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The anaerobic oxidation of methane (AOM) is a key biogeochemical process regulating
methane emission from marine sediments into the hydrosphere. AOM s largely
mediated by consortia of anaerobic methanotrophic archaea (ANME) and sulfate-
reducing bacteria (SRB), and has mainly been investigated in deep-sea sediments.
Here we studied methane seepage at four spots located at 12 m water depth in
coastal, organic carbon depleted permeable sands off the Island of Elba (ltaly). We
combined biogeochemical measurements, sequencing-based community analyses and
in situ hybridization to investigate the microbial communities of this environment.
Increased alkalinity, formation of free sulfide and nearly stoichiometric methane oxidation
and sulfate reduction rates up to 200 nmol g~ day~' indicated the predominance
of sulfate-coupled AOM. With up to 40 cm thickness the zones of AOM activity
were unusually large and occurred in deeper sediment horizons (20-50 cm below
seafloor) as compared to diffusion-dominated deep-sea seeps, which is likely caused
by advective flow of pore water due to the shallow water depth and permeability
of the sands. Hydrodynamic forces also may be responsible for the substantial
phylogenetic and unprecedented morphological diversity of AOM consortia inhabiting
these sands, including the clades ANME-1a/b, ANME-2a/b/c, ANME-3, and their
partner bacteria SEEP-SRB1a and SEEP-SRB2. High microbial dispersal, the availability
of diverse energy sources and high habitat heterogeneity might explain that the
emission spots shared few microbial taxa, despite their physical proximity. Although
the biogeochemistry of this shallow methane seep was very different to that of deep-
sea seeps, their key functional taxa were very closely related, which supports the global
dispersal of key taxa and underlines strong selection by methane as the predominant
energy source. Mesophilic, methane-fueled ecosystems in shallow-water permeable
sediments may comprise distinct microbial habitats due to their unique biogeochemical
and physical characteristics. To link AOM phylotypes with seep habitats and to enable
future meta-analyses we thus propose that seep environment ontology needs to be
further specified.

Keywords: anaerobic oxidation of methane, sulfate-methane transition zone, ANME, microbial syntrophy, habitat
heterogeneity, environmental selection, advection-driven ecosystem, Mediterranean
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INTRODUCTION

Methane seeps are widespread features of the seafloor along
continental margins, where methane ascends from subsurface
reservoirs and fuels methanotrophic communities or is emitted
to the hydrosphere. The anaerobic oxidation of methane (AOM)
is a key biogeochemical process regulating methane emission
from marine sediments and is mediated by anaerobic methane-
oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB)
(Knittel and Boetius, 2009). Marine AOM has mainly been
investigated in deep-sea methane seeps, which are characterized
by steep opposing gradients of methane and sulfate in the
top centimeters of the sediment. In deep-sea cold seeps the
sulfate-methane transition zones (SMTZ) have a thickness of
only a few centimeters and are shaped by fluid flow and
faunal activity (Bhatnagar et al., 2008; Fischer et al., 2012; Ruff
et al.,, 2013; Felden et al., 2014). Between 20 and 80% of the
methane (around 10° tons of carbon per year) is consumed
at the sediment water interface by methanotrophic microbial
communities (Boetius and Wenzhofer, 2013). Due to the aerobic
water column the top layers of seep sediments are usually oxic
and sustain aerobic methanotrophic bacteria, mainly of the
gammaproteobacterial order Methylococcales (Losekann et al.,
2007; Tavormina et al., 2008; Wasmund et al., 2009; Ruft et al,,
2013), whereas deeper sediment layers are depleted of oxygen
and are dominated by AOM (Knittel and Boetius, 2009). Here,
ANME and SRB usually form dense aggregates that occur at
seeps in very high abundances resulting in cell numbers of
1010 cells per ml sediment at, e.g., Hydrate Ridge, the Black
Sea (Knittel et al., 2005), Hikurangi Margin (Ruff et al., 2013),
and Haakon Mosby mud volcano (Losekann et al, 2007).
Apart from methanotrophs and their partner bacteria, seeps
comprise thiotrophic Beggiatoaceae, Campylobacteraceae, and
Helicobacteraceae (Joye et al., 2004; Griinke et al., 2012; Felden
et al., 2014) that often form thick mats on the seafloor. These
organisms represent the methane seep microbiome, which is
similar among deep-sea cold seeps worldwide, but very different
from the surrounding seafloor (Ruff et al., 2015). The anaerobic
organisms (ANME and their partner bacteria) are oxygen
sensitive and it is yet unclear how they disperse between these
isolated ecosystems, and whether coastal, dynamic sites harbor
the same microbiome that establishes at deep-sea environments.

Shallow-water coastal methane seeps can be found at
continental margins of all oceans, e.g., in the North Sea
at 75-170 m water depth (Wegener et al,, 2008), the East
Timor Sea at 80 m (Wasmund et al., 2009; Brunskill et al.,
2011), the Southeast Pacific at 1-5 m (Jessen et al., 2011)
or the Northwest Atlantic at >50 m (Skarke et al., 2014).
Coastal seeps at water depths of less than 100 m likely
contribute large amounts of methane to the atmospheric budget
as methanotrophs in the water column may oxidize only
part of the emitted gas (McGinnis et al, 2006; Brunskill
et al, 2011), e.g., a single shallow seep area off the coast
of Chile emitted an estimated 800 tons of the potential
greenhouse gas to the atmosphere per year (Jessen et al., 2011).
Moreover, recent estimates indicate the presence of 1000s of
coastal seeps worldwide (Skarke et al., 2014). However, despite

their large number, their considerable methane emission, the
biogeochemistry and microbial communities of coastal seeps are
poorly understood.

The coastal seafloor is exposed to strong hydrodynamic
forces caused by waves and tides. These high energies
allow for the settlement of only larger particles of the
sand fraction forming permeable sediments. Wave-driven
advection furthermore greatly impacts the habitats of benthic
microorganisms by the enhanced supply of electron donors,
electron acceptors and nutrients (Precht and Huettel, 2004;
Janssen et al., 2005), whereas deep-sea sediments in contrast are
dominated by diftusive transport (Glud et al., 1994; Boetius and
Wenzhofer, 2013). Permeable coastal sediments harbor a high
diversity of microorganisms (Mills et al., 2008) that are subjected
to strong seasonal and spatial dynamics (Boer et al., 2009b; Gobet
et al., 2012) due to changing abiotic conditions. It is yet unclear
how these dynamics and the permeability of the sediment matrix
influence the distribution, community structure, and activity of
seep-associated microorganisms.

Here, we investigated shallow-water methane seepage off
the coast of the Tuscan Island Elba (Italy). Elba is located
in the Northern Tyrrhenian Sea, a relatively young (<15 Ma)
back-arc basin formed by the roll-back of the Adriatic and
Ionian subducting plates. The region is underlain by very thin
continental crust and is tectonically very active (Greve et al.,
2014 and references therein). Since 1995 the diving team of
the HYDRA Field Station on Elba observe gas flares near the
coast of the little village Pomonte, the island of Pianosa and
the islet Scoglio d’Africa (Figure 1), which are all included
in this tectonically active zone. At the Pomonte site the
gas bubbles escape from permeable, organic carbon depleted
sands and seagrass beds at around 12 m water depth. This
unusual combination of tectonic setting, sediment characteristics
and hydrodynamics turns the Pomonte seepage site into an
outstanding ecosystem that differs from other known seep
sites.

We focused this first investigation of the site on the detailed
analysis of the biogeochemistry and microbial community
structure. We chose four methane emission spots situated in these
permeable sands and performed biogeochemical measurements,
16S rRNA gene sequencing and whole cell hybridizations. The
study was based on three hypotheses: Methane seeps located in
shallow, permeable sands (i) have characteristic biogeochemical
profiles that are shaped by the profound hydrodynamic forces,
(ii) harbor similar anaerobic methanotrophic communities than
seeps found in the deep sea due to the strong selective pressure
of methane as the predominant energy source, and (iii) have a
higher diversity than deep-sea seeps, due to the greater number
of niches available in coastal sands.

MATERIALS AND METHODS

Site Description and Sampling Procedure

The investigated Pomonte methane seep site is part of the
larger Tuscan Island seep area that is situated between the
islands of Elba and Montecristo (Figure 1A). The Pomonte
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FIGURE 1 | Map of the Tuscan Island seep area (A) with the three major sites, close to the islands of Elba and Pianosa, and the islet Scoglio d’Africa.
This study focused on the Pomonte seep site (B) and nearby reference sites (Ref1-3). (C) Shows the detailed location of the investigated methane emission spots
(ES1a, 1b, 2-4) at the Pomonte seep site. The emission spots are characterized by gas flares (D) as well as black sulfidic sediments that are occasionally covered by
white mats of sulfur-oxidizing bacteria (E). The emission spots are situated in 12 m water depth, surrounded by seagrass and rocks and are easily accessible by
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seep site (42°44.628' N, 10°07.094" E) is located 30 m off the
Ogliera Islet at 12 m water depth (Figure 1B, Supplementary
Table S1). The four investigated methane emission spots ES1-4
(Figure 1C) were situated in sandy patches between seagrass
beds, showed bubble streams (Figure 1D) and lacked specific
macrofaunal assemblages. The total investigated seep site had
a size of 400 m? and the individual emission spots (ES) were
5-10 m apart. We sampled ESla and ES2 in 2009, ES1b, ES3,
and ES4 in 2010, and in 2012 we sampled reference sediments
that were located about 30 m away from the seepage site
(Refl-3). Sediment samples were taken with pushcores by scuba
divers and were sectioned in 2 and 10 cm depth intervals
quickly after retrieval. Subsamples of each section were carefully
mixed and fixed overnight at 4°C in 2% formaldehyde in
sterile artificial seawater, washed thrice with sterile seawater
and stored in 1:1 seawater/ethanol at —20°C. The sediment for
nucleic acid analyses was immediately stored in 70% ethanol
at —20°C. 25 g sediment of selected samples was transferred
to anoxic synthetic seawater medium [28 mM sulfate, 30 mM
bicarbonate, pH 7.2, reduced with 0.5 mM disodium sulfide and
supplemented with vitamins and trace elements according to
Widdel and Bak (1992)] at room temperature for incubation and
enrichment.

Sediment and Pore Water Sampling and
Analyses

The total organic carbon (TOC) content of the sediment was
determined using a Carlo Erba NA-1500 CNS (Carbon, nitrogen,
sulfur) analyzer with a precision of 0.2 wt% TC. Pore water
was retrieved by in situ sampling using a 1 m long stainless
steel pore water lance, and attached plastic syringes. One pore
water profile was sampled at each emission spot ESI1, ES2,
ES3, and at one reference spot. Samples were taken every
10 cm, down to 60 cm maximum. For sulfide and sulfate
measurements the samples were fixed under water with a 5%
zinc acetate solution (final concentration = 45 mM), which
was pre-filled into the syringes. The samples for DIC were
filled headspace free into 2 ml boron silicate vials and fixed
with 0.25 M mercury chloride (final concentration = 2.5 mM).
For dissolved CH4 measurements, 16 ml porewater were
added to 50 ml glass bottles containing 20 ml of 2.5%
NaOH solution. The bottles were sealed with butyl rubber
stoppers, vigorously shaken and stored upside down. All pore
water samples were stored at 4°C. Sulfate concentrations were
measured by non-suppressed anion exchange chromatography
(Waters 430 Conductivity detector equipped with IC-Pak anion
exchange column). Total dissolved sulfide concentrations were
measured using the diamine complexation method (Cline,
1969). Concentrations of dissolved inorganic carbon (DIC)
were determined by conductivity detection (Van Waters and
Rogers Scientific, model 1054) using a flow injection setup
(Hall and Aller, 1992) with 30 mM HCI and 10 mM NaOH
as eluents, and isotopic compositions of inorganic carbon
(33Cprc) by mass spectrometry (Finnigan MAT 252 connected
to a gas bench and a GC-combustion system). Total alkalinity
was measured by end-point titration (modified after Van Den

Berg and Rogers, 1987) using 0.1 M HCl and a pH-meter
with temperature probe (GPRT 1400 A, Greisinger electronic
GmbH). Concentrations of dissolved methane were measured
from alkalized headspace vials (2.5% NaOH) using a gas
chromatograph (5890A Hewlett Packard) equipped with a
Porapak-Q column (6 ft, 0.125 in, 80/100 mesh; Agilent, Santa
Clara, CA, USA) and a flame ionization detector, operated at
40°C with helium as carrier gas. Technical replicates were not
measured.

Incubation Experiments

We performed radiotracer incubations at standardized
conditions in artificial seawater medium with 28 mM sulfate
(pH 7). Approximately 2 g of wet sediment was transferred into
5 ml Hungate tubes that were filled with medium as described
above equilibrated with a 1.5 atmosphere CH4:CO, (90:10)
gas phase to study methane oxidation and methane-dependent
(SR), or with a N,:CO, gas phase (1.5 atm) to study methane-
independent SR. AOM and SR rates were determined from
replicate incubations (n = 5). To determine methane oxidation
and SR we added 50 pl carrier-less *C-methane tracer (15 kBq)
or 20 pl carrier-less 3°S-sulfate tracer (100 kBq) through a butyl
rubber septum. Samples were incubated at room temperature
for 3 days. Radiolabeled sulfate incubations were stopped by
transferring the sample into 20% zinc acetate solution. We
determined the activity of sulfate by directly transferring 100 pl
sample into the scintillation cocktail (scintillation mixture;
Ultima Gold, Perkin Elmer, Waltham, MA, USA; scintillation
counter; 2900TR LSA; Packard Waltham, MA, USA). The
production of radiolabeled inorganic sulfur was determined
by cold chromium separation procedure (Kallmeyer et al,
2004) followed by scintillation counting as described above.
SR rates were determined according to Jorgensen (1978).
Radiocarbon incubations were stopped by sample transfer
into gas-tight glass vials with 0.5 M NaOH solution. Methane
concentrations were determined by gas chromatography from a
headspace aliquot (Focus GC, Thermo equipped with a Poropak
column; Analytical columns, Croydon, UK). The *C-methane
content was determined by gas phase stripping, combustion
at 850°C with CuO and trapping in 2-phenylethylamine. '4C-
inorganic carbon was released by acidification and trapped
in 2-phenylethylamine (Treude et al, 2005). The activities
of the fractions were measured as described above but using
the scintillation cocktail Permafluor E+ (Perkin Elmer), and
rates were determined as described before (Treude et al.,
2005).

Cultivation of Sediment Free AOM and
Phototrophic Cultures

The AOM enrichment culture was started with sands from
emission spot 1. The sands were diluted 1:1 with artificial
seawater medium (Widdel and Bak, 1992) and incubated with
methane as sole electron donor at 20°C in the dark. The
concentration of sulfide was measured spectrophotometrically
as colloidal copper sulfide that formed in an acidified copper
sulfate solution (5 mM CuSOy4 50 mM HCI) according to
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Cord-Ruwisch (1985). In contrast to deep-sea sediments, which
are silty and fine-grained, the microorganisms were embedded
in silicate sands that quickly settled. Hence, we were able
to collect the AOM organisms in the supernatant and easily
remove the sandy matrix. The concentrated biomass (<1% of
the total weight of the sample) regained around 60% of the
microbial methane-dependent SR rate of the original sediment.
The retrieved cultures needed to be stored in the dark as they also
contained anaerobic phototrophs. We exchanged the medium
when sulfide concentrations of >12 mM were reached, and
we diluted AOM cultures (1:2) when the sulfide production
in the enrichment vessel exceeded 0.25 mM per day. To
enrich for the phototrophs we subjected a culture aliquot to
sulfide (2 mM) and light. The rapidly growing phototrophs
were further diluted (1:1000) and supplied with different sulfur
sources (sulfide (2 mM), sodium sulfide (2 mM), or zero-valent
sulfur).

Nucleic Acid Extraction

Total nucleic acids were extracted from 2 ml sediment (in
duplicates) using a chloroform-based method (Zhou et al,
1996) and from 1 ml sediment (in triplicates) using a
Fast DNA Spin Kit For Soil (MP Biomedicals) according
to the manufacturer’s recommendations. The nucleic acids
were quality-checked by gel electrophoresis, concentration was
measured by spectrophotometry (Qubit 2.0 Fluorometer and
Infinite 200 Nano Quant) and the aliquots stored at —20°C until
further processing.

16S rRNA Gene Libraries

We prepared 16S rRNA gene libraries from sediments of emission
spot la (30-40 cm) and emission spot 3 (10-20 cm). Both
sediment horizons showed the highest microbial activity and
cell density of the respective seeps and thus were chosen
to compare the most active seep communities. 16S rRNA
genes were amplified by polymerase chain reaction (PCR)
using ~20 ng of environmental DNA, 30 cycles and the
primer pairs GM3F/GM4R (Muyzer et al., 1995) for bacteria
and Arch20F/Unil392R (Lane et al, 1985; Massana et al,
1997) for archaea at annealing temperatures of 44 and 58°C,
respectively. Ten replicate PCRs per sample were pooled,
purified with the QIAquick Gel Extraction Kit (Qiagen) and
eluted in ultrapure water. We cloned with the pGEM-T-Easy
Vector System (Promega, Germany) and chemically competent
Escherichia coli TOP 10 cells (Invitrogen, Germany). The inserts
were amplified with the plasmid primer pair MI13F/M13R
(Yanisch-Perron et al., 1985), purified using Sephadex™G-50
Superfine (GE Healthcare) and sequenced using the BigDye
Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems),
the primers Bac907RM (Muyzer et al., 1998) for bacteria and
Arch958R (DeLong, 1992) for archaea and an ABI Prism
3100 Genetic Analyzer or ABI 3130x1 Sequence Analyzer
(Applied Biosystems). 16S rRNA gene sequences were quality-
checked and assembled with Sequencher v4.6 (Gene Codes)
and chimera checked with Mallard (v1.02) (Ashelford et al,
2006).

Phylogenetic Analysis of 16S rRNA Gene

Sequences

Taxonomic classification of the sequences was carried out
using ARB (Ludwig et al., 2004) based on the SILVA small
subunit rRNA reference sequence database base (SSURef
v111, release date: 07-19-12) (Quast et al., 2013). Sequences
were aligned with SINA and manually optimized based on
their secondary structure. We calculated maximum likelihood
(PhyML) trees based on 200 nearly full-length sequences
(>1300 nucleotides) using 100 bootstraps and a positional
variability filter, excluding highly variable positions. We added
partial sequences (>590 nucleotides) to the tree using maximum
parsimony as implemented in ARB, without allowing changes in
the overall tree topology. Redundant sequences were removed for
clarity.

16S rRNA Gene Pyrosequencing

Samples were amplified for pyrosequencing using forward
and reverse fusion primers. The forward fusion primer was
constructed with the Roche A linker (5'-CCATCTCATCCCTG
CGTGTCTCCGACTCAG-3'), an 8-10 bp barcode, and the
forward primer 340F (5-CCCTAYGGGGYGCASCAG-3')
for archaea (Gantner et al, 2011), or the forward primer
341F (5'-CCTACGGGAGGCAGCAG-3') for bacteria (Muyzer
et al., 1993). The reverse fusion primer was constructed with
a biotin molecule, the Roche B linker (5-CCTATCCCCTGT
GTGCCTTGGCAGTCTCAG-3'), and the reverse primer 958R
(5'-YCCGGCGTTGAMTCCAATT-3') for archaea (DeLong,
1992), or the reverse primer 907R (5-CCGTCAATTCM
TTTGAGTTT-3') for bacteria (Muyzer et al, 1998).
Amplifications were performed in 25 pl reactions with
Qiagen HotStar Taq master mix (Qiagen Inc, Valencia, CA,
USA), 1 pl of each 5 pM primer, and 1 pl of template.
Reactions were performed on ABI Veriti thermocyclers (Applied
Biosytems, Carlsbad, CA, USA) under the following thermal
profile: 95°C for 5 min, then 35 cycles of 94°C for 30 s, 54°C
for 40 s, 72°C for 1 min, followed by one cycle of 72°C for
10 min. Amplification products were visualized with eGels
(Life Technologies, Grand Island, New York). Products were
then pooled equimolar and each pool was cleaned and size
selected using Agencourt AMPure XP (BeckmanCoulter,
Indianapolis, Indiana) following Roche 454 protocols (454
Life Sciences, Branford, Connecticut). Size selected pools were
then quantified and diluted to be used in emPCR reactions,
which were subsequently enriched and sequenced following
established manufacture protocols (454 Life Sciences). The PCR
amplification of the 16S rRNA gene variable regions V3-V5, as
well as amplicon purification, library preparation and massively
parallel tag sequencing using a 454 GS FLX+ sequencer (Roche)
was carried out at the Research and Testing Laboratory (Lubbock,
Texas, USA). We processed the sequences using mothur v30
(Schloss, 2009) and a routine (Schloss et al., 2011) that included
denoising of the flow grams (Quince et al., 2009), single-linkage
preclustering (Huse et al.,, 2010) and the removal of chimeras
(Edgar et al., 2011). Archaeal and bacterial sequences were
clustered at 98% sequence identity (OTUp o2) and taxonomically
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assigned based on SILVA [release 119, 07-2014; (Quast et al,
2013)].

Nucleotide Sequence Accession

Numbers

16S rRNA partial gene sequences derived from Sanger-sequenced
gene libraries were deposited under the accession numbers
KT907894-KT908003. 16S rRNA amplicon sequences were
deposited in the sequence read archive under SRA BioProject
accession number SRP064784.

Microbial Community Analyses

We used the original and subsampled sequence abundance
tables to calculate diversity indices and Chaol richness (Chao,
1984) using mothur v30. Dissimilarities between all samples
were calculated using Bray-Curtis dissimilarity (i.e., relative
sequence abundance) (Bray and Curtis, 1957). The resulting
beta-diversity matrices were used for 2-dimensional non metric
multidimensional scaling (NMDS) ordinations with 20 random
starts (Kruskal, 1964). Stress values below 0.2 indicate that
the multidimensional dataset is well represented by the 2D
ordination. Taxa that were shared between sites or samples, as
well as the networks were calculated using Jaccard dissimilarity
(i.e., presences/absence). The network vertices (nodes) were
plotted using a Fruchterman and Reingold (1991) force-directed
algorithm, which causes an increase in the nodes attraction
to each other with increasing similarity between them. For
our dataset, it means that the more OTUpg, two samples
share, the closer they are located in the network. All analyses
were carried out within the R software environment using the
packages vegan (Oksanen et al., 2012), labdsv (Roberts, 2012),
gmt (Magnusson, 2009), network (Butts, 2008), and custom R
scripts.

Catalyzed Reporter Deposition

Fluorescence In Situ Hybridization

The sediment was sonicated (Sonoplus HD70 sonication probe,
Bandelin, Berlin) seven times on ice (20 cycles, 30 s, 30%
intensity). After each sonication step, 1 ml of supernatant was
replaced with 1 ml 1:1 phosphate buffered saline (PBS)/ethanol
and the supernatants combined. Depending on the sample
we filtered 10-20 pl of supernatant onto a polycarbonate
filter (0.2 pm pore size) and embedded the filter in 0.2%
low-melting agarose to prevent detachment of cells. Filter
sections were used for catalyzed reporter deposition fluorescence
in situ hybridization (Pernthaler et al, 2002) as previously
described (Ishii et al., 2004). For the detection of ANME-1
archaea (probe ANME1-350), cell walls were permeabilized with
proteinase K solution (15 g ml~!; Macherey-Nagel, 2.5 U
mg~!) for 3 min at RT. For the detection of other archaea
the cell walls were permeabilized with 0.5% SDS (Sigma) for
10 min at RT and bacterial cell walls were permeabilized
with lysozyme solution (100kU ml~!; Sigma) for 45-60 min
at 37°C. For hybridization we placed 4-6 filter sections in
500 ! hybridization buffer (150 ng ml~! horseradish peroxidase-
labeled oligonucleotide probe, see Supplementary Table S2) for

2 h at 46°C, incubated in washing buffer for 20 min at 48°C
and in 1 x PBS for 15 min at RT. For signal amplification
we placed the filter sections in 500 pl amplification buffer
(1 mg ml™ !tyramide) for 30 min at 46°C and washed twice
with 1 x PBS for 10 min at RT. Cells were stained with DAPI
solution (1 pg ml™!) and embedded in mounting medium
(4:1 Citifluor/Vectashield). Details on buffers and solutions are
also found on the web (ARB-SILVA Homepage: http://www.
arb-silva.de/fish-probes/fish-protocols/). Cells were counted in
40-80 independent fields of view, corresponding to 600-2500
cells, using an Axioplan 2 mot plus epifluorescence microscope
(Zeiss, Germany). Images were taken with a confocal laser-
scanning microscope (LSM780 and LSM510; Zeiss, Germany)
and processed with the software ZEN 2011 (Zeiss, Germany).
Cell numbers in aggregates were estimated based on aggregate
and cell volumes as previously described (Losekann et al,
2007).

RESULTS

Site Description and Ecosystem

Conditions

The investigated Pomonte methane seep site is located 200 m
off the coast of Elba (Italy) at 12 m water depth. Within
the 400 m? study area (Figure 1C) we observed seven
emission spots with continuous methane bubble discharge
(Figure 1D) of which four were analyzed in greater detail
(Figure 1C, Supplementary Table S1). The location of the
emission spots remained stable within half a square meter
since the beginning of the investigation in 2009. All emission
spots were characterized by permeable, silicate sands that were
partly covered by degraded seagrass beds (Figures 1D,F). During
calm weather conditions, usually in summer and winter season,
the sediment at the spots was black and partly covered by
white mats of filamentous bacteria (Figure 1E) that disappeared
during storm events in autumn and spring. The sediment
surface was repeatedly re-shaped by hydrodynamic forces to
different ripple structures, indicating constant disturbance of
the upper sediment layers. Despite these disturbances the
surface at the emission spots ES2 and ES3 was black during
most observation visits suggesting that the top sediment was
anoxic/sulfidic. The surface of ES1 and ES4 was rarely colored
black suggesting oxic top sediment. The sands recovered from
the three seep sites had on average a grain size of 430
(£ 34.6 SD) pwm, a porosity of 43.2 (£0.96 SD) vol% and
a permeability of 54 x 107! (£2.54 SD) m?. Reference
sites had very similar characteristics [mean grain size: 448
(£38.8 SD) pwm; mean porosity: 46.9 (£7.54 SD) vol%, mean
permeability: 5.2 x 1071 (£1.69 SD) m?], showing that
seepage had a minor influence on the sediment characteristics.
Total organic content of the sediment was very low at the
emission and the reference spots [TOC 0.04 (£0.01 SD)
wt%]. And inorganic carbon was 0.15 (£0.07 SD) wt% at
the emission spots and 0.09 (£0.03 SD) wt% at the reference
spots.
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Biogeochemical Characterization of the
Emission Spots and Reference

Sediments

The emitted gas contained up to 85% methane (and not further
quantified proportions of ethane, propane, and CO;), with an
unusual carbon isotopic signature of around 6'3C = —16%0 vs.
the Vienna Pee Dee Belemnite (VPDB) standard. This indicated
abiogenic origin, which was further supported by the basement
of this site consisting of fractured magmatic rock and the low
organic carbon content of the sediment. We measured methane
concentrations between 50 and 550 WM in the pore water
(Figure 2), whereas in the reference sediments methane was
below the detection limit (<1 wM; Figure 2). We assume, that
locally the methane concentrations were rather underestimated,
due to outgassing and constant dilution occurring in advective
systems.

In the three investigated emission spots (ES1-3) the reactants
and products of AOM were elevated. DIC, alkalinity and sulfide
values, which also derived from in situ pore water sampling,
were elevated compared to the reference sediments (Figure 2,
Supplementary Table S3). Coinciding with the peaks of DIC, the
isotopic compositions of inorganic carbon show values of down
to 8'3Cpjc = —10%o vs. VPDB. Notably in all three investigated
spots, the sulfate concentrations were only slightly lower than in
the overlying seawater and did not approach zero even at 50 cm
sediment depth. Thus, AOM did not occur in classical, surficial
SMTZ, but rather occurred vertically around the gas conduits
to which sulfate is laterally supplied through the permeable
sediment.

Anaerobic oxidation of methane and methane-dependent
SR was measured in three horizons of emission spot 1
(Supplementary Figure S1). The highest methane oxidation
(MOx) rates of 150 = 50 nmol g’1 day’1 (£SD, n = 5) occurred
in sediment depths between 20 and 60 cm and coincided with
SR rates of up to 200 + 40 nmol g~ ! day~! (n = 5). In controls
without methane, SR rates were more than 10-fold lower, showing
that microbial activity strongly depended on methane as energy
source. In the upper 20 cm the rates of both MOx and SR were

lower with 2 and 9 nmol g~ ! day ™!,

Preparation of Sediment-Free AOM

Enrichment Cultures

To characterize the microbial processes involved in AOM
it is desirable to have sediment-free microbial enrichments.
Due to the slow growth of AOM-mediating organisms
(Girguis et al., 2005; Nauhaus et al., 2007) it may take years
of cultivation and sequential transfers to separate the cell
material from the fine-grained sediments. The Pomonte seep
sediments, however, consist of sands with very little organic
carbon content. These sand grains settled very quickly in the
medium. Thus, we were able to efficiently separate cell material
from the sandy matrix within hours, retrieving about 60%
of the AOM-active biomass in the original sediment. This
enabled us to instantly obtain highly active, sediment-free
enrichments with a methane-dependent sulfide production
of about 0.3 pmol g weight_l (see also Wegener et al,

2016). In a separate enrichment we found a phototrophic
community of both green sulfur bacteria of the order
Chlorobiales, as well as purple sulfur bacteria of the order
Chromatiales.

Microbial Diversity

The sediment horizons of ESla (30-40 cm) and ES3 (10-
20 cm) that showed the highest AOM activity were used for the
construction of archaeal and bacterial 16S rRNA gene libraries.
Despite the proximity and the observed geochemical similarity
of the seep sites we found striking differences in their microbial
richness and community composition (Figure 3). The libraries
of ESla were dominated by ANME-1 and SEEP-SRB2, and
showed a high diversity of ANME clades, including ANME-
2ab, ANME-2¢, ANME-1a, and ANME-1b. The libraries of ES3
were dominated by ANME-2ab and SEEP-SRB1 and we did not
detect any other ANME clades. In addition, only ES1la harbored
sulfate reducers of the clade Sva0081, whereas only at ES3 we
found Desulfarculales. The ANME and SRB at both seep sites
were closely related to those found at other seeps worldwide
(Figures 4 and 5). Pyrosequencing was performed with DNA
from subsurface sediments of ESla (30-40 cm), ES1b (20-
30 cm), and ES3 (10-20 cm) to complement and extend the
findings obtained by the gene libraries. As references we used
subsurface sediments from three sites that showed no indication
for methane seepage (Ref1-3). The numbers of observed archaeal
and bacterial OTUg o, (S) as well as estimated richness (Chaol)
were similar at all emission and reference spots (Table 1), except
for Ref2 that had a much lower S and Chaol. The highest archaeal
and bacterial Inverse Simpson diversity (D) was found at ES1b,
whereas ES3 showed an exceptionally low bacterial D compared
to all other sediments. Despite their close proximity the emission
spots harbored very distinct archaeal and bacterial communities
and shared few OTUj ;. In general the turnover of OTUjy g,
was lower within emission spots and within reference spots
than between emission spots and reference spots (Supplementary
Table S4), showing that emission spots were more similar to each
other than the surrounding sediment. Eighty-three percent of all
archaeal and 81% of all bacterial OTUjy o, occurred only at one
location and we did not find one archaeal OTUj ¢, that occurred
in all six samples (Supplementary Figure S2). This high amount
of uniqueness was found at emission spots and reference sites.
The archaeal community at ESla seemed to be dominated by
ANME-2a, but also comprised ANME-2b, ANME-2¢c, ANME-
la, and ANME-1b (Figure 6). The bacterial community of the
ESla sample was dominated by SEEP-SRB2, but also contained
SEEP-SRB1 and many Anaerolineales. ES1b was very similar to
ES1a in its microbial composition. In contrast, the sample of ES3
was clearly dominated by ANME-2a, had sequences affiliated to
ANME-3, but lacked ANME-2c and ANME-1. Here, the bacterial
community was dominated by SEEP-SRBI.

Relative Cell Abundance and Distribution

of Microorganisms
The relative cell abundance of ANME-1, ANME-2, SEEP-
SRBla, and SEEP-SRB2 as determined by CARD-FISH varied
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FIGURE 2 | Concentration profiles of methane, dissolved inorganic carbon (DIC), DIC isotopic signature (vs. VPDB), alkalinity, sulfate, and sulfide of
the three investigated emission spots: ES1a, ES2, and ES3, as well as a reference spot (Ref). Gray circles show water column measurements from 50 cm
above seafloor.

substantially between seep sites and sediment layers. At all seeps
the layer with the highest total cell abundance coincided with
the highest relative abundance of anaerobic methanotrophs and
sulfate reducers. These layers were between 10 and 40 cmbsf
(cm below sea floor) and were highly dominated by ANME and
SEEP-SRB (Figure 7). The CARD-FISH results confirmed that
ESla and ES1b were dominated by ANME-1 (~20% of total
cells; up to ~9.5 x 107 cells mI~! sediment) and SEEP-SRB2

(~25% of total cells). ES4 was dominated by ANME-2 (~20%
of total cells, up to ~5 x 107 cells ml~! sediment) and SEEP-
SRBla (~15% of total cells). ES4 had a similar community as
ES3. At ES3 and ES4 we did not detect ANME-1 cells, indicating
that this clade was entirely absent, as confirmed by both 16S
rRNA gene libraries and pyrosequencing. Most of the ANME
and SEEP-SRB formed conspicuous AOM consortia (Figure 8).
Although we found all combinations, generally, ANME-1 was
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FIGURE 3 | Relative sequence abundances of archaeal and bacterial 16S rRNA genes at emission spot 1a (ES1a) and 3 (ES3). The number of analyzed
clones is given above the columns. The nomenclature of uncultivated groups is according to SILVA taxonomy.

associated to SEEP-SRB2 and ANME-2 was associated to SEEP-
SRB1a (Figure 8).

The morphology of these aggregates varied greatly ranging
from consortia, in which ANME and SRB were interwoven
(Figures 8A,B) to the typical mixed- and shell-type aggregates
(Figures 8C,D) to aggregates that contained bubbles of cells
(Figure 8E) or aggregates that formed long chain-like filaments
(Figure 8F). Woven-type consortia had a compact cylindrical-
shaped morphology with a densely packed archaeal core
surrounded by SRB (Figures 8A,B). Here, the partner SRB
enveloped the archaeal core without entirely covering it or
growing into it, thus being a special case of the shell-type
morphology. The archaeal core consisted very likely of ANME-1,
since they were stained by an ANME-1/ANME-2 probe mix, but
were not stained by ANME-2 probes. The envelope consisted of
SEEP-SRB1la. Woven-type aggregations were on average between
12 and 36 wm long and between 4 and 8 pm thick. The
bubble-type aggregates that we often observed were mat-like
structures comprising mainly round-shaped or planar mono-
species aggregates that are embedded in or next to each other
(Figure 8E). These aggregates may also be considered special
shell-type consortia. Bubble-type aggregates were very large being
15-75 pm wide and 6-10 pm thick. They contained ANME-
1 or ANME-2 together with SEEP-SRBla, SEEP-SRB2, and
additionally cells of yet unknown clades that were only stained by
DAPIL The SEEP-SRB1a mostly formed small, round and densely
packed associations within the larger consortia, whereas SEEP-
SRB2 regularly formed big and planar, but still tightly packed
aggregates within the bubble-type consortium. SEEP-SRB2 was
rarely detected in the usual shell-type aggregates. The chain-
like aggregates were between 6 and 28 pm long and frequently
consisted of a bundle of ANME-1 filaments and associated
ANME-2, DSS, or SEEP-SRB2 cells.

In sediments of ES1 we found the highest morphological
diversity. The analysis of 366 aggregates of ES1, ES3 and ES4

revealed that filamentous chain-type aggregates were the most
relative abundant type of consortia (18%), followed by bubble-
and mixed-type (each 12%) and by shell-type aggregates (11%),
whereas woven-type aggregates were rare (1%) (Supplementary
Figure S3). Monospecific aggregates of ANME or SRB accounted
for 29% of all aggregations. In addition, at ESla and ES1b we
found many aggregates that contained cells of both ANME-
1 and ANME-2 (Figures 8F and 9). These mixed ANME
aggregates varied from loose associations to more tightly
packed forms and were rather small being between 3 and
10 pm in diameter. The ANME-1 cells were mainly large
and rod-shaped, while the ANME-2 cells were smaller and
coccoid. ES3 and ES4 harbored microbial communities that
were less phylogenetically and morphologically diverse. Here
the community was dominated by shell-type aggregates and we
did not detect any filament. At all emission spots we found
monospecific aggregates of ANME or SEEP-SRB2. Monospecific
ANME-2 aggregates (Figure 8G) had diameters from 6 pm to up
to 90 pm and were frequently observed. ANME-1 monospecific
aggregates were smaller (4-18 pwm), less common and only
occurred at ESI1. Furthermore, we found ANME and SEEP-
SRB single cells at all emission spots in low abundances. At
the reference sites we did not detect any AOM consortia or
monospecific ANME aggregates, but sporadically found single
ANME or SEEP-SRB cells.

DISCUSSION

Biogeochemistry of Shallow-Water
Permeable Seep Sediments

Most of the so far studied methane seeps are located in muddy,
silty deep-sea sediments that are less affected by hydrodynamic
forces and temperature changes, and are thus very stable
and permanently cold. The microbial communities at these
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FIGURE 4 | Phylogeny of sequences affiliated with Methanomicrobia and Thermoplasmata. The tree was calculated with nearly full-length 16S rRNA gene
sequences (> 1300 nucleotides) using maximum likelihood and 100 iterations. Partial gene sequences (>880 nt) retrieved from emission spots ES1a (red) and ES3
(blue) were added without changing the overall topology. The bar depicts estimated sequence divergence.

deep-sea ecosystems develop over long periods of time and are
predominantly shaped by faunal activity (Cordes et al., 2005;
Thurber et al, 2012; Niemann et al., 2013; Ruft et al., 2013;
Felden et al.,, 2014), or changes in the geochemistry (De Beer
et al., 2006; Lichtschlag et al., 2010; Fischer et al., 2012; Felden
et al, 2013; Zhang et al, 2014). The Tuscan Island seepage
area harbors some of the shallowest marine methane seep sites
investigated to date. The Pomonte seep site is outstanding
as the emission spots are situated in permeable sands that
are strongly influenced by diurnally and seasonally changing

hydrodynamic forces such as waves and currents and by seasonal
changes in water temperature from 12 to 25°C with an average
temperature of 19.4 £ 4.3°C (Shaltout and Omstedt, 2014). In
fine-grained or muddy seep sediments the transport of electron
acceptors from the water column into the sediment is mainly
diffusion regulated, or driven by small-scale advection due to gas
ebullition, whereas in permeable sandy sediments this transport
is largely due to advection-driven pore water circulation (Janssen
et al., 2005). The pore water profiles indicate that advection
and lateral transport of electron acceptors are important at
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all studied methane emission spots, which allow AOM activity
in a deeper and wider sediment horizon than what is known
from the deep sea. In the upper sediment horizons recurring
disturbances such as sediment relocation or advective inflow of

oxic water likely prevent settlement of the oxygen-sensitive AOM
consortia.

In deep-sea methane seep sediments the sulfate-methane
transition zone (SMTZ) and hence the zone of highest activity
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TABLE 1 | Diversity parameters based on pyrosequencing the V3-V5 region of sediment samples of the emission spots ES1a, ES1b, ES3, and the
reference spots Ref1-3.

Sample Total reads OTUp 02(S)* Chao1 richness (Chao1)* Inverse simpson diversity (D)*
ES 1a 14419 99 140 5.3
© ES 1b 3756 145 194 16
E ES3 12103 255 463 3.1
g Ref 1 10462 150 270 5.6
Ref 2 8601 40 64 3.4
Ref 3 14296 257 428 6.0
ES 1a 3887 306 500 11
© ES 1b 4310 576 1057 202
g ES3 6511 493 890 77
§ Ref 1 6779 564 1166 177
Ref 2 4254 469 766 141
Ref 3 1444 558 1079 194

OTUp,02: Operational taxonomic unit at 98% identity of the 16S rRNA gene region V/3-V5.
*Diversity parameters were calculated based on random subsampling to account for unequal sampling effort.
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abundances (upper panel) were determined using Acridine Orange Direct Counts. Relative cell abundances of anaerobic methanotrophs and sulfate reducers
(lower panel) determined by catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH).

is usually only a few centimeters thick. Often the SMTZs are
located close to the sediment surface and harbor between 10°
and 10'° microbial cells per milliliter sediment (Knittel and
Boetius, 2009). At the Pomonte shallow seep site, the zone of
highest AOM activity harbored 10% microbial cells per milliliter
sediment, was much deeper and between 20 and 40 cm thick.
The sulfate concentration did not decrease as is the case in
deep-sea sediments and seeps, but stayed fairly stable down to
60 cm sediment depth, indicating that sulfate replenishes from
the surrounding sands. Thus, at the Pomonte site we do not find
a classical SMTZ, with sharp vertical gradients of methane and
sulfate, commonly found in surface sediments of methane seeps
(e.g., Lichtschlagetal., 2010; Ruff et al., 2013), or in the subsurface
of seeps and methane rich sediments (Webster et al., 2011; Treude
et al., 2014). We instead observed that AOM activity mainly
occurred in deep sediment layers and that AOM aggregates were
distributed throughout the sediment cores. This is unusual for
methane seeps and indicated that the active zone, including
opposing gradients of methane, and sulfate, was found laterally
around the central gas conduit, rather than being confined to a
thin layer close to the sediment surface. This hypothesis is further
supported by studies showing that the upward flow of gas creates
a downward flow of seawater in adjacent sediments (O’Hara et al.,
1995; Tryon et al., 1999), which may result in lateral advection
of seawater through the permeable sediment around a central
conduit (Stein and Fisher, 2001).

Both methane and sulfate occurred in excess throughout the
sediment and were not depleted, indicating a low efficiency of the
benthic filter in permeable, low-biomass sands. A large part of
the methane that passes through the sand without being oxidized

also passes through the shallow water column, making its way
to the atmosphere, where it may act as a potent greenhouse gas
(McGinnis et al., 2006; Brunskill et al., 2011). Methane seepage
was shown to cause similar biogeochemical profiles in other
mesophilic, permeable sandy sediments, e.g., at Coal Oil Point in
the Santa Barbara Basin (Treude and Ziebis, 2010), the Skagerrak
(Knab et al., 2008) and the Gulfaks Oil Field in the North Sea
(Wegener et al.,, 2008). Highly permeable seep sediments also
exist in hydrothermal settings, e.g., at Middle Valley on the Juan
de Fuca Ridge (Wankel et al,, 2012), showing similar lateral
advection of overlying seawater (Stein and Fisher, 2001). Based
on these observations it is possible that methane venting through
permeable sands generally features characteristic biogeochemical
profiles, vertical SMTZs and low-efficient biofilters.

Many studies in recent years have tried to elucidate the niche
differentiation and ecophysiology of populations that are directly
or indirectly involved in the anaerobic oxidation of methane
and/or hydrocarbons. Although, evidence is accumulating that
microbial populations differentiate based on the availability of
electron acceptors (Green-Saxena et al., 2014), electron donors
(Griinke et al., 2011), hydrocarbons (Stagars et al., 2016),
temperature (Holler et al., 2011Db), and the substratum (Case et al.,
2015), to name just a few, the ecological processes and niches
remain unclear. To link phylotypes with habitats it is necessary
to define environment ontologies (Buttigieg et al., 2013; Thessen
etal., 2015) that can be used to clearly distinguish different types
of seep ecosystems and AOM habitats. The term “seep” that
we used throughout this study is strictly speaking a misleading
description for the investigated sites, as they have characteristic
gas flares and are continuously shaped by gas ebullition.
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FIGURE 8 | Epifluorescence (A-G) and confocal laser scanning micrographs (A1-A4) of ANME and SRB associations visualized by CARD-FISH. The

woven-type consortia (A,A1-A4,B) consisted of ANME-1 or -2 (red, pooled probe: ANME-1/ANME-2) and SRB (green, probe: DSS658). Mixed-type (C), shell-type
(D), and bubble-type (E) aggregates of ANME-2 (red, probe: ANME2-647) and SEEP-SRB1a (green, probe: SEEP1a-1441). Filamentous chain-type aggregate (F) of
ANME-1 (red, probe: ANME1-350) and ANME-2 (yellow, probe: ANME2-538). Monospecific aggregate (G) of ANME-2 (red, probe: ANME2-538. Nucleic acids were

stained with DAPI (blue). The scale bars are 2 um.

Diversity and Turnover of Microbial at deep-sea methane seeps. The microbial communities of

Communities in Shallow. Permeable Elba shallow seeps comprised organisms that were closely
’ related to those found at other seep ecosystems worldwide

Seep Sediments (Figures 4 and 5). We detected 16S rRNA partial gene
Diversity and turnover of the microbial communities at the sequences that shared >97% sequence identity with 16S
Pomonte site were described and compared to those found ribosomal genes of ANME or SRB organisms that occurred,
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blue. The scale bar is 2 pm.

FIGURE 9 | Epifluorescence (A-J) and confocal laser scanning micrographs (B1-B4) of associations comprising ANME-1, ANME-2, and SRB
visualized by CARD-FISH. (A-J) ANME-1 (red) and ANME-2 (yellow) cells. (B,E,G) ANME-1 (red), ANME-2 (yellow), and SEEP-SRB1a (green) cells. DAPI stain in

e.g., at methane seeps in the Nankai Trough (Miyashita et al.,
2009), the Santa Barbara Basin (Orphan et al., 2001), the
Gulf of Mexico (Lloyd et al., 2010) at mud volcanoes in
the Mediterranean (Pachiadaki et al., 2010), and the Atlantic
(Niemann et al., 2006), and in SMTZs of organic-rich shallow
sediments of Eckernférde Bay (Jagersma et al, 2009). Hence,
the biogeochemical and physical constraints of the permeable
microbial habitat selected for the same microbial communities
that are involved in AOM worldwide. Yet, despite their proximity
and their biogeochemical similarities, the studied emission
spots were remarkably different concerning their richness and
evenness based on amplicons of the V3-V5 region (Table 1)
as well as concerning their dominant microbial clades based
on both partial genes (Figure 3) and V3-V5 amplicons
(Figure 6).

Permeable sands are much more heterogeneous than soft
deep-sea sediments and provide a large number of niches to

microorganisms (Mills et al., 2008; Boer et al., 2009a; Schottner
et al., 2011; Gobet et al., 2012). This heterogeneity may result in
an increased number of niches also for anaerobic methanotrophs
and sulfate-reducers. The high diversity of key players that
we observed may be connected to frequent changes in the
concentration of methane, sulfate and especially oxygen caused
by lateral advection of seawater to the deeply buried, but
permeable AOM zones. At the emission spots ESla and ES1b
we found ANME—1a, —1b, —2a, —2b, —2c and ANME-3 as
well as SEEP-SRB—1a, —2, and many other sulfate reducers,
among them Sva0081 and Desulfarculales. This indicated the
coexistence of clades with very different habitat preferences,
such as ANME-1, which predominantly occur in anoxic, deep
(ANME-1b) or hot (ANME-1a) sediment layers (Biddle et al.,
2012; Vigneron et al, 2013; Ruff et al, 2015), seem to be
oxygen sensitive (Knittel et al., 2005) and tolerant to changes
in temperature and sulfate availability (Dowell et al., 2016)
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and ANME-2¢, which seem to be adapted to very different
conditions like shallow, bioirrigated and sulfate-rich sediment
layers (Biddle et al., 2012; Vigneron et al., 2013; Felden et al.,
2014). Moreover, we observed associations that contained cells
of both ANME-1 and ANME-2. To our knowledge this is the first
time that such associations were visualized, despite the frequent
co-occurrence of ANME clades in sequence-based studies of
seep microbial diversity (e.g., Ruff et al,, 2015). Monospecific
occurrence of ANME archaea has been described before (Orphan
et al., 2002; Losekann et al., 2007; Treude et al., 2007; Wegener
et al, 2008; Vigneron et al, 2013), but the causes remain
elusive. Aggregation could be a strategy to minimize stress
caused by advection-driven entrainment of oxygen, which was
shown for sulfate reducers (Dolla et al., 2006). For sulfate-
coupled AOM most physiological studies emanate from obligate
syntrophy of ANME and SRB (Girguis et al., 2005; Nauhaus
et al., 2005; Orphan et al.,, 2009; Meulepas et al., 2010; Holler
et al., 2011a; McGlynn et al., 2015; Wegener et al., 2015) with
findings that seemingly make monospecific life unfavorable.
We also detected methanogens and sulfur disproportionating
bacteria, which frequently occur at methane seeps and in AOM
enrichment cultures. These organisms are very widespread, but
rare and are involved in side reactions of AOM (Wegener
etal., 2016). In addition, the phototrophic enrichments suggested
that sulfide-oxidizing phototrophs inhabit the sediment surface
of the seeps, using the AOM-derived sulfide as an electron
donor for photosynthesis. This indicated that shallow seeps are
a so far overlooked habitat for anoxygenic green and purple
phototrophs.

Phylogenetic diversity was paralleled by an unprecedented
morphological diversity, including several different forms of
spherical and filamentous consortia, monospecific aggregates
and even indications for AOM consortia that are comprised
of two ANME clades and one SRB (Figures 8 and 9). It
was shown that cell aggregation decreased both cell movement
through a sand column (Vandevivere and Baveye, 1992) and
the likelihood of being grazed by benthic predators (deLeo
and Baveye, 1997), and may even enhance substrate uptake
per cell (Logan and Hunt, 1987). In addition, grain size and
permeability can influence both the abundance (Santmire and
Leff, 2007) and the community structure of benthic communities
(Jackson and Weeks, 2008; Zheng et al., 2014). It is possible
that the high phylogenetic and morphological diversity is linked
to the permeability or other parameters of the sediment.
The different aggregate morphologies could be adaptations
to different flow regimes, interstitial spaces, and compound
concentrations. It was shown that disturbances, such as the
exposition to oxygen (Shade et al, 2011) or salinity (Berga
et al., 2012), influence community composition and function,
while other disturbances may increase the microbial diversity
of an ecosystem (Floder and Sommer, 1999; Buckling et al.,
2000). Yet, the effects of sediment characteristics and disturbance
largely remain understudied in particular in ecosystems that
are difficult to reach and sample, such as most methane
seeps.

Disturbance caused by the strong hydrodynamics may
also explain the high microbial turnover between the sites.

Other factors may include the fluctuations in immigrating and
emigrating microbial populations, which is a stochastic process
that is especially important in dynamic habitats (Boer et al.,
2009b; Gobet et al., 2012), or energy-diversity, as these sands
are natural filters of fresh organic matter particles from both
marine and terrestrial sources. It was shown that differences in
available carbon sources have a significant influence on microbial
community structure (Bienhold et al., 2011; Sawall et al., 2012;
Raulf et al., 2015).

CONCLUSION

Coastal sandy sediments have a higher permeability and
lower porosity than the silty clays that constitute deep-
sea sediments, which in turn results in a lesser interstitial
volume and lesser overall particle surface. These sediment
properties combined with the prevalent hydrodynamics due
to wave action, currents and gas ebullition create microbial
habitats in shallow methane seeps that are very different
from those found at methane seeps in the deep sea. To
distinguish these habitats we think that a standardized and
detailed ontology of methane-fuelled ecosystems is needed. Our
findings suggest that the high phylogenetic and morphological
diversity of anaerobic methanotrophs, and the apparently
low-efficient methane filter at the Pomonte seep site are
linked to the sediment characteristics of the ecosystem. Yet,
the underlying environmental processes that shape microbial
diversity, abundance and function remain unclear and are
promising objectives of further research. The study underlines
that our understanding of shallow-water methane seeps is still
incomplete, despite their widespread occurrence on active and
passive continental margins and importance for the global
methane budget. It is crucial to further investigate the microbial
ecology and efficiency of methane removal as most of the
emitted methane at shallow seeps is released directly to the
atmosphere.
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