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Campylobacter is a leading cause of foodborne bacterial gastroenteritis worldwide

and infections can be fatal. The emergence of antibiotic-resistant Campylobacter

spp. necessitates the development of new antimicrobials. We identified novel

anti-Campylobacter small molecule inhibitors using a high throughput growth inhibition

assay. To expedite screening, we made use of a “bioactive” library of 4182 compounds

that we have previously shown to be active against diverse microbes. Screening

for growth inhibition of Campylobacter jejuni, identified 781 compounds that were

either bactericidal or bacteriostatic at a concentration of 200 µM. Seventy nine of

the bactericidal compounds were prioritized for secondary screening based on their

physico-chemical properties. Based on the minimum inhibitory concentration against

a diverse range of C. jejuni and a lack of effect on gut microbes, we selected 12

compounds. No resistance was observed to any of these 12 lead compounds when

C. jejuni was cultured with lethal or sub-lethal concentrations suggesting that C. jejuni

is less likely to develop resistance to these compounds. Top 12 compounds also

possessed low cytotoxicity to human intestinal epithelial cells (Caco-2 cells) and no

hemolytic activity against sheep red blood cells. Next, these 12 compounds were

evaluated for ability to clear C. jejuni in vitro. A total of 10 compounds had an anti-C. jejuni

effect in Caco-2 cells with some effective even at 25 µM concentrations. These novel

12 compounds belong to five established antimicrobial chemical classes; piperazines,

aryl amines, piperidines, sulfonamide, and pyridazinone. Exploitation of analogs of these

chemical classes may provide Campylobacter specific drugs that can be applied in both

human and animal medicine.
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INTRODUCTION

Illness associated with Campylobacter, termed
“campylobacteriosis,” is one of the most common forms of
foodborne gastroenteritis in developed countries (Blaser and
Engberg, 2008) and is a greater burden in developing countries
where Campylobacter spp. associated diarrhea and bacteremia
cases are seen in HIV/AIDS patients (Coker et al., 2002;
Scott, 2003). Further, Campylobacter species have recently been
associated with the Inflammatory Bowel Diseases such as Crohn’s
and ulcerative colitis (Kaakoush et al., 2014a,b).

Campylobacter jejuni is a zoonotic pathogen and accounts
for nearly 90% of the total human Campylobacter infections,
while C. coli infections constitute 6% of cases (Friedman
et al., 2004). The illnesses are usually sporadic, although rare
outbreaks have been reported. Ingestion of raw or undercooked
poultry is a major source of human campylobacteriosis; however,
disease can be contracted by drinking unpasteurized milk or
contaminated water (Engberg et al., 1998; Allos, 2001; Blaser
and Engberg, 2008). Clinical signs of infection are typical
of self-limiting foodborne gastroenteritis with fever, vomiting,
headache, diarrhea, and abdominal pain. A small percentage of
cases can lead to fatal complications like reactive arthritis and
Guillain-Barr’e syndrome (Tam et al., 2006; Pope et al., 2007).

Antimicrobial therapy is warranted in severe disease
manifestations and in immune-compromised individuals.
The most commonly used antibiotics are macrolides (e.g.,
erythromycin) and fluoroquinolones (e.g., ciprofloxacin) with
tetracycline used as an alternative choice (Moore et al., 2006;

Blaser and Engberg, 2008). Intravenous use of aminoglycosides is
also recommended in serious cases of Campylobacter infections,
such as bacteremia and systemic infections (Saenz et al.,
2000; Aarestrup and Engberg, 2001). As the use of antibiotics
for therapy and prophylaxis increases in both human and
animal medicine, increasing numbers of Campylobacter isolates
have developed resistance to fluoroquinolones, macrolides,

aminoglycosides, and beta lactam antibiotics (Aarestrup
and Engberg, 2001; Wieczorek and Osek, 2013). Use of
fluoroquinolones in poultry production coincides with the
emergence of ciprofloxacin resistant Campylobacter in humans
(Moore et al., 2006). Recent studies have also suggested that use
of macrolides and fluoroquinolone classes of antibiotics in food
animals may increase the risk of emergence and transmission
of antibiotic resistant C. jejuni in humans (Kashoma et al.,
2015; Klein-Jobstl et al., 2016). Resistance corresponds to active
site mutations in DNA gyrase subunit A as well as mutations
in the cmeABC multidrug efflux pump (Wieczorek and Osek,
2013; Kovac et al., 2015). In addition to spontaneous mutations,
Campylobacter can acquire resistance by horizontal gene
transfer via natural transformation, transduction or conjugation
(Perez-Boto et al., 2014).

As campylobacteriosis is projected to remain one of
the top ten bacterial conditions globally (Coker et al.,
2002), and several antibiotics are no longer effective in

treatment of campylobacteriosis (Wieczorek and Osek, 2013),
a new generation of effective antimicrobials is critically
needed. High-throughput, robust, cost-effective, phenotypic

cell-based screening is one such amenable approach to expedite
anti-campylobacter molecules discovery. The value of using
focused bioactive-enriched libraries compared to large, naïve
library screens has been shown in earlier studies (Inglese and
Hasson, 2011; Wallace et al., 2011). In the current study, we
have screened a pre-selected bioactive small molecule library
of 4182 compounds against highly pathogenic C. jejuni 81-176
strain. Seventy nine candidate compounds were further selected
for secondary screening to evaluate; (i) spectrum of activity on
diverse C. jejuni strains, (ii) activity against commensal/probiotic
bacteria, (iii) Minimum Inhibitory Concentrations (MIC), (iv)
Minimum Bactericidal Concentrations (MBC), (v) ability of
C. jejuni to develop resistance, (vi) cytotoxicity and hemolytic
activity, and (vii) clearance of C. jejuni in vitro. Based on these
studies we report potential 12 lead compounds which provide
chemical scaffolds for Campylobacter-specific antimicrobial
development in the future.

MATERIALS AND METHODS

Small Molecules Library and Bacterial
Strains
In prior work, a library of 81,320 small, drug-like molecules
was obtained from Chembridge (San Diego, CA) and screened
for growth inhibition against diverse prokaryotes and eukaryotic
spp. including human lung cancer cell line to yield a enriched
library with 4182 bioactive compounds (Wallace et al., 2011; Xu
et al., 2015). This library has been made available for purchase
as a pre-selected compound set through Chembridge, Inc. All
these data is available at Wallace et al. (2011). We have also
provided a prioritized list of compounds generated by using our
model in the supplementary website: (http://chemogenomics.
med.utoronto.ca/supplemental/bioactive/index.php).

The bioactive library of 4182 compounds identified in this
prior study was purchased from ChemBridge and dissolved in
100 µL dimethyl sulfoxide (DMSO) at a stock concentration
of 20mM in 96-well plate. Four copies of the library (25
µL of compounds/plate) were prepared and stored at −80◦C
to maximize sample longevity and potency and minimize
the number of freeze/thaw cycles. Bacterial strains, culture
conditions and media used in this study are listed in Table S1.

Primary Screen
A primary screen was conducted using the highly invasive C.
jejuni strain 81–176 originally isolated from a diarrheic patient
(Korlath et al., 1985). The C. jejuni strains were routinely grown
on Mueller-Hinton (MH; Becton Dickinson and Company, MD)
agar under microaerobic conditions (85% N2, 10% CO2, and
5% O2) in a DG250 Microaerophilic Workstation (Microbiology
International, MD) for 18 h, washed with MH broth and adjusted
to a final OD600 of 0.1 in MH broth. One hundred micro liter of
culture was transferred to 96-well plates and 1 µL (200 µM/µL)
of library compounds and controls were added using a pin tool
(Wallace et al., 2011). Growth controls including DMSO (1%
final concentration), kanamycin (50 µg), and chloramphenicol
(20 µg) were added to duplicate wells along with 100 µL un-
inoculated MH broth as sterility control. The final concentration
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was 200 µM for each small molecule. Prior to growth, an
aluminum foil was applied (to avoid drug degradation) and plates
were then incubated at 42◦C, under microaerobic conditions
for 24 h. The end-point OD600 was measured in a Sunrise TM
Tecan plate reader (Tecan Group Ltd. San Jose, CA). We initially
tried to exploit the automatic kinetic OD reader option of the
Sunrise TM Tecan system but were un-successful. Maintenance
of the microaerophilic growth conditions required by C. jejuni
was difficult in the Tecan reader which is ideally suited for aerobic
bacteria. Therefore, we used an end point assay. The quality of
high-throughput screen (HTS) was evaluated by calculating the
Z′-factor as described previously (Zhang et al., 1999). Z′-factor
is defined as 1−((3σp + 3σn)/|µp − µn|)) where “σp” and “σn”
are the standard deviations of the positive (culture+DMSO) and
negative (culture+antibiotics) controls, respectively and “µp”
and “µn” are the means of the positive and negative controls,
respectively. A Z′-factor >0.5 indicates a robust assay (Zhang
et al., 1999).

The percentage of C. jejuni growth inhibition was calculated
as mentioned previously (De La Fuente et al., 2006) using
the following formula: percentage of inhibition = 100 × (OD
negative control–OD test compound)/(OD negative control–
OD positive control). Compounds that inhibited Campylobacter
growth ≥ 99.0% were selected as primary hits. The culture in
wells with ≥ 99% growth inhibition were streaked onto fresh
MH agar, as were the sterility, antibiotic and no compound
control wells. Bacterial growth was measured on the plate after
48 h at 42◦C. Based on the recovery of C. jejuni on MH agar
plates, the compound was classified as either “bacteriostatic” or
“bactericidal.”

Prioritization of Bactericidal Compounds
for Secondary Screens
A structural analysis of the primary screen data set for 478
bactericidal compounds was conducted. The structures of the
compounds in the data set were obtained from online vendors via
Supplier ID search. The structural descriptor strings (SMILES)
were subsequently converted into ChemDraw (PerkinElmer
Inc, Massachusetts, USA) structures using ChemDraw for
Excel. The compounds were exported to ChemDraw as a SD
file using ChemFinder. The ChemFinder analysis resulted in
the rapid identification of compounds containing the same
structural motifs. The ChemDraw files of the bactericidal
hits were manually sorted into structural groups to establish
preliminary structure-activity relationships (SAR). Finally, hits
were prioritized for secondary screens based on their adherence
to Lipinski’s rule of 5 (Lipinski et al., 2001).

Secondary Screens
Seventy nine selected hits were resynthesized from ChemBridge
and were dissolved in DMSO in a 96-well plate at the
final concentration of 20mM. The purpose of secondary
screen included: (1) testing hits for broad Campylobacter
spectrum effect, (2) testing the effect of selected hits on Gram
positive and Gram negative probiotic/commensal bacteria, (3)
determining the minimum inhibitory concentration (MIC),
minimum bactericidal concentration (MBC) of the selected hits

against C. jejuni 81–176, (4) investigating whether C. jejuni
develop resistance to these compounds, (5) evaluating selected
compounds cytotoxicity to human intestinal epithelial cells and
sheep RBCs, and (6) assessing effect on intracellular survival of
C. jejuni 81–176.

Campylobacter Spectrum Effect
We selected 23 diverse C. jejuni strains of different known
genotypes to screen for broad Campylobacter spectrum effect.
The selected 23 C. jejuni isolates were further classified into 5
groups (4 or 5 strains/group) based on their single nucleotide
polymorphism type as previously established (Table S2;
Merchant-Patel et al., 2008). The rationale behind grouping
C. jejuni isolates was to prepare a pooled culture of strains to
screen against all 79 hit compounds, maximizing the throughput
and reducing compound consumption. Briefly, the strains (4
to 5 strains; Table S2) were mixed in equal proportion to an
OD600 of 0.1. One hundred micro liter of the pooled culture was
transferred to each well of a 96 well plate in the presence of 200
µM of small molecule and growth inhibition was assessed as
above.

Screening Against Probiotic/Commensal
Bacteria
The selected compounds were tested for activity against Gram
positive (Bifidobacterium adolescentis, Bifidobacterium longum,
Bifidobacterium lactis, Enterococcus faecalis, Lactobacillus brevis,
Lactobacillus rhamnosus) and Gram negative (Escherichia coli
Nissle 1917) bacteria that were either commonly used probiotics
or commensal bacteria. Briefly, the OD adjusted (OD600 of 0.05)
cultures were treated with 1 µL of compounds (200 µM) and
incubated at specific culture conditions (Table S1). At the end
point, wells showing significantly decreased OD were further
assessed for bactericidal and bacteriostatic effect as described
above.

Minimum Inhibitory Concentration (MIC)
The dose-dependent effect of 35 compounds against the highly
pathogenic C. jejuni 81–176 strain was tested. Compounds
were two-fold serially diluted (200 to 12.5 µM). One hundred
micro liter of the OD600 0.1 adjusted C. jejuni culture was
pipetted in to each well of a 96 well plate, treated with 1 µL of
diluted compound and the plate was incubated at 42◦C under
microaerobic conditions for 24 h. Growth inhibition was assessed
as above.

Potential for C. jejuni Acquisition of
Resistance to the Selected Inhibitory
Compounds
Single step and sequential passage resistance assays were
performed as described previously with a fewmodifications (Ling
et al., 2015; Xu et al., 2015). The top 12 hit compounds were
tested in this experiment. The MIC values for each of these 12
compound as determined in above assay was used for C. jejuni
resistance studies using lethal (5X MIC) and sub-lethal (0.5X
MIC) concentrations.
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Evaluation of Resistance to Compounds Using

Sequential Passage at Sub-Lethal Dose
Overnight grown C. jejuni 81–176 culture was washed and
suspended in MH broth to an OD600 of 0.05 (∼107 CFU). Five
milli liter of the OD adjusted fresh culture was mixed with 0.5X
MIC of the relevant test compound (concentration allowing >

50% growth inhibition). Campylobacter jejuni cultured in 20
µg/mL chloramphenicol, or 50µg/mL kanamycin, or 2%DMSO,
or non-amended MH broth were used as controls. The bacteria
were incubated at 42◦C with shaking at 200 rpm for 24 h in the
dark. Following incubation, cultures were centrifuged at 4700× g
for 10 min at room temperature. The supernatant was discarded;
bacteria were resuspended in 5ml of fresh MH containing 0.5X
MIC of the same small molecule. This procedure was repeated 14
times. Following 15 passages, bacterial suspensions were assessed
for resistance to the test compound by plating on MH media
containing 1X MIC of small molecules.

Evaluation of Resistance to Compounds Using Lethal

Dose
Campylobacter jejuni grown in MH medium overnight at 42◦C
was centrifuged at 4700× g for 10min at room temperature. The
supernatant was discarded and the bacteria were resuspended in
MH broth to an OD600 of 1.0 (∼1 × 109 CFU). Compounds (5X
MIC) were mixed with 5ml of molten MH agar medium and
transferred immediately onto small 35mm petri-plates, agar in
the plate was allowed to solidify in the dark. Ten micro liter of
culture was transferred to the small molecule containing plates
and spread using sterile beads, plates were incubated at 42◦C for
5 days in the dark. Bacteria spread on MH agar with 50 µg/mL
kanamycin or MH agar alone, were used as positive and negative
controls, respectively. After 5 days of incubation, any colonies
that developed were assessed for resistance to the test compounds
by determining MIC and the MBC as noted above.

Cytotoxicity of Top-12 Compounds to
Human Intestinal Epithelial Cells
We evaluated 12 selected compounds for cytotoxicity to Caco-
2 (human colonic carcinoma) cells as described previously (Xu
et al., 2015). The Caco-2 cells were obtained from the American
Type Culture Collection (ATCC Rockville, MD) and maintained
in minimal essential medium (MEM) supplemented with 20%
fetal bovine serum (FBS), 1% non-essential amino acid (NEAA;
Life Technologies, NY) and with 1mM sodium pyruvate at 37◦C
in a humidified 5% CO2 incubator. A 96-well tissue culture plate
was seeded with approximately 1.4 × 105 cells per well and
incubated for 24 h at 37◦C in an incubator until a confluent
monolayer formed. It was necessary to assess the dose dependent
cytotoxicity effect of DMSO as compounds were diluted in
DMSO therefore, we determined the cytotoxic effect of varying
concentrations of the DMSO vehicle control (1, 2, and 5%)
in Caco-2 cells containing 150 µL of media (without FBS)
incubated at 24 h. There was no significant difference among
the varying DMSO concentrations and their cytotoxicity values.
Therefore, we used 1% DMSO in duplicate wells along with other
appropriate controls for cytotoxicity experiment.

It is likely that the compounds can bind to serum proteins
(FBS) present in the media and thus influence the true cytotoxic
effect of the compounds; therefore, we performed the cytotoxicity
assay in absence of FBS. The cytotoxicity assay was performed
according to manufacturer instructions (Pierce TM; Thermo
Scientific, IL) and the percentage of cytotoxicity was calculated
bymeasuring the release of lactate dehydrogenase (LDH) enzyme
from the treated cells. Briefly, ∼1.4 × 105 cells were grown in a
96-well tissue culture plate containing 150µL of growthmedium.
After three washes with medium without supplementation, 1
µL (200 µM) of compound was added to duplicate wells
and incubated for 24 h at 37◦C in a humidified, 5% CO2

incubator. Subsequently, 50 µL of supernatants were collected
for measuring LDH release and the degree of cytotoxicity was
determined according to the manufacturer instructions.

Three independent experiments were conducted in duplicate
samples in each experiment and the average cytotoxicity values
were plotted.

Hemolytic Activity of Top-12 Compounds
to Sheep RBCs
The hemolytic activity of the top-12 compounds were determined
as previously described (Strom et al., 2003; Selin et al., 2015).
Briefly, 500 µL of sheep red blood cells (LAMPIRE Biological
Laboratories, Pipersville, PA) were washed three times in PBS and
resuspended in 5mL of PBS to prepare a working concentration
of 10% RBCs. Two hundred micro liter of the 10% RBCs
suspension was incubated with 200 µM concentrations of
compounds for 1 h at 37◦C in a 96 well plate. After incubation,
the plate was centrifuged (4000 rpm, 5min) and placed on ice
for few min. Supernatants from each well was transferred to a
fresh 96 well plate and OD of 540 nmwasmeasured. The PBS and
0.1% Triton X-100 were used as negative and positive controls,
respectively. A range of 1–10% DMSO was also used as a control.
A percent hemolysis was calculated using the following formula:

% Hemolysis = (OD of compound−OD of DMSO/

OD of Triton-X100)× 100

Two independent experiments in triplicate were performed and
results were expressed as the % average hemolysis.

Effect of Selected Compounds on the
Intracellular Survival of C. jejuni
To test the effect of selected compounds on C. jejuni in vitro
clearance, Caco-2 cells were infected with C. jejuni 81-176 strain
and a 96 well intracellular survival assay was performed as
described previously (Malde et al., 2014; Pina-Mimbela et al.,
2015). Briefly, a mid-log phase C. jejuni 81–176 culture was
pelleted by centrifuging at 9500× g for 10 min and washed three
times with Dulbecco Phosphate Buffer Saline (DPBS, Gibco)
containing 1% (v/v) FBS and adjusted to the desired OD600.
Approximately 1.4 × 105 Caco-2 cells/well were seeded in 100
µL of media containing varying concentration of compounds
into each well of a 96 well plate and subsequently infected with
C. jejuni at multiplicity of infection (MOI) 100 in duplicate
wells. To determine clearance, Caco-2 cells were incubated with
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bacteria for 3 h and treated with gentamicin (150 µg/mL) and
incubated for additional 2 h. Cells were washed three times with
DPBS with no calcium or magnesium and incubated with 1
µL of diluted compounds (200, 100, 50, and 25 µM) for 24 h.
Infected cells were washed twice with MEM, lysed with 0.1%
(v/v) Triton-X 100. Subsequently, 100 µL of an aliquot from
each well was 10-fold serially diluted in MEM and plated on MH
agar in duplicate to determine CFUs. The appropriate controls
included; (i) infected Caco-2 cell treated with kanamycin or
chloramphenicol, (ii) infected Caco-2 cells treated with 1 µL
of 100% Trition-X, (iii) infected Caco-2 treated with 1 µL of
100% DMSO. Two independent experiments were carried with
duplicate treatments in each experiment and the average CFU
value was used to plot the graph.

Statistical Analysis
The in vitro clearance ability and cytotoxicity of compounds
were analyzed using one-way analysis of variance with mean
separation by a least significant difference test at 5% level of
significance in GraphPad Prism version 6 software.

RESULTS

Primary Screen Resulted in 781 Hit
Compounds
A total of 4182 small molecules were examined in the primary
screening against C. jejuni 81-176 for growth inhibition in 96
well plates. During optimization of the screening protocol, we
monitored the OD600 of each well of the 96 well plates every
4 h for 36 h. We determined that incubation for 24 h yielded
maximum number of active hit compounds and that there was
no increase in the number of hit compounds upon extended
incubation. In similar line, a recent study has also described
that the incubation of antimicrobial compounds with different
pathogenic bacterial culture between 18 and 24 h is sufficient
to read the assay plate in HTS (Mishra et al., 2015). All wells
with ≥ 99.0% growth inhibition of Campylobacter (compared

to controls) were considered a “hit” compound and were
further assessed for bacteriostatic and bactericidal properties.
We identified 478 bactericidal compounds and 303 bacteriostatic
compounds at the end of the primary screening (Figures 1A,B).
As the % growth inhibition is directly related with OD of test
compound, the compounds that contributed background OD
(i.e., inherent ability of certain compounds to absorb OD600 nm)
was resulted in negative values for C. jejuni growth inhibition
(Figure 1A). Overall the observed hit rate in our present study
was 18.6% (781/4182) a rate 1.5 times higher than previously
reported for the Gram negative E. coli BW25113 strain (Wallace
et al., 2011).

Prioritization of Bactericidal Compounds
From the 478 bactericidal compounds, several common
structural motifs were identified. For example 66 compounds
contained a piperazine ring as a scaffolding motif. These
compounds could be further subdivided into the structural
classes shown in Figure S1A, suggesting that common
structural features may be found that help to convey anti-
campylobacter activity. Similarly, there were 88 compounds
containing hydrazone-like functionality (a C = N-N moiety).
In many of these compounds, the “hydrazone” was found
in pyrazole rings, many of which display very similar
substitution patterns. Moreover, there were a few common
topological frameworks which seem to appear repeatedly
throughout the hit set, sometimes with very slight modifications
(Figure S1B).

The purpose of this analysis was to identify compounds which
were active against C. jejuni/coli and that may possess novel
mechanisms of action that convey selectivity for these pathogens,
ultimately leading to therapeutically useful antibacterial agents.
Based on the relatively high number of bactericidal compounds
obtained through the primary screening process, these hits
were then filtered using additional criteria to increase the
likelihood of success in subsequent drug development efforts.
In an attempt to select compounds with physicochemical

FIGURE 1 | (A) Primary HTS of compounds for growth inhibition against C. jejuni 81-176 using a pre-selected library of 4182 compounds. A cut off of ≥99.0%

growth inhibition resulted in total of 781 hit compounds. These compounds were categorized based on their activity as shown in (B).
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FIGURE 2 | (A) Seventy nine re-synthesized hit compounds tested against different Campylobacter jejuni and C. coli. (B) Broad spectrum effect of 79 hit compounds

tested against C. jejuni isolates from poultry origin grouped as Gp-1 to Gp-5. (C) Effect of 40 broad spectrum compounds against probiotics/commensals. (D)

Minimum inhibitory concentration (MIC) of 35 selected compounds.

properties most amenable for drug development, compounds
were filtered based on their adherence to: (i) Lipinski’s rule of 5
(Lipinski et al., 2001; a measure of the drug-likeness of chemical
compounds), (ii) meeting the criteria of the Golden triangle
analysis (Johnson et al., 2009), and (iii) lack of obvious reactive
functional groups (Bonting et al., 1999). Although nearly all
of the compounds in this library met the criteria set forth by
Lipinski, active compounds were prioritized based on lower
molecular weights and relative LogD values to find compounds
that would have better clearance and oral absorption properties.
In addition, limiting the MW of compounds to less than 450
encourages later structural optimization of these compounds
without making the compound too large. Additional selection
criteria were also included to narrow the hitset. These methods
included an analysis of structural novelty based on appearances
in the chemical literature using SciFinder Scholar searches,
diversity of structure based on the primary chemical scaffold,
and the ability to rapidly re-functionalize the molecule through

application of existing synthetic methods. Using these criteria,
79 unique compounds with bactericidal activity were prioritized
for additional screening in order to study these agents in greater
detail.

Forty Compounds Exhibit a Campylobacter

Broad Spectrum Effect
Initially we re-confirmed the efficacy of the 79 resynthesized
compounds against C. jejuni 81–176 and C. coli ATCC 33559.
The result indicated that 68 and 51 of the compounds were
bactericidal, while 11 and 12 were bacteriostatic against C.

jejuni and C. coli respectively, (Figure 2A). Interestingly, 16
out of 79 compounds did not possess any effect on growth of
C. coli strain.

To test if the prioritized hits possessed similar bactericidal
effect against other C. jejuni of diverse genotypes, we screened
the 79 compounds against poultry isolates of C. jejuni (Table S2).
The summary of this group screen is described in Figure 2B. In
order to determine the overall Campylobacter spectrum effect,
we considered the small molecules which have bactericidal
properties against all groups of C. jejuni isolates. We identified
40 such compounds having broad spectrum effect against all 23
tested C. jejuni isolates.

Only Five of the 40 Broad Spectrum
Compounds Affected the Growth of
Commensals/Probiotics In vitro
Modern antibiotics have an impact on normal gut microflora
and are also associated with development of antibiotic resistance
(Barbosa and Levy, 2000; Perez-Cobas et al., 2013; Ferrer et al.,
2014). Hence we evaluated the 79 compounds for activity against
commensal and probiotic bacteria. Among the 40 Campylobacter
broad spectrum compounds, only five compounds were found to
possess bactericidal effect against tested probiotics/commensals.
Five compounds inhibited E. coli Nissle 1917. Within these five
compounds, two compounds also inhibited B. adolescentis, while
one inhibited B. longum and another one inhibited B. lactis
(Figure 2C). However, no compound showed any effect against
other commensals/probiotic strains. Therefore, we omitted the
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TABLE 1 | Summary of classes of top 12 small molecule compounds identified as anti-campylobacter agents.

C. jejuni C. coli Resistance In vitro

Compound MICa MBCb MIC MBC Single step Passage Cytotoxicity Hemolysis Concentration

Class number (µM) (µM) (µM) (µM) 5X MIC 0.5X MIC (%) (%) (µM)

Piperazine Comp 5 50 50 50 50 No No 6.5 0 >200

Comp 2 100 100 50 100 No No 6.9 0 >200

Comp 4 50 50 50 100 No No 4.6 0 >200

Comp 3 12.5 25 50 50 No No 11.3 0 >200

Piperidines Comp 18 25 25 200 >200 No No 8.8 0 100

Comp 22 12.5 25 100 100 No No 12.1 0 100

Aryl amines Comp 17 12.5 25 50 50 No No 16.6 0 >200

Comp 10 50 50 100 100 No No 27.8 0 50

Comp 13 12.5 25 50 50 No No 0 0 >200

Comp 12 100 100 50 100 No No 0 0 100

Sulfonamide Comp 1 50 50 50 50 No No 30.3 7.4 200

Pyridazinone Comp 7 12.5 12.5 50 50 No No 28.0 0 25

aMinimum inhibitory concentration.
bMinimum bactericidal concentration.

five compounds with some inhibition of commensal/probiotic
bacteria and used 35 compounds for further analysis.

Several Compounds Possessed MIC as
Low as 12.5 µM
The minimal concentrations of compounds that inhibit the
growth of C. jejuni were tested by two-fold serial dilution of
each of compound in media as well as in DMSO. The results
were reproducible irrespective of diluent used; however, a few
compounds precipitated when media was used as a diluent.
A recent study also described the in-solubility issues with a
few small molecule compounds when dissolved in media for
MIC determination (Selin et al., 2015). Hence in subsequent
replications, we diluted compounds in DMSO to determine
MIC to re-confirm the obtained results (Figure 2D). Of the 35
compounds, 21 compounds had MIC ranging from 100 to 12.5
µM. Among the 21 compounds, 16 were effective at 50 µM,
7 were effective at 25 µM, and 4 were effective at 12.5 µM.
We selected top-12 bactericidal compounds with MICs varying
from 100 to 12.5 µM concentration for further downstream
study.

Six Compounds Possessed MBC of ≤ 50
µM Against Both C. jejuni and C. Coli

Strains
Minimum inhibitory concentration value not necessarily
indicates the killing concentration; therefore, we determined
MBC for the top-12 compounds. MBC is defined as the
concentration at which 99.9% (below detection limit) of
Campylobacter organisms are killed. The MBC for each of
these compounds were determined as described previously
(Ling et al., 2015). The MBC of 8 compounds (Comp 1, 2, 4,
5, 7, 10, 12, and 18) for C. jejuni were same as that of their
MIC values; while, 4 compounds (Comp 3, 13, 17, and 22) had

two-fold higher MBC than the their MIC. Similarly for C. coli,
8 compounds (Comp 1, 3, 5, 7, 10, 13, 17, and 22) had MBC
value same as that of their MIC value; while, 4 compounds
(Comp 2, 4, 12, and 18) had two-fold higher than the their
MIC. Overall MIC and MBC values were higher for C. coli
compared to C. jejuni strain. The MIC and MBC for these
12 compounds for both C. jejuni and C. coli are presented
in (Table 1).

The Discovered Top 12 Small Molecules
are Less Likely to Induce Resistance in C.

jejuni
Our rationale for performing the resistance studies was to
determine the ability of C. jejuni strain to develop resistance
to these compounds when cultured on solid media with a
lethal dose (5X MIC) or in liquid media with a sub-lethal
dose (0.5X MIC). The presence of resistant colonies in any
of these assays would reduce the attractiveness of the relevant
small molecule while an absence of resistant colonies would
indicate a likely inability of C. jejuni to develop resistance
in general. After incubation on solid media amended with
a 5X MIC dose of the target compound for 5 days, no
resistant C. jejuni colonies were observed for any of the 12
compounds tested (Table 1; Figures S2A,B). Following C. jejuni
incubation at sub-lethal doses (0.5X MIC) in liquid media
during 15 passages, identical MICs and MBCs were observed
for bacteria that grew at the sub-lethal concentration of small
molecules (Table 1). This suggests that C. jejuni is less likely
to develop resistance to these 12 novel compounds under the
tested conditions. Since C. jejuni is the major cause of human
campylobacteriosis (95% of the cases); (Butzler, 2004) and due
to limitation of compounds availability, we only performed
resistance studies on C. jejuni 81–176. However, for future
commercial application of these antimicrobials, more in-depth
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characterization of potential resistance by other C. jejuni strains
and C. coli is warranted.

Top 12 Compounds had Least Hemolytic
Activity but Possessed Varying Cytotoxicity
Effect
To avoid the problem of general toxicity to host cells, we
determined the cytotoxicity of the 12 prioritized compounds
using an established cell culture system (Caco-2 cell line) and
sheep RBCs. All of the compounds had a 30% or less cytotoxicity
value (Figure 3). Five compounds, (compounds 2, 4, 5, 12, and
13) possessed cytotoxicity value ≤ 10%; of which compound
12 and 13 were least cytotoxic at tested concentration. The
cytotoxicity of the compounds was categorized as low, medium,
and high (Table S3). Further consistent with cytotoxicity results,
except compound 1 (7.4% hemolysis), which also possessed
highest cytotoxicity, none of the compounds exhibited hemolytic
activity (Table 1).

All Selected 12 Compounds are Effective In

vitro Clearance of C. jejuni
Based on the literature, it is believed that the ability of C. jejuni
to enter cells of epithelial origin and elicit its cytotoxic effect
may reflect an important part of Campylobacter pathogenesis

FIGURE 3 | Percentage cytotoxicity and hemolysis of 12 selected hits.

(A) Cytotoxicity was assessed using Caco-2 cells exposed to 1 µL of

compound (200 µM) for 24 h. (B) The percentage hemolysis was determined

by using fresh heparinized sheep blood RBCs incubated with 1 µL of

compound (200 µM) for 1 h. All compounds showed significantly less

cytotoxicity (P ≤ 0.001) compared to positive control.

in humans (Konkel et al., 1992). Hence Caco-2 cells infected
with highly pathogenic C. jejuni 81–176 strain were used to
determine the intracellular clearance ability of selected lead
compounds. With one exception, compound 13, most of the
compounds cleared intracellular C. jejuni (Figure 4). Even
though, compound 13 possessed MIC value of 12.5 µM against
C. jejuni, it lacked in vitro effect. It is possible that this
compound is unable to cross cell membrane barrier to induce
its effect on C. jejuni, as also seen with gentamicin or may be
degraded rapidly inside the host cell. At 50 µM concentrations,
9 of the compounds were significantly (P ≤ 0.001, P ≤ 0.05)
effective in reducing 1 log or higher intracellular Campylobacter
load, however compound 7 and 10 completely reduced the
Campylobacter load below detection limit (≤10 bacteria/mL).
On the other hand at 25 µM concentrations 8 compounds were
effective in reducing 1 log or higher intracellular Campylobacter
load. Surprisingly, compound 7 even at eight-fold dilution (25
µM) did retain its complete intracellular Campylobacter clearing
ability. This suggests that some of the top-12 selected compounds
could be directly exploited as a potential lead compounds for
the control of Campylobacter in food animals and/or humans.
In addition, these compounds and their derivatives can be used
to increase the efficacy of conventional antibiotics for which C.
jejuni is resistant to as demonstrated recently by use of phenolic
compounds (Oh and Jeon, 2015).

Structural Analysis of the Top 12 Lead
Compounds
The final 12 identified compounds belonged to five chemical
classes; piperazines, piperidines, aryl amines, sulfonamide, and
pyridazinone (Figure 5). The compounds in the piperazine class
displayed lower cytotoxicity and lower MIC values compared
to those in the aryl amines class. Although the compounds in
the piperidines class had lower MICs values compared to those
in the piperazine class, they had little higher cytotoxicity to
Caco-2 cells. Overall, the compounds in the sulfonamide and
pyridazinone classes displayed significantly higher cytotoxicity
value compared to the other three classes. A comprehensive
summary of the chemical class of the compounds with their MIC,
MBC, resistance data, cytotoxicity and hemolysis, and in vitro
clearance ability are provided in Table 1.

DISCUSSION

In the current study, we report on the results of an HTS-
growth inhibition screen to identify novel anti-campylobacter
compounds. We identified 12 novel small molecules with a
suitable range of characteristics (see Figure 6). The initial goal
of our project was to exploit the pre-selected library to identify
hits that completely inhibit the growth of Campylobacter. The
HTS screening platform has proven useful in discovery of small
molecule candidates that inhibit bacterial growth in whole cell
based or target specific assays (Hong-Geller, 2013). Previously
in a similar study, it was found that small molecules for
antimicrobial activity can be discovered by assessing % of growth
inhibition in a 96 well format in E. coli and P. aeruginosa (De La
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FIGURE 4 | Intracellular clearance of C. jejuni by lead 12 compounds assessed at various concentrations (200, 100, 50, 25 µM) using Caco2 cells

infected with highly pathogenic C. jejuni 81–176 strain. Effect of each compound on C. jejuni clearance was compared to DMSO treated control. All compounds

except compound 13, significantly (** P ≤ 0.001, * P ≤ 0.05) cleared intracellular C. jejuni at 200µM (A) and 100µM (B) concentrations. Except compound 4, all other

compounds significantly cleared intracellular C. jejuni at 50µM (C) concentrations. Except compounds 10 and 14, other compounds significantly cleared intracellular

C. jejuni at 25µM (D) concentrations.

FIGURE 5 | Chemical structures of the top 12 potent small molecules inhibitory to C. jejuni identified in this study.
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FIGURE 6 | Wheel diagram showing the summary of number of

compounds filtered at each step of primary and secondary screening

to discover top-12 anti-Campylobacter small molecule compounds.

Fuente et al., 2006) It was found that HTS method is robust to
screen small molecules and it relies on the classical correlation
between bacterial growth and turbidity (De La Fuente et al.,
2006). The compounds producing > 60% of turbidity inhibition
was selected as a hit in primary screening and was re-verified
at tested concentration for growth inhibition. In the prior study
(De La Fuente et al., 2006), which used compounds at 12.5 µM,
the hit rate was 0.024% for E. coli and 0.005% for P. aeruginosa.
However, in the current study, the hit rate by assaying complete
Campylobacter growth inhibition at 12.5 µM was 0.096% of
the 79 selected compounds which was approximately four-fold
higher than reported previously for E. coli (Butzler, 2004). In the
current and the prior studies (De La Fuente et al., 2006; Wallace
et al., 2011), the cell-based HTS completely depends on bacterial
growth inhibition and hence, may not be able to select a hit that
target virulence genes without influencing the growth. It is likely
that the most of the antibiotics with bactericidal activity and that
lack ability to induce resistance have non-specific mode of action
(Ling et al., 2015). However, in the present study, the discovered
top 12 compounds were bactericidal to Campylobacter isolates
and no resistance development was observed (Figure 2; Table 1).
In a recent study it was shown that a newly discovered soil
origin antibiotic, though showing bactericidal action against
Staphylococcus aureus, did not induce resistance and that
the mode of action of the novel antibiotic included specific
inhibition of peptidoglycan biosynthesis (Ling et al., 2015).
Further studies are needed to understand the mode of action for
the 12 anti-Campylobacter compounds discovered in the current
study.

Much of the focus for discovery of novel therapeutic agents
is centered on the need for agents that have a shorter treatment
length with no obvious side effects and which are unlikely
to induce resistance in the pathogen. The piperazine class of

compounds meet these critical characters (Patel and Park,
2013) and were amongst the anti-Campylobacter compounds
found in the current study. Piperazine derivatives have been
extensively associated with numerous biological functions
like antibacterial, anti-mycobacterial, antifungal, anticancer,
anti-HIV, antipsychotic, anticonvulsant, antimalarial, and
antioxidant (Patel and Park, 2013). Further it was observed that
varying substitution of free nitrogen atom of piperazine ring
leads to enhanced biological significance of the generated
molecules (Patel and Park, 2013). Substituents may be
either aliphatic, aromatic or heteroaromatic compounds.
For examples, piperazine rings bearing thiazoloquinolines
and thiazolocoumarins compounds have been shown to be
significantly active against Gram-positive (S. aureus and Bacillus
cereus), Gram-negative (E. coli, P. aeruginosa and Klebsiella
pneumoniae) and fungal species (Aspergillus niger and Candida
albicans) at MICs between 12.5 and 50 µg/mL (Patel and Park,
2013). Therefore, in our future studies, we will generate synthetic
derivatives of key compounds by substituting side chains
with aliphatic or aromatic compounds and test their efficacy
against C. jejuni and other relevant Gram negative food borne
pathogens.

In the current study, we also identified other four chemical
classes of compounds that have varying potency (MICs) and
toxic effects. For example, the piperidine and aryl amine
chemical classes showed a relatively higher toxic effect compared
to the piperazine derivatives. However, the piperidine class
compounds had lower MICs value than the other two classes.
Sulfonamide and pyridazinone classes had both lower MICs
and but possessed higher cytotoxicity values. Surprisingly, the
pyridazinone class derivatives had MIC ≤ 12.5 µM. Further, this
class has exhibited an ability to clear C. jejuni in vitro at all the
tested concentrations (≤25 µM). Like the piperazine derivatives,
the pyridazinone derivatives also showed a wide spectrum of
biological activities (Ibrahim et al., 2013). In summary, we have
identified 12 potential lead compounds (see Figures 5, 6) that
are active against C. jejuni and future work on; increasing
the efficiency of the compounds by downstream modification,
target identification, and biologically active functional groups
identification, must be explored.
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Figure S1 | (A) An example of a common structural motif found in the

Campylobacter (bactericidal) hit set. (B) A topogical framework repeated in several

hits.

Figure S2 | Evaluation of ability of C. jejuni to develop resistance to

selected top-12 compounds: (A) Single step spontaneous resistance study,

where “No culture” refers to MH plate without Campylobacter culture. (B)

Sequential passage study, where “DMSO” refers to MH plate containing 1%

DMSO + Campylobacter culture. In both study “negative hit” refers to X

compound that did not inhibit the growth of Campylobacter. Assays were

performed using two replicates.

Table S1 | List of bacterial strains, media and culture conditions used in

the study.

Table S2 | Classification of poultry C. jejuni isolates based on their

prevalence and SNP type.

Table S3 | Classification of 12 lead compounds based on their cytotoxicity.
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