
ORIGINAL RESEARCH
published: 21 March 2016

doi: 10.3389/fmicb.2016.00320

Frontiers in Microbiology | www.frontiersin.org 1 March 2016 | Volume 7 | Article 320

Edited by:

Agostinho Carvalho,

University of Minho, Portugal

Reviewed by:

Scott E. Gold,

The University of Georgia, USA

Carlos Pelleschi Taborda,

University of São Paulo, Brazil

*Correspondence:

Jörg Linde

joerg.linde@leibniz-hki.de;

Jürgen Löffler

loeffler_j@ukw.de

†
Andreas Dix and Kristin Czakai

contributed equally to this work.
‡
Jörg Linde and Jürgen Löffler

contributed equally to this work.

Specialty section:

This article was submitted to

Fungi and Their Interactions,

a section of the journal

Frontiers in Microbiology

Received: 22 December 2015

Accepted: 29 February 2016

Published: 21 March 2016

Citation:

Dix A, Czakai K, Springer J,

Fliesser M, Bonin M, Guthke R,

Schmitt AL, Einsele H, Linde J and

Löffler J (2016) Genome-Wide

Expression Profiling Reveals S100B as

Biomarker for Invasive Aspergillosis.

Front. Microbiol. 7:320.

doi: 10.3389/fmicb.2016.00320

Genome-Wide Expression Profiling
Reveals S100B as Biomarker for
Invasive Aspergillosis

Andreas Dix 1 †, Kristin Czakai 2 †, Jan Springer 2, Mirjam Fliesser 2, Michael Bonin 3,

Reinhard Guthke 1, Anna L. Schmitt 2, Hermann Einsele 2, Jörg Linde 1* ‡ and

Jürgen Löffler 2* ‡

1 Systems Biology / Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology Hans-Knöll-Institute,

Jena, Germany, 2University Hospital Würzburg, Medical Hospital II, Würzburg, Germany, 3 IMGM Laboratories, Martinsried,

Germany (Formerly Department of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen,

Germany)

Invasive aspergillosis (IA) is a devastating opportunistic infection and its treatment

constitutes a considerable burden for the health care system. Immunocompromised

patients are at an increased risk for IA, which is mainly caused by the species Aspergillus

fumigatus. An early and reliable diagnosis is required to initiate the appropriate antifungal

therapy. However, diagnostic sensitivity and accuracy still needs to be improved, which

can be achieved at least partly by the definition of new biomarkers. Besides the

direct detection of the pathogen by the current diagnostic methods, the analysis of

the host response is a promising strategy toward this aim. Following this approach,

we sought to identify new biomarkers for IA. For this purpose, we analyzed gene

expression profiles of hematological patients and compared profiles of patients suffering

from IA with non-IA patients. Based on microarray data, we applied a comprehensive

feature selection using a random forest classifier. We identified the transcript coding

for the S100 calcium-binding protein B (S100B) as a potential new biomarker for the

diagnosis of IA. Considering the expression of this gene, we were able to classify

samples from patients with IA with 82.3% sensitivity and 74.6% specificity. Moreover,

we validated the expression of S100B in a real-time reverse transcription polymerase

chain reaction (RT-PCR) assay and we also found a down-regulation of S100B in

A. fumigatus stimulated DCs. An influence on the IL1B and CXCL1 downstream levels

was demonstrated by this S100B knockdown. In conclusion, this study covers an

effective feature selection revealing a key regulator of the human immune response during

IA. S100B may represent an additional diagnostic marker that in combination with the

established techniques may improve the accuracy of IA diagnosis.
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1. INTRODUCTION

Aspergillus spp. are ubiquitous molds present as saprobes
in air, soil, and water. Thus, exposure to their omnipresent
spores named conidia occurs constantly and the exposure
to the fungus can be considerable (Oberle et al., 2015).
In immunocompromised patients, deposition of conidia on
mucous membranes in the lower respiratory tract may result in
their germination and subsequent growth into tissue barriers.
Leukemia patients, patients after allogeneic stem cell and
solid organ transplantation as well as other groups of heavily
immunosuppressed patients are at highest risk for Aspergillus
infections (Leventakos et al., 2010).

Aspergillus fumigatus is the predominant Aspergillus species
that causes invasive aspergillosis (IA). The rate of IA has
increased 14-fold in Europe within the last two decades,
with an incidence of more than 3000 patients annually
in Europe (Denning, 1998). Furthermore, IA is the most
expensive opportunistic infection in immunocompromised
patients. Aspergillus-related hospitalizations cause a significant
financial burden for the health care system (Slobbe et al.,
2008). Specific symptoms of IA are rare and occur late in the
course of infection. Thus, diagnosis of IA still remains difficult
with relatively low sensitivity and specificity, despite the fact
that modern assays, such as the galactomannan enzyme-linked
immunosorbent assay (ELISA) and β-glucan tests as well as
numerous real-time polymerase chain reaction (PCR) protocols
are available. In consequence, mortality of IA is still up to 90% in
central nervous system aspergillosis, but falls to 50% if patients
are treated with appropriate antifungal drugs (Denning and
Hope, 2010). The high clinical relevance, the rise in incidence
of IA, and the condicio sine qua non to diagnose IA as early,
specific, sensitive, and reliable as possible impose the search for
new alternative biomarkers.

In this study, we therefore sought to expand the spectrum
of available biomarkers for the diagnosis of IA and, to our
knowledge for the first time, analyzed transcriptome profiles of
hematological patients suffering from IA and compared them
to profiles from hematological patients without IA and to
healthy individuals. The method of analyzing the transcriptional
response of the host to identify or distinguish infections has
been successfully applied in other studies. Conclusions can be
drawn from the transcriptomic response, since specific host
reactions are caused by different conditions. For example, gene
expression patterns that differentiate between active and latent
tuberculosis have been determined in patients (Jacobsen et al.,
2007; Lu et al., 2011). In another study, invasive candidiasis was
effectively classified in mice by using a combination of different
gene signatures (Zaas et al., 2010). Additionally, biomarkers for
fungal and bacterial infections were discovered in human whole-
blood (Dix et al., 2015). Thus, the identification of transcriptional
biomarkers in the host is a promising approach.

Using a random forest-based feature selection, we found the
S100 calcium-binding protein B (S100B) to be a useful specific
marker. Its expression pattern allows differentiation of patients
with IA from patients without IA and healthy individuals.
Therefore, analysis of the S100B expression in patients’ peripheral

blood mononuclear cells (PBMCs) may contribute to an
improved diagnostic sensitivity and thus facilitate a more
reliable interpretation of the patients’ condition. This observation
was underlined by numerous accompanying functional studies,
including genotyping of three single nucleotide polymorphisms
(SNP) and the quantification of S100B in sera obtained from
hematological patients.

2. MATERIALS AND METHODS

2.1. Patient Characteristics
Blood samples were taken from allogeneic haematopoietic
stem cell transplant (alloSCT) recipients and patients receiving
myelosuppressive chemotherapy (Table 1). Clinical and
microbiological data were recorded for each individual patient
according to current criteria of the European Organization for
Research and Treatment of Cancer/Invasive Fungal Infections
Cooperative Group and the National Institute of Allergy and
Infectious Diseases Mycoses Study Group (EORTC/MSG)
(De Pauw et al., 2008).

2.2. Blood Sample Collection
The starting point for blood sample collection in patients with
probable IA and the quality of these samples for RNA extraction
are crucial for this study. We initiated the collection of blood
samples at the occurrence of a positive galactomannan (GM)
ELISA result (defined as day 0). A positive GM ELISA result
and a positive computed tomography (CT) scan are required
for probable IA in the consensus definitions for invasive fungal
infections, published by the EORTC/MSG (De Pauw et al., 2008).
All patients with probable IA, except P05, were also PCR positive
giving additional certainty for the presence of IA. Subsequently,
additional whole blood (3 ml) and serum (1 ml) samples were
taken, respectively. Analogous control samples were taken from
patients with hematological malignancies but without any clinical
signs of IA and from healthy volunteers (Table 1). Sampling was
performed until patient’s discharge or death (with a maximum
number of samples, n= 5). In order to prevent RNA degradation,
whole blood was drawn directly into specific collection tubes
containing RNA stabilization reagent (TempusTM, Thermo
Fischer Scientific, at days+3,+7,+10,+14,+18).

2.3. Expression Data Generation
RNA was extracted using the RNeasy Mini Kit (Qiagen). RNA
integrity was confirmed with an Agilent 2100 Bioanalyzer
(Agilent Technologies). RNA samples were hybridized to
Affymetrix HG-U219 array plates. Scanned images were analyzed
with AGCC 3.0 (Affymetrix) to generate CEL files (Affymetrix
file format containing information about the intensity values)
according to the manufacturer’s instructions. The microarray
data were uploaded to NCBI’s Gene Expression Omnibus (Edgar
et al., 2002), accession number GSE78000 (http://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE78000).

The dataset comprises 23 samples from 8 patients suffering
from probable IA with 2 to 5 samples, respectively, 13 samples
from 7 unclassified patients and 1 possible invasive fungal
disease (IFD) patient with 1 to 2 samples, respectively, and 9
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TABLE 1 | Characteristics of patients and controls.

ID EORTC Age Sex Disease Number of

classification samples

P01 Probable IA 63 f Myeloproliferative neoplasm 2

P02 Probable IA 55 f Multiple myeloma 3

P03 Probable IA 51 f Acute myeloid leukemia 3

P04 Probable IA 63 f Acute myeloid leukemia 5

P05 Probable IA 65 m Chronic lymphocytic leukemia 2

P06 Probable IA 61 m Myelodysplastic syndrome 2

P07 Probable IA 45 m Acute myeloid leukemia 3

P08 Probable IA 60 m Acute myeloid leukemia 3

P09 Unclassified 70 m Myeloproliferative neoplasm 2

P10 Unclassified 52 m Multiple myeloma 1

P11 Possible IFD 62 f Acute myeloid leukemia 2

P12 Unclassified 31 m Acute myeloid leukemia 2

P13 Unclassified 59 f Acute myeloid leukemia 1

P14 Unclassified 61 m Acute lymphoblastic leukemia 2

P15 Unclassified 66 f Acute myeloid leukemia 1

P16 Unclassified 46 m Acute lymphoblastic leukemia 2

H01 Healthy f – 2

H02 Healthy m – 1

H03 Healthy m – 1

H04 Healthy f – 1

H05 Healthy m – 1

H06 Healthy f – 1

H07 Healthy f – 1

H08 Healthy f – 1

IA, invasive aspergillosis; IFD, invasive fungal disease; f, female; m, male.

healthy control samples from 8 donors with 1 to 2 replicates,
respectively (seeTable 1 for a detailed list of the patients and their
characteristics).

2.4. Preprocessing of the Gene Expression
Data
The R package “affy” (Gautier et al., 2004) was used to read
the Affymetrix CEL files as well as to perform background
correction and quantile normalization according to the Robust
Multi-array Average (RMA) method (Irizarry et al., 2003). In
this process, a custom chip definition file (CDF) was used for
probe-to-gene mapping. The CDF (version 19, “Entrez Gene”)
can be downloaded at the MicroArray Lab website1. Afterwards,
the Entrez-IDs were mapped to the corresponding gene symbols
using the HGNC BioMart service2. The final dataset comprises
18,356 genes.

2.5. Identification of Differentially
Expressed Genes
Differentially expressed genes were determined using the package
“limma” (Smyth, 2005) (version 3.24.14) of the programming
language R. Limma analyzes the expression data by fitting linear

1http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/19.0.

0/entrezg.asp.
2http://biomart.genenames.org/.

models and determines statistical significance with moderated
t-statistics. P-values were adjusted according to the false
discovery rate (Benjamini and Hochberg, 1995). The genes with
an adjusted p-value < 0.05 and at least a 2-fold up- or down-
regulation were considered as differentially expressed.

2.6. Feature Selection
A recursive feature elimination (Guyon et al., 2002) (RFE) based
on random forest (Breiman, 2001) was performed for feature
selection (Figure 1). Feature selection is a technique to identify
the most relevant features from a large set. In this study, the
features are gene transcripts measured by microarray. Briefly, an
RFE is an algorithm, which iteratively removes the worst scoring
features and calculates a classification error (i.e., the proportion
of wrong classifications) using the remaining features. In the
presented RFE, the input data is initially classified to calculate a
classification error and all features are ranked according to their
importance values. The importance values were computed by
random forest using the measure “mean decrease in accuracy.”
Random forest calculates this measure by a permutation test,
which follows the idea that a feature is more important for correct
classification, the more the classification error increases, when
the feature values are permuted across all samples. Therefore, it
indicates how relevant a feature is for classification. Afterwards,
the RFE algorithm iteratively removes the worst scoring 10%
of the features and calculates the classification errors using only
the remaining features. Finally, the features yielding the smallest
error rate are selected. As suggested by Svetnik et al. (2004),
the importance values were not recalculated in each step. To
avoid a selection bias, the RFE was wrapped in a leave-one-
out crossvalidation (Ambroise and McLachlan, 2002). Cross-
validation is a performance assessment technique, where all
samples are iteratively split into test set and training set. For
leave-one-out cross-validation, the test set comprises only one
sample. The test sample is used for testing our classifier. The
training samples are used for feature selection and to train
the classifier. The classification error is calculated only on the
test sample and eventually averaged across all cross-validation
iterations. Cross-validation emulates an independent test set
without using additional data. The RFE with the cross-validation
was repeated 50 times to control for the random effects of random
forest. This whole procedure was conducted for different values
of the parameters ntree and mtry of random forest. We tested
1000 and 10,000 for ntree. Wemultiplied the default value ofmtry
with the factors 0.25, 0.5, 1, 2, and 4. The default value of mtry is
⌊√p⌋, where p is the number of features of the input data. The
minimum error rate was calculated with the mtry-factor of 0.25
and ntree= 10,000.

2.7. Confirmation of Selected Gene
Expression by Real-Time RT-PCR Assays
First strand complementary DNA (cDNA) was synthesized by
using the First Strand cDNA Synthesis Kit (Thermo Fisher
Scientific) according to manufacturer’s instructions. Real-
time PCR for 3 selected genes [S100B, monoaminooxidase
(MAOA), semaphorin 4A (SEMA4A)] was performed using
the iTaq Universal SYBR Green Supermix (Bio-Rad) on the
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FIGURE 1 | The workflow of the feature selection process. We used

random forest as classifier and performed leave-one-out cross-validation. The

ranking of the genes was done once for each fold of the cross-validation for

the unreduced input gene set.

StepOnePlus instrument (Thermo Fisher Scientific) according
to manufacturer’s instructions. Gene specific primers were:
S100B, forward (fw) 5′-AGGGAGGGAGACAAGCACAA-3′

reverse (rv) 5′-ACTCGTGGCAGGCAGTAGTA-3′, MAOA,
fw 5′-GCATTTCAGGACTATCTGCTGC-3′ rv 5′-TGGGTT
GGTCCCACATAAGC-3′; SEMA4A, fw 5′-GAGCAACACCTC
CAGTCTCC-3′ rv 5′-GGTGGTCTTTTGTGCTGCTG-3′. PCR
efficiencies were calculated using the LinRegPCR program
(Ruijter et al., 2009). Based on cycle of quantification (Cq) values,
relative expression levels of target mRNA were calculated using
the efficiency-corrected 11Cq method (Pfaffl, 2001) with B2M
as the endogenous reference gene and average Cq values of
probable IA patients as calibrators. Additionally, in dendritic
cells (DCs) ALAS1, fw 5′-GGCAGCACAGATGAATCAGA-3′,
rv 5′-CCTCCATCGGTTTTCACACT-3′; CXCL1, fw 5′-GAA
AGCTTGCCTCAATCCTG-3′, rv 5′-CACCAGTGAGCTTCC
TCCTC-3′; IL1B, fw 5′-GGACAAGCTGAGGAAGATGC-3′, rv
5′-TCGTTATCCCATGTGTCGAA-3′ were used with ALAS1 as
the reference gene.

2.8. Quantification of S100B Levels in Sera
Serum samples (50µl each, total n= 75) were consecutively,
longitudinally collected every 3–4 days from 8 patients after the
occurrence of a positive GM ELISA assay (Platelia R©, BioRad). In
addition, control sera from patients without any clinical signs of
IA were consecutively collected (every 3–4 days, total number of
control sera n= 52 from 8 patients). S100B levels in sera were
quantified by using the S100B sandwich ELISA kit from Abnova
(Taipeh, Taiwan), according to the protocol of the manufacturer.

2.9. LightCycler-Based Melting Curve
Analysis for Genotyping
To further glean the biological role of S100B in the occurrence
of IA, we screened an existing DNA archive for the presence
of 3 previously described SNPs (rs9722 [S100B], rs2070600

[AGER], rs1800624 [AGER]) (Cunha et al., 2011). The archive
contains previously collected DNA samples from allogeneic stem
cell transplant recipients [33 patients with proven or probable
IA and 38 controls without IA, classification according to the
EORTC/MSG criteria (De Pauw et al., 2008)]. This archive
allowed extending genotyping to a larger number of patients with
similar risk for IA, in addition to the relatively limited number of
original study patients.

Human genomic DNA was extracted by using the QIAmp
Blood DNA Mini Kit (Qiagen), followed by melting curve
analyses using a LightCycler R©1.5 instrument (Löffler et al., 2000)
and specific hybridization probes (LightSNiP, TIB MOLBIOL).

2.10. Generation of Monocyte-Derived DCs
For functional studies, DCs were generated from PBMCs as
previously described (Mezger et al., 2008). Briefly, PBMCs were
isolated from healthy volunteers by ficoll (Bicoll Seperation,
Biochrom AG) density gradient centrifugation. Magnetic
activated cell sorting with paramagnetic CD14-beads (Miltenyi
Biotec) was used to further separate monocytes. Monocyte-
derived DCs were generated in RPMI-1640 supplemented with
10% fetal bovine serum (Sigma Aldrich), 120mg/l Refobacin
(Merck), 10 ng/ml IL-4 (Miltenyi Biotec) and 100 ng/ml GM-CSF
(Bayer Healthcare) for 5–6 days.

2.11. Co-Culture with A. fumigatus and
Pathogen Recognition Receptor
(PRR)-Ligands
The fungal strain A. fumigatus ATCC 46645 (American Type
Culture Collection, LGC Standards) was used for all experiments.
Germ tubes were prepared as previously described (Mezger
et al., 2008). Germ tubes were inactivated by incubation in 100%
Ethanol for 45min at 37◦C. Co-cultivation experiments of DCs
with A. fumigatus were performed on day 6 with a multiplicity
of infection (MOI) of 1. The PRR-ligands zymosan depleted
(100 g/ml) and Pam3CSK4 (100 ng/ml) (Invivogen) were used for
stimulation of DCs or 6 h in the indicated concentrations.

2.12. RNA Interference
All RNA interference experiments were performed as previously
described (Mezger et al., 2008). Briefly, DCs were electroporated
(EPI 2500, Dr. L. Fischer) with either short interfering double
stranded S100B-siRNA or non-silencing, random RNA (Qiagen)
at 340V for 10ms on day 5 after isolation and then incubated at
37◦C and 5% CO2 for 24 h in culture medium.

3. RESULTS

3.1. T Cell Regulation is Specific for IA
As a first step, we identified differentially expressed genes (DEGs)
in patients with IA and non-IA patients compared to healthy
controls (see Section 2). Thereby, we reduced our gene set from
whole-genome size to data which are associated to the underlying
disease and its treatment. At a significance level of 0.05 and
considering at least a two-fold change, we identified 502 DEGs
for IA and 131 DEGs for non-IA samples (Figure 2). The vast
majority (123 of 131) of the non-IA DEGs were also DEGs for
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IA. Only 8 genes were specific for the non-IA condition. We
analyzed the expression patterns of these 8 genes in more detail
and discovered only minimal differences between the IA and the
non-IA samples (Supplementary Figure 1). Genes were expressed
on a similar level and also showed similar distributions between
both conditions. A direct comparison of IA and non-IA samples
using the same thresholds as above yielded no significantly
differentially expressed genes.

To identify gene functions significantly associated with the
DEGs of patients who developed IA and patients without
IA, we performed an over-representation analysis of Gene
Ontology (Ashburner et al., 2000) (GO) terms. We used the
tool “GOrilla” (Eden et al., 2009), which tests for enrichment
by building a hypergeometric model. It adjusts the p-values
according to the false discovery rate. The Venn diagram of
the DEGs (Figure 2) contains 3 groups, which were tested for
enrichment: “specific for IA,” “specific for non-IA,” “common for
both conditions.” For the non-IA DEGs (n= 8), no significantly
over-represented GO-term could be found. However, for the
IA DEGs (n= 379) and the common DEGs (n= 123), GOrilla
determined 161 and 39 terms, respectively, at a significance
level of 0.05 (Supplementary Tables 1, 2). We found 21 terms
related to T cells and/or their activation or differentiation
among DEGs in IA patients. In contrast, no GO-term related
to T cells was identified in the list of the common DEGs.
Both lists share 23 terms, which comprise general immune
responses, immune-related signaling, as well as lymphocyte
and leukocyte activation and differentiation. These findings
indicate a particular importance of T cells for the host response
to IA.

3.2. S100B is a Transcriptional Biomarker
for IA
We aim to select biomarkers, which are specific for IA. For this
purpose, we applied a feature selection. Briefly, feature selection
is a technique that reduces the gene set to the most informative
genes by removing irrelevant ones. In particular, we performed
a recursive feature elimination (RFE) with random forest to
identify biomakers (see Section 2). RFE is an iterative algorithm,
where the features of a dataset are ranked and the worst scoring
features are discarded in a stepwise manner. In each step, an error

FIGURE 2 | The Venn diagram shows that 123 DEGs were identified for

both IA and non-IA patients. Additionally, 379 DEGs and 8 DEGs were

specific for IA and non-IA patients, respectively.

rate is computed using a classification algorithm. This error rate
represents the proportion of wrong classifications. The feature
subset yielding the smallest error rate is then selected. We used
the DEGs of IA and non-IA patients as input for the RFE,
which was wrapped in a repeated leave-one-out cross-validation.
We discarded the worst scoring 10% of the features in each
RFE step. The minimum error rate of 20.5% was calculated for
using only a single transcript (Figure 3), which is S100B. The
class-wise error rates are 17.7% for IA and 25.4% for non-IA
patients (Table 2). According to this classification result, IA can
be identified with a sensitivity of 82.3% and a specificity of 74.7%.
When examining the expression of S100B across the different
conditions (Figure 4), we found that it covers a broad range
of intensity for samples collected from healthy individuals and
non-IA patients. In contrast, in IA samples, the majority of the
expression values are close to the lower bound.

3.3. Experimental Validation of S100B,
MAOA, and SEMA4A Gene Expression
To validate the gene expression levels obtained by microarray
analysis, we performed real-time reverse transcription-PCR (RT-
PCR) assays. Therefore, cDNA was reverse-transcribed from the
same RNA samples used for hybridization onto the microarrays.
Expression levels of S100B,MAOA, and SEMA4Awere calculated
relative to average IA levels. Expression patterns were similar
comparing the microarray and the real-time RT-PCR analysis.
Therefore, we could confirm the diminished expression of all
three genes in PBMCs derived from patients suffering from IA
compared to non-IA patients and healthy individuals.

3.4. S100B Quantification by ELISA Assay
In total, we collected 127 sera (among them, n= 75 sera from
patients with IA, n= 52 sera from hematological patients without
IA). In 91 of the 127 samples, S100B levels were below the
detection limit of the assay. However, in sera collected in parallel
or subsequently to a positive GM ELISA result (in patients
suffering from proven or probable IA), concentrations of S100B
were markedly lower (mean 5.81 pg/ml, range 2.8–19.5 pg/ml),
compared to serum levels of hematological patients without IA
(mean 32.0 pg/ml, range 15.4–45.8 pg/ml). This confirms the
observation from the gene expression profiles, where patients
with IA showed markedly reduced expression of S100B at the
diagnosis of IA and in subsequent specimens. Therefore, S100B
may serve as an additional biomarker for IA, complementary to
the established methods.

3.5. SNP Analyses in S100B and AGER
Genotyping of rs9722 [S100B], rs2070600 [AGER], and
rs1800624 [AGER] revealed a significant increased susceptibility
to IA if the polymorphism rs2070600 (G82S, GG/AG, p= 0.018)
is present in patients after alloSCT (Table 3). In contrast,
rs9722 and rs1800624 did not predispose to IA (p= 0.489 and
p= 0.1554, respectively). These results confirm the observations
of Cunha et al. (2011), who reported the association of SNPs in
the S100B/RAGE axis with IA. In addition, rs9722 has previously
been described to underlie increased serum levels of S100B in
healthy individuals (Hohoff et al., 2010). Furthermore, Miller
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FIGURE 3 | The average error rates and standard deviations across the decreasing number of genes in the feature selection process. The smallest error

rate was calculated for using one gene, S100B.

TABLE 2 | Confusion table of the best feature selection result, where only

S100B was used for classification.

Predicted class

IA Non-IA Error rate %

True class
IA 18.92 4.08 17.74

Non-IA 3.30 9.70 25.38

et al. (2013) were able to show that rs2070600 determines
RAGE levels in the serum of patients with chronic obstructive
pulmonary disease (COPD). Taking together, our data underline
the prominent role of genetic markers in the S100B/RAGE axis
and their potential relevance in controlling IA.

3.6. S100B is Differentially Regulated by
A. fumigatus
Dendritic cells (DCs) play an important role in pathogen
recognition. DCs recognize pathogens via PRRs and bridge the
innate and adaptive immune system (Wüthrich et al., 2012).
The S100B gene regulation was examined in vitro after 12 h co-
cultivation of DCs with inactivated A. fumigatus germ tubes. An
A. fumigatus dependent reduction of S100B on gene expression
level was confirmed (Figure 5).

3.7. Analysis of S100B Gene Knockdown
on Downstream Cytokine Levels
To further examine the relevance of S100B in A. fumigatus
infection, we analyzed its role in the regulation of inflammatory
cytokine responses. Thus, we stimulated DCs with defined PRR
ligands activating TRL2/TRL1 or Dectin-1. Both, Dectin-1 and

TABLE 3 | Genotype distributions of RAGE and S100B polymorphisms in

recipients of stem cell transplants affected by IA and controls.

Genotype Case (probable IA) (n=33) Control (n= 38) p-value

wt AGER 1 28 (84.8%) 38 (100%)

SNP AGER 1 5 (15.2%) 0 (0%) 0.0182

wt AGER 2 20 (60.6%) 16 (42.1%)

SNP AGER 2 13 (39.4%) 22 (57.9%) 0.1554

wt S100B 30 (90.9%) 32 (84.2%)

SNP S100B 3 (9.1%) 6 (15.8%) 0.489

wt, wildtype; SNP, single nucleotide polymorphism. wt AGER 1 (rs2070600), GG

genotype; SNP AGER (rs2070600), GA + AA genotypes; wt AGER 2 (rs1800624),

TT genotype; SNP AGER (rs1800624), TA + AA genotypes; wt S100B (rs9722), CC

genotype; SNP S100B (rs9722), CT + TT genotypes. P-values were calculated with the

Fisher’s exact test.

TLR2 are involved in A. fumigatus recognition of DCs. The
synthetic triacylated lipoprotein Pam3CSK4 was used for the
activation of TLR2/TLR1 signaling and depleted zymosan, which
is a β-glucan, for Dectin-1 activation. We selected IL1B, CXCL1,
and IL6 and transfected DCs with siRNA targeting S100B. For
these experiments, DCs were electroporated with S100B siRNA
and random, non-silencing (ns) siRNA treated cells served as
controls (Figure 6). siRNA transfection resulted in a > 90% S100B
transcript reduction compared to the non-silencing control
(Figure 6A). No influence of S100B knockdown was observed
on IL6 gene expression (Figure 6D). Upon stimulation with
depleted zymosan, only a weak and insignificant reduction was
observed. However, the S100B knockdown led to a significantly
reduced expression of IL1B and CXCL1 if DCs were activated
with Pam3CSK4 (Figures 6B,C).
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FIGURE 4 | Comparison of the expression intensities of S100B

between the different conditions. The distribution of the values of the

non-IA samples covers a broad range and is similar to the healthy controls.

The IA samples show low S100B expressions.

4. DISCUSSION

In this study, we investigated the regulatory differences between
IA patients and non-IA patients on the genome level and
beyond. As a first step, we performed a GO analysis to
reveal functional relations between DEGs. The analysis yielded
multiple significantly over-represented GO categories connected
to T cell activation and differentiation for IA-specific DEGs.
This observation reflects the important role of T cells and
thus the adaptive immune response in antifungal immune
defense. In patients undergoing allogeneic SCT, both neutrophils
and macrophages reconstitute relatively early. Nevertheless,
A. fumigatus infections occur also after this recovery, indicating
that the adaptive immune system contributes significantly to the
control of A. fumigatus as well. One potential explanation for
this observation is the prolonged immunosuppression conducted
for the prevention and treatment of graft-versus-host disease
(GvHD) (Cenci et al., 1997). This hypothesis is strengthened by
numerous data from murine models showing that a previous
infection with sublethal doses of A. fumigatus conidia or other
fungal antigens protects mice against lethal re-challenge with the
pathogen. Furthermore, adoptive transfer of CD4+ T cells from
immunized animals transfers protective immunity to otherwise
susceptible naïve recipient mice, stressing again the crucial role of
adaptive immunity in protecting the host (Cenci et al., 2000). In
addition to these data, murine experiments applying conditions
favoring either a TH1 or TH2 CD4

+ T cell response revealed that
only TH1 CD4+ T cells protected the host from lethal challenge
with A. fumigatus. By contrast, the induction of TH2 responses
often even exacerbated disease. Furthermore, experimental data
from mice infected with A. fumigatus implicate that not only
the balance between TH1 cell and TH2 cell is important in

FIGURE 5 | In vitro analysis of S100B regulation in DCs. S100B was

down-regulated in A. fumigatus stimulated DCs. DCs were either stimulated

with A. fumigatus (MOI 1) or left untreated. mRNA level were quantified after

6 h by real-time PCR relative to reference gene ALAS1. Data of three

independent experiments is illustrated as mean plus SEM (**p<0.05 Student’s

paired t-test).

controlling A. fumigatus infections but that also Treg prevent
excessive immune reaction in mice infected with A. fumigatus
(Ito et al., 2006).

We used gene expression data from microarrays for the
identification of biomarkers. Microarrays naturally produce data
of high dimensionality. This data allows us to examine a
broad range of genes for potential transcriptomic biomarkers
for IA. The identification of biomarker genes for IA requires
the reduction of the gene set to those genes which exhibit a
distinct expression signature compared to non-IA patients. The
process of dimension reduction by determining themost relevant
genes and removing the non-informative ones is called feature
selection. Feature selectionmethods are typically categorized into
three types: filter, wrapper, and embedded techniques (Saeys et al.,
2007). In this study, we used the wrapper approach by performing
a RFE with random forest. Random forest is an effective
classification algorithm that has shown good performance in a
wide range of biomarker identification studies (Yan et al., 2012;
Dix et al., 2015; Tremoulet et al., 2015). According to Ambroise
and McLachlan (2002), it is important that all feature selection
steps are performed within an outer cross-validation loop.
Otherwise, a selection bias is introduced as the samples that are
tested in each step already would contain some information about
the differences between the classes. Thus, the test samples would
not be independent. We meet this requirement by conducting
the leave-one-out cross-validation as the outer loop of the feature
selection process. Prior to the feature selection, we determined
differentially expressed genes. However, this is not part of the
feature selection, because we did not analyze for differences
between the IA and the non-IA class. Instead, we determined
the DEGs in comparison to the healthy control samples. In this
way, we ensure that the IA biomarkers are connected to the
therapy and thus also distinguish the patients from healthy blood
donors.

S100B was identified as the most relevant gene for
distinguishing between IA and non-IA samples. The calcium-
binding protein S100B belongs to the damage-associated
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FIGURE 6 | Influence of S100B knockdown on gene regulation. DCs were transfected by electroporation with either non-silencing siRNA (white bars) or with

siRNA targeting siS100B (black bars). Twenty-four hours after electroporation, DCs were stimulated with zymosan depleted (100µg/ml), Pam3CSK4 (100 ng/ml)

(Invivogen), or left untreated. mRNA levels of S100B (A), IL1B (B), CXCL1 (C), and IL6 (D) were quantified after 6 h by real-time PCR relative to non-silencing control.

ALAS1 served as reference gene. Data of four independent experiments is illustrated as mean plus SEM (*p < 0.01, ***p < 0.001 Student’s paired t-test).

molecular patterns (DAMPs), which alert the immune
system to the presence of tissue damage. Together with
pathogen-associated molecular patterns (PAMPs), DAMPs
play a major role in regulating the inflammatory response to
pathogens. It is well known that progressive inflammation
worsens disease and even impedes pathogen eradication.
In consequence, fine tuning of the immune response and
dispensing inflammation and pathogen elimination by leveling
PAMP and DAMP driven responses is an ultimate prerequisite
for a successful immune response against A. fumigatus.
Thereby, S100B plays a crucial role. Sorci et al. (2011)
demonstrated that S100B integrates PAMP and DAMP
pathways to restrain inflammation by forming complexes
with TLR2 ligands and subsequent extracellular TLR2 inhibition
on polymorphonuclear leukocytes (PMNs). Thereon, upon
intracellular binding of S100B to nucleic acids, it activates a
TLR3/TLR9/TRIF-dependent pathway, culminating finally in
the transcriptional down-regulation of S100B. These authors
conclude that this spatiotemporal role provides evidence for
S100B to be a central regulator of inflammation and pathogen
sensing.

RNA from patients suffering from probable IA (at the
time of a positive GM ELISA assay and following specimens)
showed very low or absent expression of S100B while patients
without any clinical signs of IA and healthy control persons
showed variable S100B expression levels. Little is known
about the regulatory mechanisms of S100B transcription.
Samples analyzed in our study were taken relatively late
in the course of IA as the detection of galactomannan in
peripheral blood was a prerequisite for blood sampling. In

consequence, macrophages, neutrophils, and dendritic cells were
already activated and cytokines and reactive oxygen species
were released. However, permanent activation of TLR2 and
its downstream pro-inflammatory pathways promotes adverse
effects with uncontrolled cytokine release and tissue damage.
Thus, inhibited expression of S100B in patients with IA
may reflect a self-protecting consequence of preceding TLR2
activation on PMN and other phagocytes and may at this later
stage help to prevent uncontrolled and chronic inflammation and
subsequent lung tissue damage.

Cunha et al. (2011) were able to demonstrate that human
PBMC, stimulated for 2 h with A. fumigatus conidia or zymosan
in vitro showed enhanced S100B levels compared to unstimulated
control cells. However, our study revealed that stimulation of
human monocyte-derived DCs for 12 h with A. fumigatus germ
tubes led to significantly decreased S100B levels, concluding
that at these later time points, S100B displays regulatory
characteristics.

To further shed light on the potential relevance of S100B
in the immune defense against A. fumigatus, functional in
vitro studies are useful. The transfection of cells with specific
siRNA is a common procedure to knockdown defined genes,
usually followed by the subsequent characterization of specific
downstream effectors (Sioud, 2015). To assess the function of
S100B in the inflammatory response against A. fumigatus, an
S100B knockdown was established in DCs. This knockdown
was highly significant. To examine the role of S100B, an
early time point was chosen, when S100B was not already
affected by A. fumigatus stimulation. After 6 h of co-culturing,
S100B was not affected by A. fumigatus in the non-silenced
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cells (not shown). Interestingly, we saw a significant impact
of S100B knockdown on IL1B and CXCL1 gene expression
in Pam3CSK4 activated cells, whereas only a weak and not
significant influence on Dectin-1 activation by depleted zymosan
was observed. A correlation of S100B and IL1B induction via
Sp1 and NF-κB was already described for primary microglia
cells (Liu et al., 2005). Furthermore, in microglia, S100B
is down-regulated by IFNγ and it was shown to relocate
around phagosomes during C. neoformans infections (Adami
et al., 2001). Since DCs are capable of IFNγ production, we
hypothesize that an autocrine regulation mechanism might be
possible. Moreover, TLR2 specificity by Pam3CSK4 activation
was confirmed (Sorci et al., 2011). However, and in contrast
to these authors, no induction of S100B was observed
after 12 h co-cultivation, possibly due to different infection
models.

Genotyping of rs9722 [S100B], rs2070600 [AGER],
and rs1800624 [AGER] revealed a significantly increased
susceptibility to IA if the polymorphism rs2070600 (G82S,
GG/AG, p= 0.018) is present in patients after alloSCT (Table 3).
In contrast, rs9722 and rs1800624 did not predispose to IA
(p= 0.489 and p= 0.1554, respectively). These results confirm
the observations of Cunha et al. (2011), who reported the
association of SNPs in the S100B/Rage axis with IA. In addition,
rs9722 has previously been described to underlie increased
serum levels of S100B in healthy individuals (Hohoff et al.,
2010). Furthermore, Miller et al. (2013) were able to show that
rs2070600 determines RAGE levels in the serum of COPD
patients. Taking together, our data underline the prominent role
of genetic markers in the S100B/RAGE axis and their potential
relevance in controlling IA.

Our results base on a limited set of data, patient and sample
numbers. In addition, hematological patients, including patients
after alloSCT are multi-morbid and suffer from a large variety
of different complications, including graft-versus-host disease,
relapse and a broad range of infections, especially caused by
viruses. In consequence, data interpretation is difficult and
very often effects localized upstream or downstream of the
respective gene are evened because innate immunity pathways,
such as the Toll like—MyD88—NF-κB/TRIF pathways are highly
conserved and redundant. Therefore, validation studies with
larger sample sizes are mandatory. In addition, it might be

relevant to quantify levels of S100B in samples collected prior to
the diagnosis of IA, e.g., by prospective sampling after alloSCT.
Furthermore, S100B quantification in patients suffering from
severe bacterial infections involving TLR2 activation might be
relevant. However, with this pilot study, it became conceivable
that S100B may serve as an additional human biomarker for IA
and may upgrade the value of already well established fungal
biomarkers. Furthermore, transcriptional profiling provides new
findings on the immunopathology of IA and on the response of
immunocompromised patients to A. fumigatus. This data help
to better understand this devastating disease and to develop new
targeted diagnostic and therapeutic options.
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