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Short DNA motifs are involved in a multitude of functions such as for example

chromosome segregation, DNA replication or mismatch repair. Distribution of suchmotifs

is often not random and the specific chromosomal pattern relates to the respective motif

function. Computational approaches which quantitatively assess such chromosomal

motif patterns are necessary. Here we present a new computer tool DistAMo (Distribution

Analysis of DNA Motifs). The algorithm uses codon redundancy to calculate the relative

abundance of short DNA motifs from single genes to entire chromosomes. Comparative

genomics analyses of the GATC-motif distribution in γ-proteobacterial genomes using

DistAMo revealed that (i) genes beside the replication origin are enriched in GATCs,

(ii) genome-wide GATC distribution follows a distinct pattern, and (iii) genes involved

in DNA replication and repair are enriched in GATCs. These features are specific

for bacterial chromosomes encoding a Dam methyltransferase. The new software

is available as a stand-alone or as an easy-to-use web-based server version at

http://www.computational.bio.uni-giessen.de/distamo.

Keywords: bioinformatics, computational biology, algorithm, chromosome maintenance, DNA replication,

Escherichia coli, bacteria

INTRODUCTION

Chromosomes are much more than haphazard arrays of genes. Furthermore, they need to be
physically and temporally coordinated during replication, segregation and systematically unfolded
and refolded to fit in the cell. Such processes are collectively referred to as chromosome
maintenance. Systems that are involved in chromosome maintenance often depend upon DNA
motifs that are specifically bound by one or more proteins (Touzain et al., 2011; Messerschmidt
and Waldminghaus, 2014). One example is the FtsK orienting polar sequences (KOPS) in bacteria
which direct the DNA translocase toward the dif site opposite to the replication origin (Bigot
et al., 2005). At this site FtsK interacts with the site-specific recombination system XerCD to
resolve chromosome dimers. Another example is the nucleoid occlusion (Adams et al., 2014)
in which a protein binds to specific sites on the chromosome and blocks cell division if the
chromosome spans the division site. In this way the chromosome is protected from being
guillotined.

Beside the individual DNAmotifs and the binding protein there is a third aspect essential for the
functionality of chromosomemaintenance systems: the chromosomal distribution of the respective
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DNA motif. For the KOPS motif, a directional distribution was
found on both replichors in the origin-to-dif site orientation
(Bigot et al., 2005). For nucleoid occlusion, the motif is excluded
from an extended region around the replication terminus, both
in E. coli and B. subtilis (Wu et al., 2009; Tonthat et al., 2011).
However, the functional relevance of this distribution is, to date,
merely speculative. In other systems the chromosome-wide motif
distribution was found to be directly linked to function (Touzain
et al., 2011). In view of this development, the ever-expanding
collection of sequenced genomes in recent years has been used
for computational analysis of motif distributions. One example is
the discovery of KOPS-like motifs in Lactococcus lactis by using
three criteria derived from known KOPS (Nolivos et al., 2012).
First, the over-representation in the genome, second, a leading
strand bias and third, an especially high leading strand bias in the
region around the dif site. The discovered motif in L. lactis was
experimentally validated to be a functional KOPS.

Motif distribution analysis was also applied to find completely
new chromosome maintenance systems. Mercier et al.
hypothesized the presence of a dedicated protein organizing
one chromosomal domain in E. coli and predicted that a
respective DNA binding motive is over-represented specifically
in this domain (exceptionality score) compared to the rest
of the chromosome (contrast score). Plotting the two values
against each other for all possible 11-mers revealed a novel
motif (matS) which was found to interact with a protein
(MatP). This combination contributes to organization of the Ter
macrodomain (Mercier et al., 2008).

Although the described computational methods led to
interesting new biological insights the focus was not on a detailed
and systematic analysis of the chromosome-wide distribution
of the respective DNA-motifs. It is actually not trivial to
determine if a DNA motif occurs at a specific site only by
chance or if the motif is over- or underrepresented at a locus
(Sadovsky, 2006). The critical point is that over- or under-
representation is by definition relative to the so called null-model.
The most common approach is to calculate the occurrence
of sub-motifs and from that derive the likelihood of them
to form the motif itself. The logic is that if there are, for
example, many GA and TC dinucleotides in a sequence the
chance of a GATC would increase. The expected incidence
of GATC is relative to the number of GAs and TCs. Thus,
a single occurrence of GATC in a region with many GAs
and TCs would not be considered an over-representation.
Conversely, in a region in which the only GA and TC
dinucleotides formed a GATC motif, this incidence would
be considered an over-representation. The problem with this
approach is that it does not take into account the rules and
constraints that might apply to biological sequences. As a way
to include the biological characteristics of the sequences into
the motif distribution analysis we use the codon redundancy as
a basis for our calculations (see Results section for a detailed
description).

Implementation and application of the respective algorithm
revealed new insights on the functional important sequence
motif GATC. This sequence is special in E. coli and related
γ-proteobacteria because it is methylated at the adenine

in both strands of this palindromic sequence by the Dam
methyltransferase (Geier and Modrich, 1979). This methylation
is important for different cellular processes (Løbner-Olesen
et al., 2005). Firstly, the methylation contributes to the efficient
repair of mismatch mutations. This is because freshly replicated
DNA will be methylated on only one strand (the old strand)
and unmethylated on the other (the new strand). To repair
a mismatch one of the unpaired nucleotides is excised and
replaced by a complementary nucleotide. The role of methylation
is to direct the repair to the new strand via the protein
MutH that binds specifically to hemi-methylated GATCs. A
second protein that binds hemi-methylated GATCs specifically
is SeqA (Waldminghaus and Skarstad, 2009). SeqA was found
as factor that sequesters the origin of replication, oriC, after
initiation of DNA replication (Lu et al., 1994). In addition,
SeqA binds to a stretch of DNA behind the replication fork
and was suggested to contribute to chromosome segregation
(Waldminghaus et al., 2012; Joshi et al., 2013). In addition to
its role in mismatch repair, DNA replication and chromosome
segregation, the GATCs have also been shown to be involved
in gene regulation (Casadesús and Low, 2006). The best studied
example is in phase variation in pathogenic E. coli strains (Blyn
et al., 1990). The multiple roles of GATCs in bacterial cells make
it an attractive target for detailed analysis of its distribution on
bacterial chromosomes. We therefore used our new computer
tool DistAMo to uncover significant distribution patterns of
the GATC motif within single genes, multiple genes grouped
according to function, and whole genomes, demonstrating the
versatility of DistAMo.

MATERIALS AND METHODS

The Distamo Algorithm
The DistAMo algorithm first determines amino acid
combinations (pep) that form a potential motif. A potential
motif is a position in a coding region where the encoded amino
acids allows for a certain motif to occur (Figure 1). The length
of each pep is defined by the number of codons that the motif of
length l can span and is determined by the following rule:

⌊

l

3

⌋

,

⌊

l

3

⌋

+ 1 lmod3 = 0

⌊

l

3

⌋

+ 1 lmod3 = 1

⌊

l

3

⌋

+ 1,

⌊

l

3

⌋

+ 2 lmod3 = 2

As example, the dipeptide Arg-Ser forms a potential motif for the
DNAmotif GATC, as Arg Ser can be encoded by AGA TCC. The
probability Pmot of the motif to occur in the coding sequence for
an amino acid sequence pep is defined by the sum of frequencies
of coding sequences codmot containing a motif and coding for the
amino acid combination over the sum of frequencies of sequences
cod coding for the amino acid combination. Coding sequence
frequencies are derived from all coding sequences.
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FIGURE 1 | Scheme of the motif analysis algorithm DistAMo. (A) The amino acid sequences encoded by a motif-containing DNA sequence (pot motifs) are

determined. A probability of each potential motif to be encoded by a motif containing sequence is calculated. (B) The positions of potential motifs are detected using a

suffix tree search in the proteome and assigned to the corresponding genes, gene groups or chromosomal region depending on the type of analysis. The random

distribution of the number of motifs follows a Poisson binomial distribution. The z-score (significance value) is determined from the actual number of motifs, the mean

(the expected number of motifs) and the standard deviation of the Poisson binomial distribution.

Pmot
(

pep
)

=

∑

f (codmot|pep)
∑

f (cod|pep)

Taking the example of GATCmotifs, the genome-wide frequency
of AGA TCC would be one of the coding sequence frequencies
f(codmot |pep) summed up in the nominator. The genome wide
frequency of AGG TCT also encoding Arg Ser would be one of
the coding sequence frequencies f(cod|pep) summed up in the
denominator. After this step, we have determined all amino acid
sequences that may form a potential motif. Using a suffix tree,
the proteome is efficiently scanned for amino acid sequences
that form a potential motif. With the potential motif and the
probability for a motif occurrence at the potential motif we can
directly obtain the expected number of motifsm and the standard
deviation s for a given protein to determine a significance value
(z-score; z) for the deviation of the number of observed motifs
m from the expected number of motifs. Assuming independence
of potential motifs in a coding sequence, the occurrence of
motifs follows a binomial process with varying probabilities. The
number of expected motifs therefore follows a Poisson binomial
distribution with

m =
∑

Pmot(pep)

s =

√

∑

Pmot(pep)(1− Pmot(pep))

z(m,m, s) =
m−m

s

The approach can be extended to a set of proteins by merging
the potential motifs (lists of probabilities) and computing the z-
score as described above. With this flexibility and sophistication
it is possible to approach specific biological questions including
the investigation of motif distributions in a spatial and functional
context.

RESULTS

A New Algorithm to Analyse DNA Motif
Distributions on Bacterial Chromosomes
For a biologically meaningful evaluation of motif abundance
it is important to apply a null-model to distinguish between
conspicuous accumulations of motifs and those arising by
chance. Previous null-models were based on Markov-chains
of various orders. Markov-chains take base neighborhood
dependencies of nucleotide occurrence throughout the genome
into account. However, chromosomal DNA is highly diverse.
Using the complete chromosomal DNA sequence merges
coding and non-coding DNA characteristics in the process of
determining k-mer frequencies. Especially the non-coding DNA
is highly diverse due to its manifold roles in transcriptional
regulation (e.g., promoter sequences, terminators, and
other regulatory sites). Hence, a one-fits-all approach is not
recommended to perform reliable motif analysis. We therefore
concentrate on the coding sequence for two reasons. First of
all, it is the dominating sequence type in bacteria, covering
approximately 90% of the total chromosomal DNA sequence
(Land et al., 2015). Secondly, there is a single principle, the
coding for proteins, dominating the evolution of this type of
sequence. This allows the coding information of the sequence
to be used as null model for the calculation of motif abundance.
Such an approach would thus focus on the biological constraints
of a sequence rather than on its pure statistics. We therefore
propose the DistAMo (Distribution Analysis of DNA Motifs)
algorithm that estimates the motif distribution by the coding
flexibility of the protein coding DNA (Figure S1). This allows for
a precise assessment of motif enrichment taking into account the
protein coding information. An important term in this context
is the potential motif. By our definition a potential motif is a
position in a coding region where the encoded amino acids
allows for a certain motif to occur (Figure 1). For example the
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motif GGTCT is possible when the peptide of Gln, Val, and Leu
is encoded. On the other hand, these amino acids could also be
encoded by other codons not leading to a GGTCT. The ratio
between this potential motifs and the actual motif occurrence
is the general value our novel algorithm is based on (details are
provided in the Material and Methods section).

Evaluation of Motif-Distribution
Interdependencies
Motifs can’t necessarily be looked at independently. Motifs
can be prefixes or suffixes of other motifs, overlap, or share
the same potential motif sites. To estimate the degree of
interdependence and the impact on DistAMo results we
performed a comprehensive study of tetramer interdependencies.
The goal was to analyse the interdependence that stems from
motif similarities and amino acid coding properties but not
biological co-occurrence of motifs, as the detection of such
biological signals is the aim of the tool. Hence, the analysis of
motif interdependence cannot be done using native sequences
as they may contain various numbers of motifs that are coupled
for biological reasons. We therefore generated random coding
sequences with a wide range of potential motifs and real tetramer
motifs. For these sequences the z-scores for one tetramer with
a defined number of occurrences was determined relative to
the occurrence of other tetramers. Figure 2A depicts the z-
scores of coding sequences with different numbers of GATCs.
Figures 2B,C show the effect of potential and real GATCs on
the occurrence of AGAT (part of GATC) and AATC (excluding
GATC). It is apparent that at a certain number of motifs other
motif scores are affected, which might trigger wrong conclusion.
Over-representation of a motif of interest could for example
only be a result of significant under-representation of another
motif. To see how relevant this finding is for calculations based
on natural sequences we analyzed z-scores of genes with motif
distributions as found in the E. coli genome. We sampled
random genes with motif and potential motif numbers of every

gene in E. coli for every tetramer and applied DistAMo to all
sequences searching for all tetramers. We therefore generated
a set of genomes with a single tetramer represented like in
native E. coli genes. Each of these artificial genomes was
then analyzed regarding the abundance of each of the 256
possible tetramers. Figure 3 depicts the dependency of the z-
score of the motif inserted in the random sequence and any
other motif. The probability to show a significant z-score given
a significant enrichment/depletion (z-score ≥ 2) is equal to
the probability to show a significant z-score (P (mot2 sign
|mot1 enriched/depleted) = P (mot2 sign) ≈ 0.001), indicating
independence of motif z-scores. It becomes clear from our
analysis that the z-scores of the other motifs are not affected by
the z-score of a significantly enriched or depleted motif. Hence,
within the range of biological motif distributions there is no
danger of strong interdependencies of motif z-scores. DistAMo
z-scores can therefore be regarded as independent. It is important
to note that this should also hold true for DNAmotifs longer than
the tetramers used for the analysis here. This is because results
are not related to sequence length but rely on the degree of motif
similarity between the DNA motif of interest and the potentially
interfering motif. Notably, the tetramer analysis includes all
degrees of similarity from very similar to not similar at all.

Implementation of DistAMo (Distribution
Analysis of DNA Motifs)
The DistAMo algorithm was implemented and is available as
stand-alone program or easy-to-use online tool (http://www.
computational.bio.uni-giessen.de/distamo). Annotated genome
information in fasta and a gff format together with a motif of
interest serves as input to the program (Figure 4A). The online
tool allows easy selection of chromosome sequences from an
implemented list of about 7000 available replicons from bacteria,
archaea, and viruses. A detailed manual and example data are
provided to introduce researchers to DistAMo functionalities.
The output of DistAMo is a list of z-scores describing the over-

FIGURE 2 | Impact of motif and potential motif frequencies on the z-scores of other motifs. The abscissa and ordinate show the number of potential GATC

sites and real GATC sites respectively in an otherwise randomized 3000 bp coding sequence. The z-score for the tetramer is indicated in rainbow colors with red for a

z-score ≥ 2 and blue for a z-score ≤ −2. (A) GATC z-scores. (B) AGAT z-scores for different enrichments of GATC (see axis). AGAT overlaps with GATC. An increase

of GATC therefore increases the frequency of AGAT (C) AATC z-scores for different enrichments of GATC (see axis). AATC competes with GATC sites due to the

sharing of potential motif sites. Therefore, an increase of GATC decreases the abundance of AATC.
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FIGURE 3 | Impact of motif enrichment on the z-scores of other motifs.

Depicted is the frequency distribution of z-score pairs, consisting of z-score of

the enriched motif and the z-score of another motif in a random protein

sequence. The distribution shows no dependence of an enrichment of

tetramers on the z-score of other tetramers. In genes with random sequence

approximately 1 out of 1000 genes show a significant enrichment for a

tetramer if another tetramer was enriched significantly. This is equal to the

frequency of a significant enrichment of a tetramer in a random sequence (P

(A|B) = P (A)). Hence, within the limits of motif distributions present in bacteria

no interference of tetramer z-scores are to be expected using DistAMo.

or under-representation for each coding sequence. In addition,
the data is plotted color-coded in a set of circles with different
moving window sizes to allow easy and fast visual inspection of
the genomic motif distribution (Figures 4B,C, 5).

Many DNA motifs that are known to be functionally
important show specific biases for regions of the chromosome.
To get significance values for such biases the DistAMo
program calculates z-scores for five relevant parameters: (i)
the leading/lagging strand bias describes over-representation of
the motif on either the leading or the lagging strand (ii) the
coding/template strand bias measures the over-representation of
the motif on the strand that corresponds to the coding mRNA vs.
the strand that serves as mRNA template (iii) the origin/terminus
bias compares motif enrichment in the chromosome half of the
replication origin vs. the half containing the replication terminus,
(iv) the replichore bias compares the motif enrichment on the
left and right replichores, and (v) the subset bias compares the
motif enrichment in a given subset of genes vs. the entire genome
(available only in the stand-alone version).

The leading/lagging strand bias is determined using a Monte-
Carlo simulation as follows. In the first step, the motif z-scores of
all genes are computed separately for the leading and the lagging
strand using the motifs and potential motifs of the respective

strand. Then DistAMo determines the average difference of
the z-score between leading and lagging strand of all genes.
In the final step this difference is computed with randomized
orientations (randomized leading/lagging strand) of genes and
the mean and standard deviation of the difference of 10,000
replicates is determined to obtain a z-score. Calculation of the
other biases works equivalently. They are not calculated for
viral and archaeal genomes because their replication mechanism
are more complex not allowing easy differentiation between
for example leading and lagging strand. For bacterial genomes,
DistAMo also generates genomic plots for motif distributions
on the leading strand, the lagging strand, the template strand
and the coding strand (Figure 4B). To test our algorithm with a
known motif distribution we used KOPS sites (GGGNAGGG),
known to be biased in leading/lagging strand distribution in
Escherichia coli (Bigot et al., 2005). Genomic plots show a clear
over-representation of KOPS on the leading and an under-
representation on the lagging strand in E. coli as expected with
a highly significant bias z-score of 10.3 (Figure 5). Interestingly,
we also detected a biased distribution of KOPS along the ori-ter
axis with a significant z-score of -3.8. Similar to Lactococcus lactis,
these result indicates that KOPS are significantly enriched in the
ter half of the E. coli chromosome (Nolivos et al., 2012).

Genome-Wide GATC Distribution Follows a
Distinct Pattern
After proving the effectiveness of DistAMo and establishing
reproducibility of previous findings, we turned to the
investigation of the genome-wide GATC distribution in
Escherichia coli. The GATC over-representation peaked
symmetrically at approximately one third of the distance to the
terminus region on both replichores (Figure 6A). Raw data are
provided in Table S2.

In order to identify a potentially conserved pattern of GATC
distribution, the same analysis was performed with chromosome
sequences of 152 γ-proteobacteria available on the NCBI server
making sure that only a single genome per species is selected
and only species with an oriC position listed in the DoriC
database (Gao et al., 2013). The full list of species and a
phylogenetic tree of the used γ-proteobacteria is provided in the
Supplementary Material (Figure S2, Table S1). The functional
importance of the GATC motif in E. coli is directly linked to the
Dam methyltransferase which methylates the respective adenine
specifically. Dam is evolutionary conserved in a subset of the
γ-proteobacteria. In order to have a control distribution for
GATC we split the 152 species into Dam positive and Dam
negative species, representing functional and non-functional
GATC motifs, respectively. However, Dam orthologs are difficult
to identify by in-silico approaches due to similarities with non-
Dam DNA methyltransferases. SeqA is co-conserved with Dam
(Marinus and Lobner-Olesen, 2014) and can be detected reliably
by BLAST searches. We therefore split the two sets using the
seqA gene as an indicator of the presence of Dam. The list
of γ-proteobacteria comprised 79 Dam positive and 73 Dam
negative species (Figure S2, Table S1). We computed the average
pattern of GATC distribution using scaled chromosome data to
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FIGURE 4 | DistAMo online version. The tool is available online with a user-friendly interface to allow access also to non-experts. (A) Input mask where the user can

choose from thousands of complete genomes and search for the motif of interest. Help symbols guide through the input. (B) After computation the user is informed

via email and guided to the results. It holds global information including strand bias and ori-ter bias significance scores of the motif. (C) A click on each figure opens a

page with detailed information about the genes with significant over- and under-representation. Gene positions can be displayed on the chromosome plot.

deal with the different sizes of chromosomes in the averaging
process. This scaling approach has been successfully applied to
γ-proteobacteria genomes in previous studies (Sobetzko et al.,
2012, 2013). Our analysis revealed the conservation of the
symmetric high-density regions found for E. coli in Dam positive
γ-proteobacterial chromosomes (Figure 6B). In contrast, an even
distribution of GATCs without distinct cluster patterns was
observed for Dam negative chromosomes (Figure 6C). These
findings suggest that the chromosome-wide distribution of
GATCs is directly linked to the presence of dam on the respective
genome.

Genes Beside oriC are Enriched in GATC
Sequences
GATC sequences can be found with a high frequency in the
origin of replication of Escherichia coli, reflecting the importance
of GATC methylation for the proper function of oriC. Zooming
into our GATC density analysis of coding regions near the origin
shows an over-representation of GATCs directly adjacent to
the oriC (Figure 6D). To investigate if this over-representation
is conserved we analyzed the genes neighboring the origin
in both Dam positive and negative sets of γ-proteobacteria
described above (Figures 6E,F). Both genes directly neighboring

the replication origin show a significant over-representation of
GATCs with mean z-score values of 3.3 and 1.8, respectively.
Thus, the GATC over-representation found at the replication
origin includes the coding regions of adjacent genes (Figure 6E).
Notably, this finding applies only to bacteria encoding a
Dam homolog while no GATC enrichment was found for
origin-neighboring genes in genomes of Dam-negative bacteria
(Figure 6F).

Genes Involved in DNA Replication and
Repair are Enriched in GATCs
In Escherichia coli, several other genes, in addition to the oriC-
flanking genes, show a strong enrichment of GATC sites in their
coding sequences. We asked whether these genes are functionally
related and investigated COG (conserved orthologous gene)
groups comprising E. coli genes belonging to the same functional
class. Application of DistAMo provided z-scores for the over-
representation of the GATC motif in these groups (Figure 7A).
Interestingly, the group of replication and repair genes yielded
the only significant (3.9) score of all groups (Figure 7A) with
a large gap to the second highest score (1.2). To cross-check
the gene group of replication and repair for the specificity of
GATC over-representation we analyzed the over-representation
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FIGURE 5 | Distribution of KOPS sites on the leading strand (A) and

lagging strand (B) of the E. coli chromosome. A significant over- or

under-representation is color-coded by a red or blue color respectively. Rings

from outside to the inside differ in the size of the sliding window from 50 to

500 kb in 50 kb steps.

z-score of all tetramers in this group (Figure 7B). Notably, GATC
was most over-represented in this COG group among all 256
tetramers (Figure 7B) further supporting the significance of our
finding.

DISCUSSION

Several algorithms determining the over-representation of motifs
have been developed (Merkl et al., 1992; Karlin et al., 1994;
Mrázek et al., 2002; Kural et al., 2009; Davenport and Tümmler,
2010; Schbath, 2011; Ding et al., 2012). Most of them are
based on Markov-chains that lack the capability to differentiate
between motif selective coding and other selective pressures on
coding sequences (Kural et al., 2009). For the estimation of
a motif over- or under-representation it is important to take
into account the protein coding information level of a DNA
sequence. A published algorithm does actually calculate over-
representation of a motif based on the redundancy of the genetic
code as we do in the work presented here (Ding et al., 2012).
However, this algorithm is limited to the determination of a
global over-representation in a given (large) sequence (Ding
et al., 2012). Output of the respective program is a single value
indicating the global over- or under-representation of a motif.
Since the statistics for this determination is derived from the
input sequence itself, small sequences like genes cannot be
analyzed individually by this tool. In addition, local variations of
the motif distribution would be partially occluded by the overall
genomic over-representation of the motif in such approaches.
Such local variations of motif distributions however, have been
shown to be critical to understand cellular mechanisms related to
chromosome maintenance (Mercier et al., 2008; Wu et al., 2009;
Touzain et al., 2011; Nolivos et al., 2012).

The DistAMo algorithm introduced here provides rich
information about the motif distribution among single genes,
groups of genes and the whole genome with minimal input
from the thousands of available genomes in a standard flat file
format. With our user-friendly web-based version, the tool is
openly accessible to regular biologists without a bioinformatics
background. Although we focus on bacterial chromosomes our
new algorithm is widely applicable also to other genomes.

DistAMo will allow for example the analysis of DNA motifs
in archaea and viruses where the genomes mostly consist of
coding sequences as in bacteria. All available genome sequences
(>500 kbp) of these three phylogenetic groups are included
in the online version of DistAMo. For eukaryotic organisms,
DistAMo could be used for the analysis of DNA motif densities
in individual or groups of genes.

Application of DistAMo to the DNA motif GATC revealed
three remarkable insights on its distribution on the E. coli
chromosome and in the phylogenetic group of γ-proteobacteria.
The first finding was that the GATC density follows a
distinct pattern on the chromosome-wide scale (Figures 6A–C).
Occurrence of this pattern was limited to chromosomes of
bacteria that encode a SeqA homolog indicating that it is related
to the Dammethylation system.What functionmight the specific
genomic distribution of GATCs on the Dam-positive bacteria
serve? The distribution might be associated with a protein of the
so called dam clade (Brézellec et al., 2006; Marinus and Lobner-
Olesen, 2014). This is a group of proteins which is evolutionary
conserved with Dam. We have described MutH and SeqA above
with their specificity for hemi-methylated GATCs which make
them dependent on a functional Dam homolog. Other members
of the Dam clade, such as the MatP protein or MukBEF do not
have an obvious direct connection to Dam methylation (Niki
et al., 1991; Mercier et al., 2008). The observed GATC pattern
shows some symmetry with respect to the origin to terminus
axis (Figure 6B). Such symmetry might point to some function
related to DNA replication which proceeds bidirectional from ori
to ter. DNA mismatch repair mediated by MutH might be such
a process because it continuously proceeds on newly replicated
DNA behind the replication fork. However, mismatch repair
seems to be functional in regions with an under-representation
of GATCs as long as a certain distance between neighboring
GATCs is not exceeded, and does not increase in efficiency
with increasing GATC density (Bruni et al., 1988). Even if this
was the case the question remains why the mismatch repair
should work with different efficiencies in different regions of
the chromosome. Another Dam-clade protein associated with
DNA replication is SeqA (Waldminghaus and Skarstad, 2009).
It was discovered as factor that sequesters the replication origin
oriC from inappropriately early rounds of re-initiation (Lu et al.,
1994). Sequestration is mediated by binding of SeqA to the hemi-
methylated GATCs that occur at oriC in high density. Such
sequential binding of SeqA hinders the chromosome replication
initiator protein DnaA from directly rebinding to oriC after each
successful initiation of DNA replication. In addition to its role
in origin sequestration, SeqA was found to bind dynamically
to a stretch of newly replicated DNA following the replication
fork (Waldminghaus et al., 2012). The mechanism by which
SeqA leaves oriC after the sequestration period is unknown. One
possibility is that titration contributes, where SeqA molecules
are attracted by GATCs to the replication fork and in this
way directed away from the replication origin. In that case,
the strength of titration should consequently be linked to the
density of GATCs in the region of the chromosome that is
replicated at a respective time point. According to our data,
titration strength would gradually increase from the time point of
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FIGURE 6 | GATC-distribution analysis with DistAMo. (A) Rings depict the standard DistAMo output with different sliding window sizes (compare Figure 5) for

the distribution of GATC sites in E. coli. Raw data are provided in Table S2. (B) Average z-scores of GATC densities on chromosomes of Dam positive

γ-proteobacteria. Error bar (SEM) are indicated by the area around the curve. The origin of replication is situated in the 0 and 1000 position (circular chromosome). The

z-score data of different-sized chromosomes were scaled to 1000. (C) Analysis as in (B) with Dam negative γ-proteobacteria. (D) oriC-proximal genes in E. coli.

Overrepresentation of GATC is indicated by a red color. The set of γ-proteobacteria was split in Dam-positive and Dam-negative species and respective z-scores of

oriC-proximal genes plotted (E,F). Used species are listed in Table S1. GATC densities for oriC-proximal regions of all analyzed bacteria is shown in Figure S3.

initiation until about one third of the chromosome is replicated
(Figure 6A). The subsequent decrease in the GATC density
could then gradually reduce the number of SeqA molecules at
the replication fork to make them available for the next round
of origin sequestration. The main problem with the outlined
model is that origin sequestration periods vary greatly in E.
coli due to the ability to grow with overlapping cycles of DNA
replication. In contrast, the time point of replication forks
reaching the genomic maximum of GATC density after initiation
will be relatively constant since replication speed is relatively
constant. Manifestation of SeqA titration strength in the GATC
distribution on the chromosome might thus only be possible if it
reflects the dominant growth pattern of respective bacteria.

The second interesting finding regarding GATCs in E. coli
and related bacteria was that genes neighboring the replication
origin show significant over representation (Figures 6D–F).
This finding for E. coli appears to be conserved within Dam-
clade bacteria while no GATC enrichment was found in genes
beside the replication origins of other bacteria within the
γ-proteobacteria. Why would there be a selection pressure
for GATC enrichment near the replication origin? As for the
chromosome-wide GATC pattern discussed above there might
be a connection to the SeqA protein. The methylation of
GATCs at oriC of E. coli was shown to persist following
replication much longer than elsewhere on the chromosome
(Campbell and Kleckner, 1990). This was attributed to the high
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FIGURE 7 | Distribution of GATC in genes with specific functions. (A) Analysis of GATC over-representation in E. coli for COG groups. (B) Calculation of

over-representation for all tetramers in the most GATC over-represented COG group (Replication and repair).

density of GATCs at oriC itself and a respective multimerization
of SeqA that is more stable compared to individual SeqA
dimers. In fact, oriC had the highest signal of all SeqA
binding sites in ChIP-Chip experiments (Sánchez-Romero et al.,
2010; Waldminghaus and Skarstad, 2010). It might thus be
reasonable to conclude that the high density of GATCs in
origin-neighboring genes increase the binding strength of SeqA
to the origin itself. Direct support for this assumption comes
from an experiment where synthetic clusters of GATCs where
introduced to different sites on the E. coli chromosome leading
to increased SeqA binding at nearby sites (Waldminghaus et al.,
2012).

The third finding on GATC enrichment from this study is
most puzzling. It appears that genes involved in DNA replication
and repair show significantly higher GATC densities compared to
all other functional categories and that no other tetramer shows
higher over-representation in DNA replication and repair genes
than GATC (Figure 7). We have outlined above that the most
of what we know about GATC and its function within the cell
is related to DNA replication and repair. But why should these
genes have a high GATC density? One might intuitively suspect
some sort of gene regulation. Others have indeed considered
the existence of a GATC regulon that might consist of genes
with high numbers of GATCs in their coding region (Riva
et al., 2004a,b; Sánchez-Romero et al., 2010). However, global
transcription analysis of SeqA or Dam mutants gave no clear
indication for such a regulon (Oshima et al., 2002; Lobner-Olesen
et al., 2003).

In conclusion we have found three new insights on GATC
distribution in γ-proteobacteria which are obviously linked

to Dam and co-evolved genes. Our data strongly suggest
that there is a significant selection pressure associated with
the GATC densities, suggesting their importance for survival.
The inability to find easy explanations might indicate that
some completely new mechanism remains to be uncovered
and future experiments, both wet lab and computationally,
are needed to drive related discoveries. We believe that the
novel tool DistAMo introduced here will help to uncover
many more interesting patterns of DNA motif distributions
which not only create scientific questions but also guides
the search for answers. In addition, DistAMo might help to
define chromosome construction rules for the growing field
of synthetic genomics (Gibson et al., 2010; Annaluru et al.,
2014; Messerschmidt et al., 2015; Schindler and Waldminghaus,
2015).
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