software was
used to measure the cells. Statistics were performed by ANOVA
with Tukey’s post-test.

Cryptococcus sp. Phagocytosis Assays in
G. mellonella
Isolates of Cryptococcus sp. were first stained with 10 µg/ml of
calcofluor white (Sigma, St. Louis, MO, USA) for 30 min at
37◦C. Then, larvae were infected with 106 cells and phagocytosis
was analyzed after 3 h of incubation at 37◦C. Hemolymph
was collected in Eppendorf tubes and diluted 1:2 in cold PBS.
Phagocytosis was quantified visually using a Leica DMI 3000B
microscope. Five larvae from each experimental situation were
used. One hundred hemocytes from each larva were counted
and the percentage of hemocytes containing Cryptococcus sp.
internalized was calculated. Statistics were performed by ANOVA
with Tukey’s post-test.

RESULTS

Susceptibility Testing against
Fluconazole and Amphotericin B
Antifungal susceptibility testing results showed that the
C. neoformans isolate 30R and the C. gattii isolate 118R were
resistant to FLU with MIC values of 64 mg/L. C. neoformans
27SDD (susceptible-dose dependent) showed a MIC value
of 16 mg/L and ATCC 90112 and 26S were characterized as
susceptible to FLU with MICs of 1 and 2 mg/L, respectively.
C. gattii isolates CL and ATCC 56990 showed MICs of 4 mg/L.
All isolates were susceptible to AmB with MIC concentrations
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ranging between 0.125 and 0.0625 mg/L. Throughout the work,
all isolates were cultured in Sabouraud without adding FLU
and even after several transfers, it became clear that resistance
remained.

Growth Curve at Different Temperatures
The assay was carried out at 30 and 37◦C. C. neoformans
and C. gattii showed better growth at 30◦C than at 37◦C. All
C. neoformans isolates showed slower growth at 37◦C, especially
FLU-resistant strain 30R. When the growth curves of C. gattii
were analyzed, it was found that isolate ATCC 56990 was unable
to grow at 37◦C and isolate 118R showed much lower growth
compared with the susceptible isolate CL at 37◦C (Figure 1).

Cryptococcus sp. Virulence at 30 and 37◦C
Sequential clinical isolates of C. neoformans (26S, 27SDD, and
30R) have different virulence profiles. The thermotolerance is a
very important virulence factor in Cryptococcus sp., therefor the
virulence test was performed at 30 and 37◦C. This difference
was more evident between the FLU-susceptible (26S) and FLU-
resistant (30R) isolates at 37◦C (Figure 2A). At 30◦C, the
C. neoformans isolates were less virulent compared with activity
at 37◦C, but the virulence profiles were maintained between them
with being 26S more virulent and killing 100% of the larvae
at day 6 of infection (Figure 2B). The C. neoformans strain
ATCC 90112 was also used in this assay and its virulence profile
was very similar to the profile observed for the FLU-susceptible
isolate 26S. The virulence of the C. gattii isolates at both
temperatures was lower when compared to the C. neoformans
isolates (Figures 2C,D). The strain C. gattii ATCC 56990 did not
kill any larvae when infection was conducted at 37◦ (2C). The
FLU-resistant isolate 118R killed 40% of the larvae, while FLU-
susceptible isolate CL killed 90% of the larvae at day 8 of infection
at 37◦C (Figure 2C). At 30◦C, we found a different virulence
profile for C. gattii, when compared to the assay performed
at 37◦C.

To confirm the reduced virulence profile of the C. gattii
isolates, the experiment was repeated with four additional
isolates from the same species. These isolates were provided by
the Mycology Reference Laboratory at the Institute of Health
Carlos III of Madrid, Spain, and were identified as CL 5004
(AFLP4/VGI), CL 5010 (AFLP4/VGI), NIH191 (AFLP5/VGIII),
and NIH198 (AFLP5/VGIII). Again, all C. gattii isolates were less
virulent than C. neoformans (Supplementary Figure S1).

We also performed a survival curve with different inoculum
concentrations (1 × 106, 5 × 106, 1 × 107, 2.5 × 107, and
5 × 107) at 37◦C. This test was performed with isolates that were
less virulent with standard inoculum of the 106 cells per larva in
G. mellonella and was observed that the low virulence remained
even when the inoculum was increased up to 5 × 107 cells per
larvae (Supplementary Figure S2).

Hemolymph Melanization
During the virulence assays in G. mellonella, we observed
significant melanization of larvae after infection with
some isolates. Because of these findings, quantification
of melanization in the hemolymph of the larvae was

performed to verify this phenomenon. The results showed
that the infection of larvae with all C. gattii isolates led
to a significant melanin production after 5 h of infection
(Figure 3D). However, as shown in Figure 3B, only the
ATCC 90112 and 27SDD isolate of C. neoformans produced
significant melanization after infection. In Figures 3A,C is
observed that after 1 h of infection there was no significant
melanization for most of the isolates, except for ATCC 56990
strain.

In Vitro Capsule Induction at 37◦C
We investigated whether resistance to FLU was associated with
cell and capsule increase. After 24 h of incubation in capsule-
inducing medium, all sequential clinical isolates of C. neoformans
increased capsule size compared to the cells incubated in
Sabouraud (p < 0.05, Figure 4A). When comparing the FLU-
resistant isolate (30R) with the other isolates, the changes in 30R
capsule size were more discrete compared to the ATCC 90112 and
27SDD isolates (p < 0.05).

For C. gattii isolates, we observed that the cells of the
environmental isolates and of ATCC 56990 had greater capsule
induction (p < 0.05, Figure 4B) after incubation in capsule-
inducing medium. The FLU-resistant 118R isolate achieved a
remarkable increase in capsule size and showed a less significant
change in capsule size only when compared with the strain ATCC
56990 (p < 0.05).

Morphology of Cells in G. mellonella
The total cell size and capsule size were measured before infection
(Day 0) as well as 24 h (Day 1) and 72 h (Day 3) after infection
in G. mellonella. A progressive increase in cell size was observed
in C. neoformans isolates across the specified time intervals (D1
and D3) when compared with Day 0 (D0; p < 0.05), with the
exception of the 27SDD isolate, which showed no significant
changes after infection (Figures 5A and 7A–D). When the
isolates were analyzed individually, it was found that the FLU-
susceptible isolate 26S and the ATCC 90112 strain also showed a
significant increase between D1 and D3 (p < 0.05). For C. gattii
isolates, a significant increase in the cell size of ATCC 56990
and CL was observed at D1 and D3 in comparison to D0
(Figures 5B and 7E–G). The largest increase was observed in
C. gattii strain ATCC 56990, where some cells reached 40 µm at
D3 (Figure 7E). FLU-susceptible CL isolate achieved significant
growth. The FLU-resistant 118R isolate only showed a significant
increase at D3, however, no cells larger than 20 µ were observed
(p < 0.05; Figure 7G).

We also measured the capsule size of the different isolates.
As shown in Figures 6A and 7A–D, all C. neoformans isolates
presented a significant increase in capsule size after infection
when compared with D0 (p < 0.05) but only 26S showed a
significant and gradual increase. C. gattii isolates had a much
greater capsule size than C. neoformans isolates (see Figures 6B
and 7E–G). The cells from C. gattii ATCC 56990 strain had a
greater change in size after infection in G. mellonella. Most cells
of this strain reached a capsule size ranging between 20 and
30 µ (p < 0.05). The capsule of environmental FLU-susceptible
CL isolate presented a gradual increase at all-time intervals
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FIGURE 1 | Sequential growth curve of Cryptococcus neoformans isolates, C. gattii isolates and the ATCC strains 90112 and 56990 at 30 and 37◦C.

(p < 0.05) and the 118R isolate had a significant increase only
at D1 (p < 0.05).

In Vivo Phagocytosis Assay
To better elucidate the mechanisms of virulence of the
selected isolates, we also performed a phagocytosis assay
in G. mellonella. This assay showed that C. neoformans
30R isolate was phagocytosed to a lower degree compared
with the ATCC 90112 (p < 0.05) strain. Among the other
sequential clinical isolates, 26S, 27SDD and 30R, there was
no significant difference observed in phagocytosis (Figure 8A).
The C. gattii 118R isolate was the strain better phagocytosed,
with almost a 40% phagocytosis rate compared to the CL
and ATCC 56990 strains after infection in G. mellonella (see
Figure 8B).

DISCUSSION

Fluconazole achieves good penetration into the central nervous
system (CNS) and has minimal side effects; for this reason, FLU
is commonly used in the treatment of cryptococcosis, mainly in
immunocompromised patients (Brandt et al., 2001). However,
in some strains, repeated exposure or prolonged treatment with

azoles can lead to the development of resistance (Sanglard, 2002;
Bicanic et al., 2009; Fera et al., 2009).

It is known that the development of azole resistance in fungi
may occur through overexpression or mutations in the ERG11
gene, which encodes the enzyme lanosterol 14-α demethylase
(ERG11p; Sanglard et al., 1998; Cowen et al., 2000; Rodero
et al., 2003; Sheng et al., 2009; Oliveira Carvalho et al., 2013),
and/or by overexpression of plasma membrane proteins that
pump the drug out of the cells (Posteraro et al., 2003; Sanguinetti
et al., 2006; Sanglard et al., 2009). In addition, the phenomenon
of heteroresistance to FLU, an adaptive mechanism of drug
tolerance, has been previously described in C. neoformans and
C. gattii species (Sionov et al., 2009, 2010; Varma and Kwon-
Chung, 2010).

In addition to the eight major molecular types identified
from molecular techniques (C. neoformans, VNI, VNII, VNIII,
VNIV, and C. gattii, VGI, VGII, VGIII e VGIV), VGII has
received increased interest by different authors in recent years
due to the appearance of the subtypes, VGIIa, VGIIb e VGIIc
(Byrnes et al., 2010; Chong et al., 2010; Firacative et al., 2014),
and the discovery that susceptibility to FLU varies depending
on the molecular type. Other epidemiological studies have also
found that, unlike isolates from Europe and North America,
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FIGURE 2 | Virulence assay in Galleria mellonella. (A) Sequential clinical isolates of C. neoformans, 26S, 27SDD, and 30R incubated at 37◦C; (B) Sequential
clinical isolates of C. neoformans, 26S, 27SDD, and 30R incubated at 30◦C; (C) Environmental isolates of C. gattii 118R and CL incubated at 37◦C;
(D) Environmental isolates of C. gattii 118R and CL incubated at 30◦C.

yeast species originating from Africa, the Middle East, Asia-
Pacific, and parts of Latin America shows variable sensitivity
to FLU (Pfaller et al., 2009). The relationship between FLU
resistance and virulence in Cryptococcus sp. has been investigated
but remains poorly understood. Sionov et al. (2009) found that
strains of C. neoformans expressing FLU heteroressistance in vitro
(MIC ≥ 32 µg/ml) were more virulent in mice when compared
with more sensitive strains (MIC ≤ 8 µg/ml). In vivo data
have also demonstrated that a strain of C. neoformans with
overexpression of the AFR1 gene had significantly increased
virulence concurrently with resistance (Sanguinetti et al., 2006).
In the present study, clinical isolates of C. neoformans developed
resistance to FLU possibly during patient therapy and virulence
profiles were inversely proportional to the resistance, suggesting
that adaptation to the selective pressure of the drug can lead
to a decrease in virulence. We also found that the virulence of
the C. neoformans 30R isolate is dependent on the concentration
of inoculum, which was not observed in the isolate of C. gattii
118R.

Some studies show that environmental isolates of C. gattii
have a low susceptibility to FLU (Chowdhary et al., 2011),
however, the influence of FLU resistance on virulence in this
species is not known. Varma and Kwon-Chung (2010) reported
that C. gattii isolates showed heteroresistance to FLU, but
the virulence was similar to those observed in isolates of
C. neoformans. The C. gattii isolates in our study presented a
low virulence profile in G. mellonella, regardless of sensitivity to
FLU.

Confirming our results, recently, Santos et al. (2014), through
the induction of FLU resistance in C. gattii isolates, observed
that after the resistance induction, the virulence was diminished
even in vivo as in vitro experiments. This low virulence profile
was associated with the low activity of laccase and urease, a
decrease in diameter and poor capsule formation (Santos et al.,
2014).

Currently, it is known that morphological changes can also
be considered as a virulence factor because the pathogen can
evade immune recognition of the host and spread infection
(Coelho et al., 2014). Nosanchuk et al. (1999) presented results
showing the influence of Amb and FLU in cell morphology in
C. neoformans. Using scanning electron microscopy, they found
that cells cultured in medium with Amb or FLU in inhibitory
concentrations showed a modified capsular appearance and were
lower smaller when compared with cells cultured without these
antifungals. Other studies have demonstrated that the occurrence
of pseudo hyphae in C. neoformans increases its resistance to
the environment but decreases its virulence in vivo (Magditch
et al., 2012). Another type of morphological change is the
appearance of C. neoformans giant cells, and several studies have
demonstrated that this phenomenon occurs both in vitro and in
vivo (Okagaki et al., 2010; Zaragoza et al., 2010; García-Rodas
et al., 2011). In our results, we observed that both changes in
cell size and in capsule size were detected in the majority of
isolates, especially after in vivo infection. However, the increase
in cell size of the C. gattii isolates (ATCC 56990 and CL) did
not change the virulence, probably because the increased size
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FIGURE 3 | Quantification of melanization of C. gattii and C. neoformans isolates after inoculation in G. mellonella. The quantification was measured at
different times, 1 and 5 h. (A) C. neoformans 1 h; (B) C. neoformans 5 h; (C) C. gattii 1 h; and (D) C. gattii 5 h. ∗p < 0.05.

FIGURE 4 | In vitro capsule induction of clinical isolates of C. neoformans and C. gattii environmental isolates. (A) ATCC 90112 and clinical isolates of
C. neoformans 26S, 27SDD, and 30R; (B) ATCC 56990 and environmental isolates of C. gattii CL and 118R. ∗p < 0.05.

of these cells was decisive for faster recognition of the immune
system of G. mellonella, and the infection was contained. The
FLU-susceptible C. neoformans isolate 26S was more virulent
in G. mellonella, probably because of capsule increase after
in vivo infection and efficient growth at 37◦C. Another example
of the adaptation of the fungus to high drug concentrations
leading to a less virulent in vivo profile is paradoxical growth.
This phenomenon is the ability of C. albicans cells to grow at
high equinocandin concentrations while still fully susceptible

to intermediate concentrations (Stevens et al., 2004). A study
by Rueda et al. (2014) showed that this phenomenon can be
an adjustment mechanism of fungus to high concentrations of
caspofungin, leading to morphological changes and the rapid
recognition by the immune system of the larvae. The cells
maintained in high concentrations of caspofungin, influenced
directly in the virulence in G. mellonella.

The growth at host body temperature is a requirement
for virulence (Perfect, 2006), and in C. neoformans, the
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FIGURE 5 | Total cell size in microns for C. neoformans and C. gattii isolates during infection in G. mellonella. The cells were recovered from G. mellonella
at different times (D1 and D3) and controls were grown in Sabouraud (D0). (A) ATCC 90112 and sequential clinical isolates 26S, 27SDD, and 30R of C. neoformans;
(B) ATCC 56990 and isolates CL and 118R of C. gattii. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

thermotolerance may have a disproportionate importance over
any other virulence factor. When comparing C. neoformans with
other species, many factors involved in virulence, such as the
capsule and the production of laccase, make these species non-
pathogenic because they cannot grow at the temperature of the
host (Petter et al., 2001). Garcia-Solache et al. (2013) found
that non-pathogenic strains of Cryptococcus were temperature-
intolerant, and greater virulence in G. mellonella depended
on cell concentration, whereas for C. neoformans var. grubii,
the virulence increased at higher temperatures, showing that
the rapid replication at 32◦C can be responsible for increased
virulence. The increased virulence of C. neoformans var. grubii
at higher temperatures than the optimal growth temperature,
could be a consequence of an increase in the stress response of
the fungus, making it better able to survive in hostile conditions
(Brown et al., 2007). Analyzing the growth curves of the isolates
of C. neoformans showed that at 37◦C, the FLU-resistant isolate
grew less when compared to FLU-susceptible isolate, suggesting
that, the resistance to FLU can somehow affect the growth
at 37◦C these isolates. In C. gattii the same was observed,
but only in relation to isolate CL (sensitive FLU), because the
ATCC 56990 strain was unable to grow at this temperature.
The lack of growth at 37◦C combined with the significant
increase of cells upon infection in G. mellonella, may explain the
virulence profile presented by the ATCC56990 strain, and low
phagocytosis index. Further studies are necessary to confirm this
phenotype.

Its known that genotypic differences can influence not only
the virulence pattern of isolated, but in the sensitivity to
azoles and clinical manifestations developed by pathogens. The
phenotype observed in strain ATCC 56990 (AFLP4/VGI) can
be related to genotype, however, more studies are needed to
confirm this hypothesis, once differences in growth patterns,
virulence and sensitivity are not linked only to genotypes and
involves multiple factors. In recent study by Firacative et al.
(2014) they observed that the virulence is not specifically related
to a large molecular type of C. gattii, but with individual
attributes.

Correlations between C. gattii molecular type and virulence
pattern have been performed (Kidd et al., 2004; D’Souza et al.,
2011). However, evaluations of virulence profile, in a global
manner, cannot produce consistent results, suggesting that the
molecular type is not crucial to the virulence of the strain (Chen
et al., 2014).

The size of infectious particles can also influence virulence in
G. mellonella. External particles are recognized by hemocytes, and
at this stage, the result of the cellular immune response depends
on the size of the particles. Small targets are phagocytosed
while large targets are encapsulated and attacked by hemocytes
(Lavine and Strand, 2002). Melanin plays an important role in
the defense of G. mellonella and other invertebrate organisms.
The humoral response in G. mellonella is involved in the
production of various molecules with antimicrobial properties,
including phenol oxidase enzyme (Eisenman et al., 2014).
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FIGURE 6 | Capsule size in microns of isolates of C. neoformans and C. gattii after infection in G. mellonella. The cells were recovered from G. mellonella
at different times (D1 and D3) and controls were grown in Sabouraud (D0). (A) ATCC 90112 and isolates 26S, 30R, and 27SDD of C. neoformans; (B) ATCC 56990
and isolates CL and 118R of C. gattii. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

Melanization is a reaction catalyzed by the enzyme phenol
oxidase, and it encapsulates foreign particles surrounding
G. mellonella (Bidla et al., 2009). In our study, we observed
that larvae melanization occurs when infected with C. gattii
isolates in the first 24 h and did not occur after infection with
C. neoformans isolates. These results are in agreement with
the results found by Trevijano-Contador et al. (2015). These
results suggest that recognition of isolated C. gattii cells by
the immune system was more efficient than C. neoformans,
probably due to cell size, increasing the survival of larvae.
Scorzoni et al. (2013) found that melanization after infection with
C. krusei was significant in G. mellonella and that the degree
of the melanization was dependent on inoculum concentration
and not on cell viability, indicating that melanization is a
non-specific process that depends on the presence of foreign
particles.

Our results also demonstrated that FLU-suceptible isolates
of C. neoformans were more phagocytized after infection in
G. mellonella and were still more virulent when these were
compared with the FLU resistant isolates. These data suggest
that our isolates can multiply within hemocytes, continuing
infection after internalization because sensitive strains possess
this ability (Santos et al., 2014). It seems that C. neoformans
does not cause a reduction in the number of hemocytes in

the first 2 h after infection (Mylonakis et al., 2005; García-
Rodas et al., 2011), and this phenomenon may be related to the
fact that this fungus is a facultative intracellular pathogen and
can survive in phagocytic cells without affecting their viability
(Feldmesser et al., 2001; García-Rodas and Zaragoza, 2012).
C. neoformans behaves as a facultative intracellular pathogen in
mammals and in other non-mammalian hosts (Diamond and
Bennett, 1973; Steenbergen et al., 2001; Alvarez and Casadevall,
2006; Ma et al., 2006; Qin et al., 2011), and recently, Trevijano-
Contador et al. (2015) demonstrated that the fungus is also
able to multiply within hemocytes, suggesting that this ability
may be another virulence factor. The FLU sensitive isolates
of C. gattii were less phagocytosed when compared to the
same drug resistant isolate, probably due to the increase of
the capsule and the cell body as observed after infection in
G. mellonella.

Fluconazole and other azole antifungal agents are widely
used to prevent and treat infections caused by C. neoformans
and C. gattii. Their proven efficacy and safety combined with
their excellent pharmacokinetic profiles make these agents
extremely important in the management of cryptococcal
infections (Sanguinetti et al., 2006), but the development of
resistance mechanisms and the low susceptibility of some
isolates may make treatment difficult to maintain, mainly in
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FIGURE 7 | Microscopy of C. neoformans and C. gattii isolates with India ink stain before (D0) and after infection in G. mellonella (D1, 24 h) and (D3,
72 h); (A) C. neoformans ATCC 90112; (B) C. neoformans isolate 26S; (C) C. neoformans isolate 27SDD; (D) C. neoformans isolate 30R; (E) C. gattii
ATCC 56990; (F) C. gattii isolate CL; and (G) C. gattii isolate 118R.

FIGURE 8 | Phagocytosis index after infection in G. mellonella. (A) ATCC 90112 and isolates 26S, 27SDD, and 30R of C. neoformans; (B) ATCC 56990 and
isolates 118R and CL of C. gattii. ∗p < 0.05.

countries where the mortality rates for these etiologic agents are
high.

There are clinical differences between infections of
C. neoformans and C. gattii, and treatment for longer
periods in patients affected by C. gattii species led better
results (Marr, 2011; Ngamskulrungroj et al., 2012; Chen
et al., 2013). Therefore, understanding the mechanisms
responsible for these phenotypic and clinical differences
is extremely important because the expression of different
virulence factors associated with each species is still poorly
understood. Virulence studies conducted mainly with
C. neoformans are essential, but it is difficult to extrapolate
results from these tightly controlled studies to clinical isolates
where multiple virulence determinants are expressed in
various quantities in a coordinated and potentially host-
dependent manner (Clancy et al., 2006). Cryptococcosis
remains a difficult management issue, with little new drug

development or recent definitive studies (Perfect et al.,
2010).

How FLU resistance influences virulence is a complex issue
that needs further study. However, the data obtained in this
study clearly demonstrate that the adaptation of the fungus to
the stress produced by the drug leads to loss of virulence, and
morphological changes are involved in the production of this
phenotype.

AUTHOR CONTRIBUTIONS

SR, OZ, and AF-A conceived and designed the experiments. SR,
NT-C, LS, AM-A, and HdO performed the experiments. SR, LS,
HdO, OZ, MM-G, and AF-A analyzed the data. SR, NT-C, LS,
AM-A, HdO, KW, TdFR, MM-G, OZ, and AF-A drafted the
manuscript. All authors read and approved the final manuscript.

Frontiers in Microbiology | www.frontiersin.org 10 February 2016 | Volume 7 | Article 153

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-07-00153 February 13, 2016 Time: 20:46 # 11

Rossi et al. Impact of Resistance to Fluconazole on Virulence in Cryptococcus sp.

ACKNOWLEDGMENTS

This work was supported by the Programa Institucional de
Doutorado Sanduíche no Exterior from the Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior (PDSE-CAPES –
462 1909-13-4), Rede Nacional de Métodos Alternativos –
Conselho Nacional Científico e Tecnológico (RENAMA-CNPq
403586/2012-7) and Programa de Apoio ao Desenvolvimento
Científico da Faculdade de Ciências Farmacêuticas da Unesp

(PADC/FCF). OZ is funded by grant SAF2011-25140 by the
Spanish Ministry for Economics and Competitivity.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fmicb.
2016.00153

REFERENCES
Alspaugh, J. A. (2014). Virulence mechanisms and Cryptococcus neoformans

pathogenesis. Fungal Genet. Biol. 78, 55–58. doi: 10.1016/j.fgb.2014.09.004
Alvarez, M., and Casadevall, A. (2006). Phagosome extrusion and host-cell survival

after Cryptococcus neoformans phagocytosis by macrophages. Curr. Biol. 16,
2161–2165. doi: 10.1016/j.cub.2006.09.061

Andersson, D. I., and Hughes, D. (2010). Antibiotic resistance and its cost:
is it possible to reverse resistance? Nat. Rev. Microbiol. 8, 260–271. doi:
10.1038/nrmicro2319

Andersson, D. I., and Levin, B. R. (1999). The biological cost of
antibiotic resistance. Curr. Opin. Microbiol. 2, 489–493. doi:
10.1016/S1369-5274(99)00005-3

Barreto de Oliveira, M. T., Boekhout, T., Theelen, B., Hagen, F., Baroni,
F. A., Lazera, M. S., et al. (2004). Cryptococcus neoformans shows a
remarkable genotypic diversity in Brazil. J. Clin. Microbiol. 42, 1356–1359. doi:
10.1128/JCM.42.3.1356-1359.2004

Bicanic, T., Meintjes, G., Rebe, K., Williams, A., Loyse, A., Wood, R., et al.
(2009). Immune reconstitution inflammatory syndrome in HIV-associated
cryptococcal meningitis: a prospective study. J. Acquir. Immune Defic. Syndr.
51, 130–134. doi: 10.1097/QAI.0b013e3181a56f2e

Bidla, G., Hauling, T., Dushay, M. S., and Theopold, U. (2009). Activation of
insect phenoloxidase after injury: endogenous versus foreign elicitors. J. Innate
Immun. 1, 301–308. doi: 10.1159/000168009

Boekhout, T., Theelen, B., Diaz, M., Fell, J. W., Hop, W. C., Abeln, E. C., et al.
(2001). Hybrid genotypes in the pathogenic yeast Cryptococcus neoformans.
Microbiology 147, 891–907. doi: 10.1099/00221287-147-4-891

Boekhout, T., Van Belkum, A., Leenders, A. C., Verbrugh, H. A.,
Mukamurangwa, P., Swinne, D., et al. (1997). Molecular typing of Cryptococcus
neoformans: taxonomic and epidemiological aspects. Int. J. Syst. Bacteriol. 47,
432–442. doi: 10.1099/00207713-47-2-432

Bovers, M., Hagen, F., and Boekhout, T. (2008a). Diversity of the Cryptococcus
neoformans-Cryptococcus gattii species complex. Rev. Iberoam. Micol. 25, S4–
S12. doi: 10.1016/S1130-1406(08)70019-6

Bovers, M., Hagen, F., Kuramae, E. E., and Boekhout, T. (2008b). Six monophyletic
lineages identified within Cryptococcus neoformans and Cryptococcus gattii
by multi-locus sequence typing. Fungal Genet. Biol. 45, 400–421. doi:
10.1016/j.fgb.2007.12.004

Brandt, M. E., Pfaller, M. A., Hajjeh, R. A., Hamill, R. J., Pappas, P. G., Reingold,
A. L., et al. (2001). Trends in antifungal drug susceptibility of Cryptococcus
neoformans isolates in the United States: 1992 to 1994 and 1996 to 1998.
Antimicrob. Agents Chemother. 45, 3065–3069. doi: 10.1128/AAC.45.11.3065-
3069.2001

Brennan, M., Thomas, D. Y., Whiteway, M., and Kavanagh, K. (2002). Correlation
between virulence of Candida albicans mutants in mice and Galleria mellonella
larvae. FEMS Immunol. Med. Microbiol. 34, 153–157. doi: 10.1111/j.1574-
695X.2002.tb00617.x

Brown, S. M., Campbell, L. T., and Lodge, J. K. (2007). Cryptococcus
neoformans, a fungus under stress. Curr. Opin. Microbiol. 10, 320–325. doi:
10.1016/j.mib.2007.05.014

Byrnes, E. J., and Heitman, J. (2009). Cryptococcus gattii outbreak expands into the
Northwestern United States with fatal consequences. F1000 Biol. Rep. 1, 62. doi:
10.3410/B1-62

Byrnes, E. J., Li, W., Lewit, Y., Ma, H., Voelz, K., Ren, P., et al.
(2010). Emergence and pathogenicity of highly virulent Cryptococcus gattii

genotypes in the northwest United States. PLoS Pathog. 6:e1000850. doi:
10.1371/journal.ppat.1000850

Casadevall, A., and Pirofski, L. A. (1999). Host-pathogen interactions: redefining
the basic concepts of virulence and pathogenicity. Infect. Immun. 67, 3703–
3713.

Casadevall, A., and Pirofski, L. A. (2003). Microbial virulence results from the
interaction between host and microorganism. Trends Microbiol. 11, 157–158;
author reply 158–159. doi: 10.1016/S0966-842X(03)00008-8

Chau, T. T., Mai, N. H., Phu, N. H., Nghia, H. D., Chuong, L. V., Sinh, D. X.,
et al. (2010). A prospective descriptive study of cryptococcal meningitis in HIV
uninfected patients in Vietnam – high prevalence of Cryptococcus neoformans
var grubii in the absence of underlying disease. BMC Infect. Dis. 10:199. doi:
10.1186/1471-2334-10-199

Cheema, M. S., and Christians, J. K. (2011). Virulence in an insect model differs
between mating types in Aspergillus fumigatus. Med. Mycol. 49, 202–207. doi:
10.3109/13693786.2010.512301

Chen, S. C., Korman, T. M., Slavin, M. A., Marriott, D., Byth, K., Bak, N., et al.
(2013). Antifungal therapy and management of complications of cryptococcosis
due to Cryptococcus gattii. Clin. Infect. Dis. 57, 543–551. doi: 10.1093/cid/
cit341

Chen, S. C., Meyer, W., and Sorrell, T. C. (2014). Cryptococcus gattii infections.
Clin. Microbiol. Rev. 27, 980–1024. doi: 10.1128/CMR.00126-13

Chong, H. S., Dagg, R., Malik, R., Chen, S., and Carter, D. (2010). In vitro
susceptibility of the yeast pathogen Cryptococcus to fluconazole and other
azoles varies with molecular genotype. J. Clin. Microbiol. 48, 4115–4120. doi:
10.1128/JCM.01271-10

Chowdhary, A., Randhawa, H. S., Sundar, G., Kathuria, S., Prakash, A., Khan, Z.,
et al. (2011). In vitro antifungal susceptibility profiles and genotypes of 308
clinical and environmental isolates of Cryptococcus neoformans var. grubii and
Cryptococcus gattii serotype B from north-western India. J. Med. Microbiol. 60,
961–967. doi: 10.1099/jmm.0.029025-0

Chrisman, C. J., Albuquerque, P., Guimaraes, A. J., Nieves, E., and Casadevall, A.
(2011). Phospholipids trigger Cryptococcus neoformans capsular enlargement
during interactions with amoebae and macrophages. PLoS Pathog. 7:e1002047.
doi: 10.1371/journal.ppat.1002047

Clancy, C. J., Nguyen, M. H., Alandoerffer, R., Cheng, S., Iczkowski, K.,
Richardson, M., et al. (2006). Cryptococcus neoformans var. grubii
isolates recovered from persons with AIDS demonstrate a wide range
of virulence during murine meningoencephalitis that correlates with the
expression of certain virulence factors. Microbiology 152, 2247–2255. doi:
10.1099/mic.0.28798-0

Coelho, C., Bocca, A. L., and Casadevall, A. (2014). The tools for virulence of
Cryptococcus neoformans. Adv. Appl. Microbiol. 87, 1–41. doi: 10.1016/B978-
0-12-800261-2.00001-3

Cowen, L. E., Sanglard, D., Calabrese, D., Sirjusingh, C., Anderson, J. B., and
Kohn, L. M. (2000). Evolution of drug resistance in experimental populations
of Candida albicans. J. Bacteriol. 182, 1515–1522. doi: 10.1128/JB.182.6.1515-
1522.2000

Cowen, L. E., Singh, S. D., Köhler, J. R., Collins, C., Zaas, A. K., Schell, W. A.,
et al. (2009). Harnessing Hsp90 function as a powerful, broadly effective
therapeutic strategy for fungal infectious disease. Proc. Natl. Acad. Sci. U.S.A.
106, 2818–2823. doi: 10.1073/pnas.0813394106

Diamond, R. D., and Bennett, J. E. (1973). Growth of Cryptococcus
neoformans within human macrophages in vitro. Infect. Immun. 7,
231–236.

Frontiers in Microbiology | www.frontiersin.org 11 February 2016 | Volume 7 | Article 153

http://journal.frontiersin.org/article/10.3389/fmicb.2016.00153
http://journal.frontiersin.org/article/10.3389/fmicb.2016.00153
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-07-00153 February 13, 2016 Time: 20:46 # 12

Rossi et al. Impact of Resistance to Fluconazole on Virulence in Cryptococcus sp.

D’Souza, C. A., Kronstad, J. W., Taylor, G., Warren, R., Yuen, M., Hu, G., et al.
(2011). Genome variation in Cryptococcus gattii, an emerging pathogen of
immunocompetent hosts. MBio 2, e00342-10. doi: 10.1128/mBio.00342-10

Eisenman, H. C., Duong, R., Chan, H., Tsue, R., and Mcclelland, E. E.
(2014). Reduced virulence of melanized Cryptococcus neoformans in Galleria
mellonella. Virulence 5, 611–618. doi: 10.4161/viru.29234

Espinel-Ingroff, A., Aller, A. I., Canton, E., Castañón-Olivares, L. R.,
Chowdhary, A., Cordoba, S., et al. (2012a). Cryptococcus neoformans-
Cryptococcus gattii species complex: an international study of wild-type
susceptibility endpoint distributions and epidemiological cutoff values for
fluconazole, itraconazole, posaconazole, and voriconazole. Antimicrob. Agents
Chemother. 56, 5898–5906. doi: 10.1128/AAC.01115-12

Espinel-Ingroff, A., Chowdhary, A., Cuenca-Estrella, M., Fothergill, A.,
Fuller, J., Hagen, F., et al. (2012b). Cryptococcus neoformans-Cryptococcus
gattii species complex: an international study of wild-type susceptibility
endpoint distributions and epidemiological cutoff values for amphotericin
B and flucytosine. Antimicrob. Agents Chemother. 56, 3107–3113. doi:
10.1128/AAC.06252-11

Fedhila, S., Buisson, C., Dussurget, O., Serror, P., Glomski, I. J., Liehl, P., et al.
(2010). Comparative analysis of the virulence of invertebrate and mammalian
pathogenic bacteria in the oral insect infection model Galleria mellonella.
J. Invertebr. Pathol. 103, 24–29. doi: 10.1016/j.jip.2009.09.005

Feldmesser, M., Tucker, S., and Casadevall, A. (2001). Intracellular parasitism of
macrophages by Cryptococcus neoformans. Trends Microbiol. 9, 273–278. doi:
10.1016/S0966-842X(01)02035-2

Fera, M. T., La Camera, E., and De Sarro, A. (2009). New triazoles and
echinocandins: mode of action, in vitro activity and mechanisms of resistance.
Expert Rev. Anti Infect. Ther. 7, 981–998. doi: 10.1586/eri.09.67

Firacative, C., Duan, S., and Meyer, W. (2014). Galleria mellonella model identifies
highly virulent strains among all major molecular types of Cryptococcus gattii.
PLoS ONE 9:e105076. doi: 10.1371/journal.pone.0105076

Franzot, S. P., Salkin, I. F., and Casadevall, A. (1999). Cryptococcus neoformans var.
grubii: separate varietal status for Cryptococcus neoformans serotype A isolates.
J. Clin. Microbiol. 37, 838–840.

Fraser, J. A., Giles, S. S., Wenink, E. C., Geunes-Boyer, S. G., Wright,
J. R., Diezmann, S., et al. (2005). Same-sex mating and the origin of the
Vancouver Island Cryptococcus gattii outbreak. Nature 437, 1360–1364. doi:
10.1038/nature04220

García-Rodas, R., Casadevall, A., Rodríguez-Tudela, J. L., Cuenca-Estrella, M.,
and Zaragoza, O. (2011). Cryptococcus neoformans capsular enlargement and
cellular gigantism during Galleria mellonella infection. PLoS ONE 6:e24485. doi:
10.1371/journal.pone.0024485

García-Rodas, R., and Zaragoza, O. (2012). Catch me if you can: phagocytosis and
killing avoidance by Cryptococcus neoformans. FEMS Immunol. Med. Microbiol.
64, 147–161. doi: 10.1111/j.1574-695X.2011.00871.x

Garcia-Solache, M. A., Izquierdo-Garcia, D., Smith, C., Bergman, A., and
Casadevall, A. (2013). Fungal virulence in a lepidopteran model is an
emergent property with deterministic features. MBio 4, e00100-13. doi:
10.1128/mBio.00100-13

Giles, S. S., Dagenais, T. R., Botts, M. R., Keller, N. P., and Hull, C. M.
(2009). Elucidating the pathogenesis of spores from the human fungal
pathogen Cryptococcus neoformans. Infect. Immun. 77, 3491–3500. doi:
10.1128/IAI.00334-09

Gomez-Lopez, A., Forastiero, A., Cendejas-Bueno, E., Gregson, L., Mellado, E.,
Howard, S. J., et al. (2014). An invertebrate model to evaluate virulence in
Aspergillus fumigatus: the role of azole resistance. Med. Mycol. 52, 311–319. doi:
10.1093/mmy/myt022

Hagen, F., Colom, M. F., Swinne, D., Tintelnot, K., Iatta, R., Montagna, M. T., et al.
(2012). Autochthonous and dormant Cryptococcus gattii infections in Europe.
Emerg. Infect. Dis. 18, 1618–1624. doi: 10.3201/eid1810.120068

Hagen, F., Illnait-Zaragozi, M. T., Bartlett, K. H., Swinne, D., Geertsen, E.,
Klaassen, C. H., et al. (2010). In vitro antifungal susceptibilities and
amplified fragment length polymorphism genotyping of a worldwide
collection of 350 clinical, veterinary, and environmental Cryptococcus gattii
isolates. Antimicrob. Agents Chemother. 54, 5139–5145. doi: 10.1128/AAC.
00746-10

Hagen, F., Khayhan, K., Theelen, B., Kolecka, A., Polacheck, I., Sionov, E., et al.
(2015). Recognition of seven species in the Cryptococcus gattii/Cryptococcus

neoformans species complex. Fungal Genet. Biol. 78, 16–48. doi:
10.1016/j.fgb.2015.02.009

Harris, J. R., Lockhart, S. R., Debess, E., Marsden-Haug, N., Goldoft, M., Wohrle, R.,
et al. (2011). Cryptococcus gattii in the United States: clinical aspects of
infection with an emerging pathogen. Clin. Infect. Dis. 53, 1188–1195. doi:
10.1093/cid/cir723

Jacobsen, I. D. (2014). Galleria mellonella as a model host to study virulence of
Candida. Virulence 5, 237–239. doi: 10.4161/viru.27434

Jobbins, S. E., Hill, C. J., D’souza-Basseal, J. M., Padula, M. P., Herbert, B. R., and
Krockenberger, M. B. (2010). Immunoproteomic approach to elucidating the
pathogenesis of cryptococcosis caused by Cryptococcus gattii. J. Proteome Res. 9,
3832–3841. doi: 10.1021/pr100028t

Kessler, A. T., Al Kharrat, T., and Kourtis, A. P. (2010). Cryptococcus neoformans as
a cause of bronchiolitis obliterans organizing pneumonia. J. Infect. Chemother.
16, 206–209. doi: 10.1007/s10156-010-0039-7

Kidd, S. E., Hagen, F., Tscharke, R. L., Huynh, M., Bartlett, K. H., Fyfe, M.,
et al. (2004). A rare genotype of Cryptococcus gattii caused the cryptococcosis
outbreak on Vancouver Island (British Columbia, Canada). Proc. Natl. Acad.
Sci. U.S.A. 101, 17258–17263. doi: 10.1073/pnas.0402981101

Kwon-Chung, K. J., and Varma, A. (2006). Do major species concepts support
one, two or more species within Cryptococcus neoformans? FEMS Yeast Res. 6,
574–587. doi: 10.1111/j.1567-1364.2006.00088.x

Lavine, M. D., and Strand, M. R. (2002). Insect hemocytes and their role in
immunity. Insect Biochem. Mol. Biol. 32, 1295–1309. doi: 10.1016/S0965-
1748(02)00092-9

Levin, B. R., Lipsitch, M., Perrot, V., Schrag, S., Antia, R., Simonsen, L., et al. (1997).
The population genetics of antibiotic resistance. Clin. Infect. Dis. 24(Suppl. 1),
S9–S16. doi: 10.1093/clinids/24.Supplement_1.S9

Li, S. S., and Mody, C. H. (2010). Cryptococcus. Proc. Am. Thorac. Soc. 7, 186–196.
doi: 10.1513/pats.200907-063AL

Litvintseva, A. P., Thakur, R., Vilgalys, R., and Mitchell, T. G. (2006). Multilocus
sequence typing reveals three genetic subpopulations of Cryptococcus
neoformans var. grubii (serotype A), including a unique population in
Botswana. Genetics 172, 2223–2238. doi: 10.1534/genetics.105.046672

Ma, H., Croudace, J. E., Lammas, D. A., and May, R. C. (2006). Expulsion
of live pathogenic yeast by macrophages. Curr. Biol. 16, 2156–2160. doi:
10.1016/j.cub.2006.09.032

Magditch, D. A., Liu, T. B., Xue, C., and Idnurm, A. (2012). DNA
mutations mediate microevolution between host-adapted forms of the
pathogenic fungus Cryptococcus neoformans. PLoS Pathog. 8:e1002936. doi:
10.1371/journal.ppat.1002936

Marr, K. A. (2011). Cryptococcus gattii: the tip of the iceberg. Clin. Infect. Dis. 53,
1196–1198. doi: 10.1093/cid/cir738

Martinez, L. R., and Casadevall, A. (2006). Susceptibility of Cryptococcus
neoformans biofilms to antifungal agents in vitro. Antimicrob. Agents
Chemother. 50, 1021–1033. doi: 10.1128/AAC.50.3.1021-1033.2006

Mesa-Arango, A. C., Forastiero, A., Bernal-Martínez, L., Cuenca-Estrella, M.,
Mellado, E., and Zaragoza, O. (2012). The non-mammalian host Galleria
mellonella can be used to study the virulence of the fungal pathogen Candida
tropicalis and the efficacy of antifungal drugs during infection by this
pathogenic yeast. Med. Mycol. 51, 461–472. doi: 10.3109/13693786.2012.737031

Meyer, W., Aanensen, D. M., Boekhout, T., Cogliati, M., Diaz, M. R., Esposto,
M. C., et al. (2009). Consensus multi-locus sequence typing scheme for
Cryptococcus neoformans and Cryptococcus gattii. Med. Mycol. 47, 561–570. doi:
10.1080/13693780902953886

Muhammed, M., Fuchs, B. B., Wu, M. P., Breger, J., Coleman, J. J., and
Mylonakis, E. (2012). The role of mycelium production and a MAPK-mediated
immune response in the C. elegans-Fusarium model system. Med. Mycol. 50,
488–496. doi: 10.3109/13693786.2011.648217

Mylonakis, E., and Aballay, A. (2005). Worms and flies as genetically tractable
animal models to study host-pathogen interactions. Infect. Immun. 73, 3833–
3841. doi: 10.1128/IAI.73.7.3833-3841.2005

Mylonakis, E., Moreno, R., El Khoury, J. B., Idnurm, A., Heitman, J., Calderwood,
S. B., et al. (2005). Galleria mellonella as a model system to study
Cryptococcus neoformans pathogenesis. Infect. Immun. 73, 3842–3850. doi:
10.1128/IAI.73.7.3842-3850.2005

Negroni, R. (2012). Cryptococcosis. Clin. Dermatol. 30, 599–609. doi:
10.1016/j.clindermatol.2012.01.005

Frontiers in Microbiology | www.frontiersin.org 12 February 2016 | Volume 7 | Article 153

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-07-00153 February 13, 2016 Time: 20:46 # 13

Rossi et al. Impact of Resistance to Fluconazole on Virulence in Cryptococcus sp.

Ngamskulrungroj, P., Chang, Y., Sionov, E., and Kwon-Chung, K. J. (2012). The
primary target organ of Cryptococcus gattii is different from that of Cryptococcus
neoformans in a murine model. MBio 3, e00103-12. doi: 10.1128/mBio.00
103-12

Nosanchuk, J. D., Cleare, W., Franzot, S. P., and Casadevall, A. (1999).
Amphotericin B and fluconazole affect cellular charge, macrophage
phagocytosis, and cellular morphology of Cryptococcus neoformans
at subinhibitory concentrations. Antimicrob. Agents Chemother. 43, 2
33–239.

Okagaki, L. H., Strain, A. K., Nielsen, J. N., Charlier, C., Baltes, N. J., Chrétien, F.,
et al. (2010). Cryptococcal cell morphology affects host cell interactions
and pathogenicity. PLoS Pathog. 6:e1000953. doi: 10.1371/journal.ppat.10
00953

Okawa, Y., Miyauchi, M., and Kobayashi, H. (2008). Comparison of pathogenicity
of various Candida tropicalis strains. Biol. Pharm. Bull. 31, 1507–1510. doi:
10.1248/bpb.31.1507

Oliveira Carvalho, V., Okay, T. S., Melhem, M. S., Walderez Szeszs, M., and Del
Negro, G. M. (2013). The new mutation L321F in Candida albicans ERG11 gene
may be associated with fluconazole resistance. Rev. Iberoam. Micol. 30, 209–212.
doi: 10.1016/j.riam.2013.01.001

Park, B. J., Wannemuehler, K. A., Marston, B. J., Govender, N., Pappas, P. G., and
Chiller, T. M. (2009). Estimation of the current global burden of cryptococcal
meningitis among persons living with HIV/AIDS. AIDS 23, 525–530. doi:
10.1097/QAD.0b013e328322ffac

Perfect, J. R. (2006). Cryptococcus neoformans: the yeast that likes it hot. FEMS
Yeast Res. 6, 463–468. doi: 10.1111/j.1567-1364.2006.00051.x

Perfect, J. R., Dismukes, W. E., Dromer, F., Goldman, D. L., Graybill, J. R.,
Hamill, R. J., et al. (2010). Clinical practice guidelines for the management of
cryptococcal disease: 2010 update by the infectious diseases society of america.
Clin. Infect. Dis. 50, 291–322. doi: 10.1086/649858

Petter, R., Kang, B. S., Boekhout, T., Davis, B. J., and Kwon-Chung, K. J.
(2001). A survey of heterobasidiomycetous yeasts for the presence of the
genes homologous to virulence factors of Filobasidiella neoformans, CNLAC1
and CAP59. Microbiology 147, 2029–2036. doi: 10.1099/00221287-147-8
-2029

Pfaller, M. A., Diekema, D. J., Gibbs, D. L., Newell, V. A., Bijie, H.,
Dzierzanowska, D., et al. (2009). Results from the ARTEMIS DISK
Global Antifungal Surveillance Study, 1997 to 2007: 10.5-year analysis of
susceptibilities of noncandidal yeast species to fluconazole and voriconazole
determined by CLSI standardized disk diffusion testing. J. Clin. Microbiol. 47,
117–123. doi: 10.1128/JCM.01747-08

Posteraro, B., Sanguinetti, M., Sanglard, D., La Sorda, M., Boccia, S., Romano, L.,
et al. (2003). Identification and characterization of a Cryptococcus neoformans
ATP binding cassette (ABC) transporter-encoding gene, CnAFR1, involved in
the resistance to fluconazole. Mol. Microbiol. 47, 357–371. doi: 10.1046/j.1365-
2958.2003.03281.x

Qin, Q. M., Luo, J., Lin, X., Pei, J., Li, L., Ficht, T. A., et al. (2011). Functional
analysis of host factors that mediate the intracellular lifestyle of Cryptococcus
neoformans. PLoS Pathog. 7:e1002078. doi: 10.1371/journal.ppat.1002078

Ramarao, N., Nielsen-Leroux, C., and Lereclus, D. (2012). The insect Galleria
mellonella as a powerful infection model to investigate bacterial pathogenesis.
J. Vis. Exp. 70, e4392. doi: 10.3791/4392

Raso, T. F., Werther, K., Miranda, E. T., and Mendes-Giannini, M. J. (2004).
Cryptococcosis outbreak in psittacine birds in Brazil. Med. Mycol. 42, 355–362.
doi: 10.1080/13693780410001712061

Rodero, L., Mellado, E., Rodriguez, A. C., Salve, A., Guelfand, L., Cahn, P., et al.
(2003). G484S amino acid substitution in lanosterol 14-alpha demethylase
(ERG11) is related to fluconazole resistance in a recurrent Cryptococcus
neoformans clinical isolate. Antimicrob. Agents Chemother. 47, 3653–3656. doi:
10.1128/AAC.47.11.3653-3656.2003

Rueda, C., Cuenca-Estrella, M., and Zaragoza, O. (2014). Paradoxical growth of
Candida albicans in the presence of caspofungin is associated with multiple cell
wall rearrangements and decreased virulence. Antimicrob. Agents Chemother.
58, 1071–1083. doi: 10.1128/AAC.00946-13

Sanglard, D. (2002). Resistance of human fungal pathogens to antifungal drugs.
Curr. Opin. Microbiol. 5, 379–385. doi: 10.1016/S1369-5274(02)00344-2

Sanglard, D., Coste, A., and Ferrari, S. (2009). Antifungal drug resistance
mechanisms in fungal pathogens from the perspective of transcriptional

gene regulation. FEMS Yeast Res. 9, 1029–1050. doi: 10.1111/j.1567-
1364.2009.00578.x

Sanglard, D., Ischer, F., Koymans, L., and Bille, J. (1998). Amino acid
substitutions in the cytochrome P-450 lanosterol 14alpha-demethylase
(CYP51A1) from azole-resistant Candida albicans clinical isolates contribute
to resistance to azole antifungal agents. Antimicrob. Agents Chemother. 42,
241–253.

Sanguinetti, M., Posteraro, B., La Sorda, M., Torelli, R., Fiori, B., Santangelo, R.,
et al. (2006). Role of AFR1, an ABC transporter-encoding gene, in
the in vivo response to fluconazole and virulence of Cryptococcus
neoformans. Infect. Immun. 74, 1352–1359. doi: 10.1128/IAI.74.2.1352-
1359.2006

Santos, J. R., Holanda, R. A., Frases, S., Bravim, M., Araujo, G. E. S.,
Santos, P. C., et al. (2014). Fluconazole alters the polysaccharide
capsule of Cryptococcus gattii and leads to distinct behaviors in murine
Cryptococcosis. PLoS ONE 9:e112669. doi: 10.1371/journal.pone.01
12669

Schulz, B., Weber, K., Schmidt, A., Borg-Von Zepelin, M., and Ruhnke, M. (2011).
Difference in virulence between fluconazole-susceptible and fluconazole-
resistant Candida albicans in a mouse model. Mycoses 54, e522–e530. doi:
10.1111/j.1439-0507.2010.01970.x

Scorzoni, L., De Lucas, M. P., Mesa-Arango, A. C., Fusco-Almeida, A. M.,
Lozano, E., Cuenca-Estrella, M., et al. (2013). Antifungal efficacy
during Candida krusei infection in non-conventional models correlates
with the yeast in vitro susceptibility profile. PLoS ONE 8:e60047. doi:
10.1371/journal.pone.0060047

Sheng, C., Miao, Z., Ji, H., Yao, J., Wang, W., Che, X., et al. (2009). Three-
dimensional model of lanosterol 14 alpha-demethylase from Cryptococcus
neoformans: active-site characterization and insights into azole binding.
Antimicrob. Agents Chemother. 53, 3487–3495. doi: 10.1128/AAC.
01630-08

Sionov, E., Chang, Y. C., Garraffo, H. M., and Kwon-Chung, K. J. (2009).
Heteroresistance to fluconazole in Cryptococcus neoformans is intrinsic and
associated with virulence. Antimicrob. Agents Chemother. 53, 2804–2815. doi:
10.1128/AAC.00295-09

Sionov, E., Lee, H., Chang, Y. C., and Kwon-Chung, K. J. (2010). Cryptococcus
neoformans overcomes stress of azole drugs by formation of disomy
in specific multiple chromosomes. PLoS Pathog. 6:e1000848. doi:
10.1371/journal.ppat.1000848

Spinello, A. (2013). New insights into HIV/AIDS-associated Cryptococcosis. ISRN
AIDS 2013, 471363. doi: 10.1155/2013/471363

Steenbergen, J. N., Shuman, H. A., and Casadevall, A. (2001). Cryptococcus
neoformans interactions with amoebae suggest an explanation for
its virulence and intracellular pathogenic strategy in macrophages.
Proc. Natl. Acad. Sci. U.S.A. 98, 15245–15250. doi: 10.1073/pnas.261
418798

Stevens, D. A., Espiritu, M., and Parmar, R. (2004). Paradoxical effect of
caspofungin: reduced activity against Candida albicans at high drug
concentrations. Antimicrob. Agents Chemother. 48, 3407–3411. doi:
10.1128/AAC.48.9.3407-3411.2004

Trevijano-Contador, N., Herrero-Fernández, I., García-Barbazán, I., Scorzoni, L.,
Rueda, C., Rossi, S. A., et al. (2015). Cryptococcus neoformans induces
antimicrobial responses and behaves as a facultative intracellular pathogen
in the non mammalian model Galleria mellonella. Virulence 6, 66–74. doi:
10.4161/21505594.2014.986412

Trilles, L., Lazéra, M., Wanke, B., Theelen, B., and Boekhout, T. (2003).
Genetic characterization of environmental isolates of the Cryptococcus
neoformans species complex from Brazil. Med. Mycol. 41, 383–390. doi:
10.1080/1369378031000137206

Varma, A., and Kwon-Chung, K. J. (2010). Heteroresistance of Cryptococcus
gattii to fluconazole. Antimicrob. Agents Chemother. 54, 2303–2311. doi:
10.1128/AAC.00153-10

Wilke, M. (2011). Treatment and prophylaxis of invasive candidiasis with
anidulafungin, caspofungin and micafungin and its impact on use and costs:
review of the literature. Eur. J. Med. Res. 16, 180–186. doi: 10.1186/2047-783X-
16-4-180

Zaragoza, O., and Casadevall, A. (2004). Experimental modulation of capsule size
in Cryptococcus neoformans. Biol. Proced. Online 6, 10–15. doi: 10.1251/bpo68

Frontiers in Microbiology | www.frontiersin.org 13 February 2016 | Volume 7 | Article 153

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-07-00153 February 13, 2016 Time: 20:46 # 14

Rossi et al. Impact of Resistance to Fluconazole on Virulence in Cryptococcus sp.

Zaragoza, O., García-Rodas, R., Nosanchuk, J. D., Cuenca-Estrella, M.,
Rodríguez-Tudela, J. L., and Casadevall, A. (2010). Fungal cell
gigantism during mammalian infection. PLoS Pathog. 6:e1000945. doi:
10.1371/journal.ppat.1000945

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2016 Rossi, Trevijano-Contador, Scorzoni, Mesa-Arango, de Oliveira,
Werther, de Freitas Raso, Mendes-Giannini, Zaragoza and Fusco-Almeida. This
is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) or licensor are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Microbiology | www.frontiersin.org 14 February 2016 | Volume 7 | Article 153

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive

	Impact of Resistance to Fluconazole on Virulence and Morphological Aspects of Cryptococcus neoformans and Cryptococcus gattii Isolates
	Introduction
	Materials And Methods
	Strains and Growth Conditions
	Antifungal Susceptibility
	Cryptococcus sp. Growth Curve at Different Temperatures
	Cryptococcus sp. In Vitro Capsule Induction
	Galleria mellonella Rearing and Larvae Manipulation

	Survival Assay
	Hemolymph Melanization
	Cryptococcus sp. Cell and Capsule Size Alterations After Infection in G. mellonella
	Cryptococcus sp. Phagocytosis Assays in G. mellonella


	Results
	Susceptibility Testing against Fluconazole and Amphotericin B
	Growth Curve at Different Temperatures
	Cryptococcus sp. Virulence at 30 and 37C

	Hemolymph Melanization
	In Vitro Capsule Induction at 37C
	Morphology of Cells in G. mellonella
	In Vivo Phagocytosis Assay


	Discussion
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


