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The diverse pneumococcal diseases are associated with different pneumococcal

lineages, or clonal complexes. Nevertheless, intra-clonal genomic variability, which

influences pathogenicity, has been reported for surface virulence factors. These factors

constitute the communication interface between the pathogen and its host and their

corresponding genes are subjected to strong selective pressures affecting functionality

and immunogenicity. First, the presence and allelic dispersion of 97 outer protein

families were screened in 19 complete pneumococcal genomes. Seventeen families

were deemed variable and were then examined in 216 draft genomes. This procedure

allowed the generation of binary vectors with 17 positions and the classification of strains

into surfotypes. They represent the outer protein subsets with the highest inter-strain

discriminative power. A total of 116 non-redundant surfotypes were identified. Those

sharing a critical number of common protein features were hierarchically clustered into

18 surfogroups. Most clonal complexes with comparable epidemiological characteristics

belonged to the same or similar surfogroups. However, the very large CC156 clonal

complex was dispersed over several surfogroups. In order to establish a relationship

between surfogroup and pathogenicity, the surfotypes of 95 clinical isolates with different

serogroup/serotype combinations were analyzed. We found a significant correlation

between surfogroup and type of pathogenic behavior (primary invasive, opportunistic

invasive, and non-invasive). We conclude that the virulent behavior of S. pneumoniae is

related to the activity of collections of, rather than individual, surface virulence factors.

Since surfotypes evolve faster than MLSTs and directly reflect virulence potential, this

novel typing protocol is appropriate for the identification of emerging clones.

Keywords: diagnosis, emergent clones, genomics, surface proteins, virulence factors

INTRODUCTION

Streptococcus pneumoniae, the pneumococcus, is a prevalent member of the commensal flora
of the nasopharynx. This bacterium can turn into a versatile pathogen with the ability to
successfully colonize many environments inside the host (Bogaert et al., 2004). Pneumococcus
is a major etiological agent of pneumonia, meningitis, sepsis, and otitis media. The chance
of suffering a pneumococcal infection is dependent on the age group, lifestyle, and patient

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://dx.doi.org/10.3389/fmicb.2016.00420
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2016.00420&domain=pdf&date_stamp=2016-03-31
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:mgaliano@isciii.es
http://dx.doi.org/10.3389/fmicb.2016.00420
http://journal.frontiersin.org/article/10.3389/fmicb.2016.00420/abstract
http://loop.frontiersin.org/people/299631/overview
http://loop.frontiersin.org/people/293543/overview


Domenech et al. Streptococcus pneumoniae Surfotyping

co-morbidities. Different types of disease, symptom severity,
and antimicrobial resistance rates associate epidemiologically to
different pneumococcal lineages. Thus, a rational classification
of isolates would improve patient management. Up to 96
serotypes have been classified according to the immunogenic
properties of the polysaccharide capsule. The capsule is an
important virulence factor that prevents complement-mediated
phagocytosis. However, isolates that have switched their serotype
by capsule gene exchange are favored under the selective pressure
exerted by the serotype-based vaccines (Brueggemann et al.,
2007).

Multilocus Sequence Typing (MLST; Maiden et al., 1998) is
a typing method which provides a simplified view of genotypes.
It is based on the allelic profiles of seven housekeeping gene
fragments (aroE, gdh, gki, recP, spi, xpt, and ddl), which render
sequence types (ST) grouped into clonal complexes (CC). For
instance, ST180 and ST181 share all but one allele. Then, ST181 is
a single locus variant of ST180. Both STs are grouped into clonal
complex CC180, considering ST180 as the founder. However,
intra-clonal variability associated with clinical behavior, e.g.,
local outbreaks, does exist (Silva et al., 2006; Moschioni et al.,
2013). Subclones can emerge either from point mutations,
deletions/duplications of key genes, or prophage integrations.
However, the major source of evolution in S. pneumoniae
is genetic recombination, a process facilitated by the natural
competence of this bacterium. Recently, the massive sequencing
of complete genomes has allowed the analysis of recent variations
in alternative genes or genomic accessory regions (Donkor et al.,
2012; Browall et al., 2013), which were not detectable by MLST
or serotyping. These intra-clonal polymorphisms commonly
occur on surface proteins (Croucher et al., 2011; Browall et al.,
2013), which constitute the communication interface between
pathogen and host. Many of these proteins play a role in virulence
(Bergmann and Hammerschmidt, 2006). They typically have
modular architectures: a universal cell-wall anchoring domain
fused to an outer region that determines functional specificity.
This outer region can diverge from strain to strain. This sequence
divergence dictates surface protein activity and immunogenicity
(Gravekamp et al., 1997). Moreover, “Non-Classical Surface
Proteins” (NCSP) have also been reported, such as central
metabolism enzymes that exert moonlighting activities when
located in the cell wall (Bergmann et al., 2001).

Since isolates that have the same MLST may convey different
surface proteins that affect pathogenicity, a new postgenomic
typing system is required. In this study, we have developed such
a system, termed surfotyping.

MATERIALS AND METHODS

Family Selection
The 19 genomes that were analyzed were selected among the
25 complete closed sequences stored at the NCBI FTP site
(status: Jan/2014; Supplementary File S1). Surface proteins were
identified using profiles and the Pfam domain search function
applying gathering thresholds (Finn et al., 2014): choline-binding
proteins (CBPs) using PF01473 and LPxTG-anchor proteins
using PF00746. Lipoproteins were predicted with PRED-LIPO

(Bagos et al., 2008). NCSPs were obtained from two literature
reviews (Bergmann and Hammerschmidt, 2006; Pérez-Dorado
et al., 2012).

Computational Surfotype and MLST
Assignation
Surface proteins were identified in draft proteomes by BLAST
using representative protein sequences (Supplementary File S2).
BLASTwas used using thresholds selected from the gold standard
of 19 genomes. The combination of identity and BLAST score
thresholds (Supplementary File S3) were established in the
average point between lowest bona fide hits and the highest
non-specific hits. Using the existence or absence of BLAST
hits, surfotypes were derived as Boolean vectors. A BLAST p-
value < 0.001 was required in all cases. Draft genomes were
typed by MLST using BLAST. Query sequences used were those
of the alleles present in the MLST web page (http://pubmlst.
org/spneumoniae/). Assignment of an allele required a 100%
identity over 100% length of the sequence. Subsequent ST and
CC assignment was carried out using the information available
in the same web page. Draft proteomes were downloaded from
the public NCBI ftp site, ftp://ftp.ncbi.nlm.nih.gov/genomes/
Bacteria_DRAFT/ (Status 15/09/2014; Supplementary File S4).

Surfotype Clustering into Surfogroups
The Inter-Surfomic distance (ISD) parameter between two
surfotypes (v and w) was defined as:

ISD(v,w) =
−100

Log10
17
∏

i=1
Ffeat

where i stands for protein family index and Ffeat stands for
the global frequency of the feature (either presence/absence or
full/truncated allele) in the dataset of 19 reference genomes if
v and w features matched or a value of 1 if they mismatch.
Surfotypes were hierarchically clustered by their ISDs using the
ward method of the hclust procedure available in the fast cluster
package (Müllner, 2013) of the R-project.

Cluster feature consistency was calculated for every protein as
the percentage of cases that match the most prominent feature
in the surfogroup, considering the one with the lowest general
frequency in case of a tie. Given that protein features have
different occurrence, a normalized consistency (NC) for every
protein was applied:

NC =

Tj
∑

j=1

(

n
v

)

× Fnj

Tj

where j stands for the cluster index, Tj for the total number of
clusters, n for the total number of surfotypes considered, v for
the number of features per protein (v = 2 in this work) and
Fnj for the natural frequency for the most prominent feature in
the cluster j. Theoretically, NC may range from 50% (all features
are equally represented in all clusters) to 100% (just one kind of
feature is represented in every cluster).
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Experimental Surfotype Assignation by
PCR
The 17 genes were screened by PCR in 95 isolates collected
from patient attended between 2009 and 2011 at the Hospital
Universitari de Bellvitge. These 95 isolates were selected as
representatives of the different genotype-serotype combinations.
MSLT and serotypes were obtained retrospectively from frozen
stocks of the isolates. Data was routinely obtained as part
of the hospital daily practice. To estimate the relationship
between surfogroup and epidemiological data, we assumed that
all isolates of each serotype-genotype combination share the
same surfogroup. We only considered the 27 cases in which ≥4
clinical records were available for isolates with the same SG-ST
combination. Invasive rates and average patient age of clonal
complexes were calculated from 610 clinical isolates collected
from non-invasive (acute exacerbation of COPD n = 131, and
non-bacteriemic pneumoniae n = 167) and invasive (n = 334)
pneumococcal disease. Oligonucleotide sequences were acquired
from the literature when dedicated papers for the family were
available. Otherwise, they were designed for optimal selectivity
using the reference genomes on gene regions identical in all
family members. PCR conditions and oligonucleotides utilized in
this work are listed in Supplementary File S5. Surfotype profiles
were assigned to the pre-existing surfogroup with the most
significant p-value (when <0.05). The p-value was calculated as
the product of the probabilities of the matching features between
the profile and the surfogroup signature. Unassigned profiles
likewise were screened to the surfotype library, but applying a
p-value threshold of 0.01. The classification performance of all
cases (n) was quantified through several estimators using true
positives (TP), true negatives (TN), false positives (FP), and false
negatives (FN). Accuracy was defined as (TP+ TN)/n; sensitivity
as TP/(TP + FN); specificity as TN/(TN + FP); and precision as
TP/(TP+ FP).

RESULTS

Selection of Variable Protein Families
Surface proteins showing the highest variability were identified
using a gold standard of 19 complete genomes with different
surfogroup-sequence type (SG-ST) combinations (Figure 1A).
Despite only 11 out of the 96 pneumococcal serotypes are
included in these reference genomes, these serotypes are
associated to a vast majority of clinical cases. In addition,
they carry the virulence factors described in the literature at
molecular and clinical detail (Bergmann and Hammerschmidt,
2006; Pérez-Dorado et al., 2012). Proteins considered for
further analysis were those containing either a choline-binding
domain; the LPxTG domain; the lipoprotein “lipobox” motif;
or being reported as NCSP. The 1599 sequences found in the
19 genomes belonged to 97 homolog families (Supplementary
File S6). Up to 75 families were present in most reference
strains (≥16) and their homologs shared a high identity
(≥85%) over most of the sequence alignment (≥85%). These
families were considered invariable and were discarded from
the analysis (Figures 1B,C). The remaining 22 families showed

five kinds of disparity: presence versus absence; full versus
truncated versions; continuum of number of repeated motifs;
high sequence divergence; and domain mosaicism. Five protein
families were further rejected. PavB was rejected because the
actual number of repeats can be changed due to genome
misassembling (Jensch et al., 2010). CbpA, Iga1, and PspA
were rejected because their large sequence divergence or
mosaicism (Hollingshead et al., 2000; Iannelli et al., 2002;
Bek-Thomsen et al., 2012) prevented the direct comparison
between variants. Lrp was rejected because was present in
just two strains. Finally, 17 families were chosen for typing
(Table 1): 15 with a pattern of presence/absence and 2 with
a pattern of full/truncation. Many of these proteins are well-
documented virulence factors and show particular Pfam domain
combinations.

Construction of Surfotypes and Clustering
into Surfogroups
Binary patterns for the set of 17 protein families, denoting
their presence/absence or full/truncated versions, may reflect
the virulent capacity of clones. Representative protein sequences
of every family were used to generate a library. The family
members from TIGR4 and R6 strains were preferentially chosen
since these isolates have been extensively used to study the
molecular virulence of pneumococcus. This library was used
to perform a BLAST screening on 216 draft proteomes, which
covered 110 known STs (and 21 new) grouped into 31 CCs
(plus 19 singletons). A total of unique 116 combinations, called
surfotypes, were detected.

The convergence between surfotypes was quantified by the
ISD (see Section Materials and Methods), a parameter that
also considers the relative occurrence, in the dataset, of each
protein feature. An ISD matrix between all unique surfotypes
was calculated and then subjected to hierarchical clustering. The
resulting clades were validated at progressive levels of granularity,
from 1 to 40 clusters, calculating feature NC and clonal complex
homogeneity at every level (Figure S1). This allows assessing the
similarity between surfotype members.

The quality estimators reached an asymptote with 18 clusters,
i.e., 87.5 and 67.6% for intracluster NC andMLST clonal complex
homogeneity, respectively. From this point, a lower number of
clusters caused spurious isolate cross-classification whereas a
higher number results in excessive data partitioning without a
substantial increment of cluster purity. Thesemeaningful clusters
were termed “surfogroups,” whose members shared a minimal
common set of protein attributes that were termed “signatures”
(Figure 2). The resultant surfogroups were dominated by clonal
complexes whose pathogenic behavior is documented in the
literature (Supplementary File S7). We utilized the fact that
all surfogroups were dominated by a CC. Only if published
data concerning the representative CC were scarce or inexistent,
virulence was supported by data from its commonest serotype
or data from secondary (less abundant) CCs in the surfogroup.
Primary invasive were those showing high invasive rates (CC217
and CC306 of serotype 1, 6, and CC191 of serotype 7F) or
extreme rates or mortality (CC180 of serotype 3) in young adults.
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FIGURE 1 | Selection of surface proteins showing inter-strain variability. (A) Procedure flowchart used to detect variable proteins. (B) Occurrence distribution

of protein families according to surface anchor. (C) Identity and alignment length averages of families with an occurrence>80% in the reference genomes. The dashed

lines split protein families not selected as a consequence of low variability.

Opportunistic invasive show higher carriage rates, although
are still invasive in an age/comorbidity dependent manner.
This is typical of CCs linked to 19A and 19F serotypes.
Finally, non-invasive can cause non-invasive infection (described
above) and/or show high carriage rates (CC81 linked to 23F
serotype).

These reported epidemiological data are congruent with the
hierarchical tree: seven surfogroups were ascribed to primary
invasive (highly invasive in healthy population) isolates, seven
were ascribed to opportunistic invasive pneumococcal disease
(invasive potential in elderly patients and/or with co-morbidities)
and 4 were correlated with non-invasive types of the disease.

Correlation between Surfotyping and MLST
Up to 88 and 96% of isolates with the same ST shared the
same surfotype or surfogroup, respectively. The clonal complexes
had a more dispersed pattern since only 62 and 84% of strains
with the same CC were classified into the same surfotype and
surfogroup, respectively (Figure S2A). To obtain further insight
into this intra-clonal discrepancy, the analysis was selectively
performed on the five most prominent STs (≥5 strains) and
CCs (≥10 strains). These STs were variable at the level of the
preferred surfotype (37–86%), but essentially belonged to the
same surfogroup (Figure S2B). All these CCs contained 5–
7 surfotypes from 1 to 2 surfogroups (Figure S2C), with the
exception of CC156, which dispersed into 17 surfotypes and 6
surfogroups.

Surfotyping of Clinical Isolates
The 17 genetic features were screened by PCR in 95
isolates showing different genotype-serotype combinations
(Supplementary File S8). All the isolates but one (98.9%) were
reliably assigned to a surfogroup. To correlate surfogroup and
epidemiological data, clinical reports recorded were utilized (See
Section Materials and Methods; Figure 3A). The rate of primary
invasive predictions was higher for those isolates that were,
in fact, invasive (as defined as the ratio of invasive samples
in the ST-SG combination) ≥0.75 and patient age ≤68 years.
Opportunistic invasive predictions mainly appeared in the area
of the graph covering an invasiveness score of 0.32–0.75 and an
invasiveness score of>0.75 combined with patient age>68 years.
Finally, non-invasive predictions correlate with isolates with an
invasiveness score of <0.32. Using these clinical boundaries,
surfogrouping predicted correctly 20 out of 27 tested ST-SG
combinations (precision = 74.1%, p-value = 0.006 Fisher’s exact
test; Figure 3B).

DISCUSSION

In this study, we have developed a strategy for formally
classifying S. pneumoniae using the binary patterns of 17
highly discriminatory outer proteins (Figure 4). This allows for
addressing the following issues: (1) to what extent outer protein
profiles correlate to the invasive potential of pneumococcal
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TABLE 1 | List of selected surface proteins.

Symbola TIGR4b Description Pfam architecturec

CbpF (CBP) SP0391 Choline binding protein F [CB]6

CbpG (CBP) SP0390 Choline binding protein G Tripsin-[CB]3

CbpI (CBP) SP0069 Choline binding protein I [CB]6

CbpJ (CBP) SP0378 Choline binding protein J [CB]8

CbpL(CBP) SP0667 Choline binding protein L Excalibur-[CB]7-Lipoprotein_Ltp

DiiA (GPA) SP1992 Dimorphic invasion-involved protein A [B02864]1-2-DUF1542-LPxTG

NanC (NC) SP1326 Neuraminidase C Sialidase-BNR-BNR_2

NanE (LPP) SP1330 N-acetylmannosamine-6-P epimerase NanE

PclA (GPA) NF Collagen-like surface-anchored protein YSIRK-G5-[Collagen]6

PhtA (NC) SP1175 Pneumococcal histidine triad protein A [Strep_His_triad]2-B01076-Strep_His_triad

PspC2 (GPA) NF Pneumococcal surface protein C <YSIRK>-RICH-<B16622>-<B9758}>-<[B503]1-2>-LPxTG

PsrP (GPA) SP1772 Pneumococcal serine-rich [B214]10-LPxTG

RrgB (GPA) SP0463 Ancillary pilus subunit B Cna_B-LPxTG

SP_1796(LPP) SP1796 Unknown substrate ABC transporter SBP_bac_1

SrtD (LPP) SP0468 Sortase D Sortase

ZmpC (GPA) SP0071 Zinc metalloproteinase YSIRK-B134-B5460-B1438-G5-Peptidase_M26_N-B1656 Peptidase_M26_C

ZmpD (GPA) NF Zinc metalloproteinase B5200-LPxTG-G5

aProtein class. CBP, Choline-binding protein; GPA, Gram-positive anchor (LPxTG motif-containing) protein; LPP, lipoprotein; NC, Non-classical surface protein.
bNF, not found in TIGR4 strain.
cPfamA and PfamB (those starting by “B”) domains are in sequential order. Accessory domains are in angle brackets. Repeated motifs are in square brackets together with the observed

number of repeats. CB, Choline-binding motif. LPxTG, Gram-positive anchor containing the “LPxTG” sortase motif. Pfam domains with the lowest E-values were prioritized. PfamB

domains (Eval < 0.01) were also considered only if overlapped <50% in length with more significant domains.

clones and, consequently, the potential diagnostic applications
of surfotypes; and (2) the relationship between the evolution of
the surface proteome and the MLST genes. Despite what other
similar studies have been reported (Dagerhamn et al., 2008; Desa
et al., 2008; Imai et al., 2011; Browall et al., 2013), our approach
is more comprehensive in terms of strain disparity, is focused on
accessory surface proteins, and applies new statistical strategies.
Surfotyping relies on profiles acquired via PCR screening or
genomic sequencing, techniques which may lead to misleading
results. Oligonucleotides may not anneal with sufficient affinity
to template DNA in the case of a mismatch. Likewise, ORFs
targeted in draft genomes might be interrupted by the contig
limits and remain spuriously undetected. Nevertheless, these
two methodologies complemented each other reasonably well.
As illustrative examples, SG1-ST306 isolates, which cause
invasive disease in young adults without prior colonization
of the nasopharynx, were assigned to the primary invasive
surfogroup Sfg06. 15A-ST63 clones, which typically cause acute
exacerbations in COPD patients (Domenech et al., 2014),
were classified as non-invasive Sfg10. The most remarkable
exception was SG3-ST180, which was predicted to be an
invasive opportunistic isolate after surfotyping despite being
in a non-invasive position. This may be a consequence of
the especially thick capsule of type 3, which would affect
the activity of some protein determinants and therefore cause
misclassification.

Despite the fact that SG-ST combinations are associated
with different capacities to colonize human body niches and
distinct patient types, current studies have failed to attribute
virulent behavior to a single gene (Manso et al., 2014).

Moreover, the contribution of a given gene to virulence seems
dependent on other genome regions (Thomas et al., 2011).
This is probably because the factors necessary for virulence are
relatively redundant (Blomberg et al., 2009). There is evidence
to support the idea that pneumococcal virulence is network-
based and, therefore, a matter to be understood through the
lens of systems biology, as proposed for Staphylococcus aureus
(Sanchez et al., 2011). These pathofunctional networks may
operate by following an orchestrated spatiotemporal pattern
that eventually leads to a given clinical outcome. However,
inferring explicit relationships between these proteins and
disease is far from trivial considering that some of them play
unknown or several roles. For instance, CbpG is not only
involved in adherence to epithelium, but also in the cleavage
of extracellular matrix (Mann et al., 2006). The non-invasive
Sfg10 signature contains the sialic acid epimerase NanE, the
putative Zn-scavenger PhtA (Rioux et al., 2011), and ZmpC,
which prevents the influx of neutrophils (Surewaard et al.,
2013). These three functions combined may favor long-term
mucosae disease patterns and be selected for in isolates causing
non-bacteriemic pneumonia and COPD acute exacerbations.
The RrgA and StrD proteins, which are involved in the
constitution and location of the adhesive pilus, are present
in the opportunistic invasive surfogroups Sfg11, Sfg12, and
Sfg15. This observation suggests that many of the discriminatory
proteins selected in this work may be involved in long-term
persistence and asymptomatic colonization. These processes
have to be maintained until the infection is favored by
particular host conditions. In this light, Sfg02, Sfg03, and Sfg04
surfogroups harbor the lowest number of surface proteins in
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FIGURE 2 | Hierarchical clustering of surfotypes and correlation to clinical behavior. Surfogroup signature cells: dark gray (presence/full feature match

homogeneity >60%); white (absence/truncated feature match homogeneity >60%); dashed (match homogeneity<60%). The surfogroup clades are labeled with the

most abundant clonal complex together with pathogenic tendency: primary invasive (red circles), opportunistic invasive (blue squares), and non-invasive (yellow

triangles). Minority clonal complexes are listed in smaller font size below. Specific protein families responsible from branching (>80% surfotypes in a branch, <20%

surfotypes in the other) are labeled in the tree.

the dataset, even though they are related to a primary invasive
phenotype. Isolates belonging to these surfogroups have short
colonization periods, and therefore would require less adhesive
factors.

A relevant factor that could interfere to surfotyping is the
introduction of pneumococcal conjugate vaccines. Some degree
of co-evolution between the gene pools encoding the capsule
and the accessory surfome could be expected, which together
may largely determine the pathogenic behavior of a given

pneumococcal lineage. In this light, the detection of surfogroups
in capsular types in which they were not previously reported may
be synonym of potential emergent clone generated by capsule
switching and should be tracked.

MLST and surfotyping methods are conceptually different
(Table 2). MLST genes evolve at a slow pace, making them
appropriate for reconstructing the phylogeny of the species.
MLST is based on the analysis of SNPs, which should
not have a noticeable influence on protein function. In
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FIGURE 3 | Correlation between surfogroup and clinical isolates.

(A) Each bubble represents a unique SG-ST combination. Bubble size (see

pattern in the inset): number of clinical isolates. Bubbles are colored according

to type of pathogenicity after surfogroup prediction according to Figure 2. (B)

Measures of the classification performance.

FIGURE 4 | Methodological scheme for surfotype and surfogroup

assignment of test isolates. Raw data derived from either sequencing or

PCR is processed into a 17-mer Boolean vector (presence-full or

absence-truncation). Assignment of surfotypes to the surfogroups showed in

Figure 2 can be done through feature-by-feature comparison against the

surfogroup signatures.

contrast, surfotyping prioritizes functions, which are subjected
to strong selective pressure in terms of adaptation to defined
pathogenic scenarios. Thus, surfotyping may be instrumental
in detecting brusque genetic changes that could lead to

TABLE 2 | Essential differences between MLST and Surfotyping.

Topic MLST Surfotyping

Number of

genes

Fixed (seven) Variable (species-specific)

Type of

variability

SNPs Presence/absence, distant allelic

variants (many residue changes), large

insertions/deletions, mosaicism

Gene evolution

rate

Slow Fast

Protein

location

Cytoplasm Cell wall

Protein role Housekeeping Virulence

Correlation to

pathogenity

Indirect association Direct causality

Protein

structural

nature

Globular Disordered regions, tandem repeats,

anchor modules

Gene phyletic

dispersion

Universal Species-specific

emerging, highly-virulent clones. The 116 non-redundant
surfotypes found describe a continuous 17th dimensional
space, in which surfogroups can be observed as dense zones
enriched in strains causing similar diseases. Genes that do
not contribute sufficiently to the life-style phenotype may
eventually be lost. This would explain why these genes are
therefore absent from the signature. Surfogrouping merge
some clonal complexes. However, large clonal complexes can
be located in separate surfogroups. In particular, the giant
CC156 surfogroup, whose size is a consequence of eBURST
clustering collapse, reached amere 40% surfogroup homogeneity.
Meanwhile, the CC156 lineages derived fromMLST-96 technique
(Moschioni et al., 2013) are reasonably associated with different
surfogroups.

Our results support a model of a complex association between
pneumococcal surface factors and disease. The pathogen-host
interaction would not behave according to a lock-and-key
paradigm respect to their target molecules but as a bunch
of keys for an array of locks. Pneumococci use its highly
recombinogenic capacity as if they were “slot machines” whose
winning feature combinations provide a higher efficiency for
a given virulent scenario. This work provides a first report
of the combinations that may be useful for predicting disease
progression.
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