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Diagnoses that are both timely and accurate are critically important for patients

with life-threatening or drug resistant infections. Technological improvements in

High-Throughput Sequencing (HTS) have led to its use in pathogen detection and its

application in clinical diagnoses of infectious diseases. The present study compares

two HTS methods, 16S rRNA marker gene sequencing (metataxonomics) and whole

metagenomic shotgun sequencing (metagenomics), in their respective abilities to match

the same diagnosis as traditional culture methods (culture inference) for patients with

ventilator associated pneumonia (VAP). The metagenomic analysis was able to produce

the same diagnosis as culture methods at the species-level for five of the six samples,

while the metataxonomic analysis was only able to produce results with the same

species-level identification as culture for two of the six samples. These results indicate

that metagenomic analyses have the accuracy needed for a clinical diagnostic tool, but

full integration in diagnostic protocols is contingent on technological improvements to

decrease turnaround time and lower costs.

Keywords: microbiome,metagenomics,metataxonomics, high throughput sequencing, drug resistance, pathogen

detection

INTRODUCTION

Infectious diseases remain a significant health care burden in both the United States and worldwide.
In 2011, infectious diseases accounted for ∼4.0 million emergency department visits (Ambulatory
and Hospital Care Statistics, 2016)1, 3.9 million outpatient department visits (Ambulatory and
Hospital Care Statistics, 2016)1 and ∼4% of patients in acute care hospitals develop a health care
associated infection (Magill et al., 2014). The accurate identification of the pathogen(s) causing
disease is crucial to the correct diagnosis and treatment for the infection. A comprehensive,
accurate, and rapid diagnosis, including pathogen identification at the species level and antibiotic

1Available online at: http://www.cdc.gov/nchs/ahcd.htm
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resistance pattern, enables physicians to use more targeted
antimicrobial therapies for these patients (Didelot et al., 2012).
Currently, there are many methods that can be used to
characterize the microbial composition of a sample from an
infected patient and identify the potentially causative agent(s)
including culture, polymerase chain reaction (PCR), microarrays,
and High-Throughput Sequencing (HTS) (Table 1).

Microbial culture has been considered the gold standard of
diagnostic techniques for bacterial and fungal species and is
widely used in clinical laboratories. Culture methods involve
growing the pathogen on appropriate media, a method developed
more than 100 years ago (Didelot et al., 2012). Further
identification of the pathogen, especially to the species level, often
requires biochemical tests. Additional tests, such as antibiotic
resistance tests, may require additional cultures. Due to the
limitations of the media utilized for growth, there will be an
inherent bias to cultures. Culture methods can only confirm the
presence of amicroorganism that can grow on the selectedmedia.
Therefore, culture techniques may not be effective at identifying
the presence of novel pathogens or known but unculturable
pathogens (e.g., environmental and clinical isolates; Didelot
et al., 2012). Nevertheless, culture remains the most widely used
diagnostic method based on its extensive validation and cost-
effectiveness (Köser et al., 2012).

Traditional PCR and, more recently, microarray assays
analyze a pathogen’s genetic profile, rather than the
morphological, phenotypic, and biochemical features that
standard culture methods utilize. PCR assays are quick,
specific, and cheap when the list of possible targets is short.
PCR’s weakness as a diagnostic tool stems from its potential
bias, because target sequences for primer design must be chosen
before testing begins. Further, PCR has relatively low-throughput
capabilities, because multiple PCR amplifications per sample
negatively impact the cost- and time effectiveness of the method
(Wang et al., 2006; McLoughlin, 2011).

High-density microarrays are able to detect thousands
of pathogens simultaneously through the design of specific,
degenerate, and tiled oligonucleotide probes. However, these
probes need to be periodically updated as new genomes
are sequenced, which is a time consuming and expensive
process. Universal microarrays have been attempted, but exhibit
bias as probe or target secondary structure can influence
hybridization in an unpredictable pattern (Yang and Rothman,
2004; McLoughlin, 2011). PCR and microarrays are both able to
leverage genetic differences in pathogens for greater resolution
than culture methods, but the inherent bias found in both PCR
and microarrays still presents an obstacle to achieve an efficient
and agnostic diagnostic tool.

HTS is the most in-depth and unbiased method of obtaining
genomic or metagenomic information (Metzker, 2009). Unlike
PCR or microarrays, it does not require primer or probe
design, it can be easily multiplexed, and the specificity and
selectivity of the sequencing can be adjusted computationally
after acquiring the data (Adams et al., 2009; Dunne et al., 2012).
The two main methods of pathogen identification using HTS
are marker sequencing, chiefly 16S ribosomal RNA (16S) but
also internal transcribed spacer (ITS) region for fungal species,

and whole metagenomic shotgun sequencing. We adopt the
nomenclatural suggestions of Marchesi and Ravel (Marchesi and
Ravel, 2015) and refer to the high throughput marker (e.g., 16S
or ITS) based approach to microbial diversity characterization as
metataxonomics and the shotgun genomic sequencing approach
as metagenomics. A common weakness for HTS methods is
database bias, but as sequencing becomes cheaper and more
widely used, databases are growing in size and diversity. For
example, in 2014, the FDA GenomeTrakr project uploaded to
NCBI an average of 848 Salmonella and Listeria genomes per
month (Allard et al., 2016).

Metataxonomics using 16S sequencing is a widely used
technique that relies on the conserved and variable regions
of the bacterial 16S rRNA gene to make community-wide
taxonomic classifications. As HTS technologies have improved,
the read length and overall quality of the sequencing has also
improved, allowing for greater species resolution (Klindworth
et al., 2012). 16S sequencing is the most widely used technique
for microbial diversity analysis and has been used to investigate
various environments, from soil in Antarctica (Chong et al.,
2012) to the human gut (Dethlefsen et al., 2008). Because
the 16S HTS approach is a PCR-based approach, it suffers
from the same issues described above for PCR. 16S sequencing
only uses data from one multicopy gene, any two organisms
with the same 16S rRNA gene sequence might be classified
as the same strain under a 16S analysis, even if they
were, in reality, different strains. For example, based on 16S
sequences, Escherichia coli O157:H7 cannot be differentiated
from E. coli K-12 (Weinstock, 2012) nor Shigella flexneri
from E. coli. The 16S gene has been shown to have intra-
organismal differences, such as multiple copies (Rajendhran
and Gunasekaran, 2011) and intra-genomic heterogeneity
(Rajendhran and Gunasekaran, 2011), which will negatively
influence the method’s accuracy.

Metagenomic sequencing avoids PCR bias and it is not
restricted to only bacterial sequences. In addition, the coverage
of the genome outside of the small 16S rRNA gene region means
that specific, strain level discrimination is achievable. This has
been shown in the metagenomic sequencing of cholera (Chin
et al., 2011), tuberculosis (Gardy et al., 2011), E. coli (Rasko et al.,
2011), and methicillin-resistant Staphylococcus aureus (MRSA)
(Köser et al., 2012). Currently, the high cost of metagenomic
sequencing and the noisy signal due to host contamination
are the greatest drawbacks of this approach. Metagenomic
sequencing captures not only the pathogenic sequences, but also
the human host’s genetic material, which can overwhelm the
signal from the pathogens (Kuczynski et al., 2011) and lead to
an inaccurate classification of the pathogenic community. On
the other hand, the human host genetic sequences can be an
advantage in examining a genetic response to infection (Perez-
Losada et al., 2015). However, metagenomic sequencing is also
much more expensive than 16S sequencing, especially to achieve
the coverage and depth needed for species identification (Quail
et al., 2012).

Metataxonomics and metagenomics, with their culture
independence and wealth of data, both have the potential to
improve diagnostics. But before either one of these methods can
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TABLE 1 | Taxonomic identification methods comparisons.

Technique Speed (days) Cost Accuracy Resistance mutations Multispecies High- Emergent Reference

throughput pathogens update

Culture 2–14 $ Genus or Species No, additional assays No No No No

PCR 2 $ Genus or Species No, additional assays No, additional assays No No No

Microarray 2 $ Genus or Species Yes Yes Yes No Annually but costly

16S 1.5–2 $$ Genus or Species No Yes Yes Yes Every run

Metagenomic 2–3 $$ Species or Strain Yes Yes Yes Yes Every run

become fully integrated into diagnostic protocols, their relative
benefits need to be compared and validated by culture methods
(Dunne et al., 2012). In this study, 16S and genomic DNA
shotgun sequencing are compared in their respective abilities to
match the clinical, culture diagnosis of intubated patients being
clinically assessed for possible ventilator associated pneumonia
(VAP). Patients with VAP have a crude mortality rate of 20–
70% and an attributable mortality rate of 10–40% (Heyland et al.,
1999; Ashraf and Ostrosky-Zeichner, 2012; Luyt et al., 2013). A
faster and more accurate pathogen diagnosis would hopefully
lead to targeted antimicrobial therapy, thereby reducing the
excessive use of broad-spectrum antibiotics, their antibiotic-
associated side effects and healthcare costs (Aryee and Price,
2014) and possibly the mortality rate in these patients (Dupont
et al., 2001).

MATERIALS AND METHODS

In order to evaluate the ability of HTS to match the
culture inference, bronchial aspirate samples were taken
from eight intubated patients from The George Washington
University Hospital with suspected VAP. Three methods—16S
sampling, metagenomic sampling, and traditional culturing—
were employed to determine the infectious agent (Table 2).
The collection of discarded aspirate samples for bacterial
sequencing and de-identified clinical and microbiological data
was approved by the GWU Institutional Review Board. The
indication for endotracheal suctioning was solely based on the
clinical evaluation of the patient’s attending physician, as was the
decision regarding any antibiotic therapy.

DNA Preparation for HTS
We followed the DNA extraction protocol of Toma et al. (2014).
Illumina’s Nextera DNA Sample Preparation Kit was used to
generate and barcode the sequencing libraries for the genomic
DNA (gDNA). The gDNA was sequenced on a HiSeq 2500 (100
bp; single-end reads; NCBI accession number SRP045601). Six
of the eight samples were sequenced twice and the sequence
results were combined into one fastq file. Six of the samples
corresponded to the ones described in Toma et al. (2014) and full-
length PCR-amplified 16S sequences using PacBio sequencing
were obtained from NCBI under accession numbers SRP028704
and SRP031650 (Toma et al., 2014). We acknowledge the sample
size is limited, yet these were the only samples available for follow
up DNA work.

Culture
The deep endotracheal aspirates were submitted to the GWU
Hospital microbiology laboratory for routine Gram-staining
and microbial culture as described (Toma et al., 2014). In short,
the most purulent or blood-tinged portions were used for a
Gram-stain and bacterial culture on sheep blood, chocolate and
MacConkey agars. The cultures on sheep blood and chocolate
agars were incubated in 5% CO2 at 35

◦C for at least 48 h, while
the cultures on MacConkey agar were incubated in a non-CO2

atmosphere at 35◦C for at least 24 h. Significant growth was
defined as moderate to heavy growth of an isolate in the second,
third, or fourth quadrants of each plate. Organisms identification

and susceptibility results were accomplished using the Vitek
R©

2 identification (ID) and antibiotic susceptibility testing
(AST) cards (bioMériuex Marcy l’Etoile, France) following the
standard operating procedures utilized by the GWU Hospital
microbiology laboratory. The residual aspirate samples were
frozen at −80◦C until processing for DNA extraction. We used
the culture results as the “gold standard” against which we
compared the metataxonomic and metagenomic results.

Quality Control for HTS Data
The raw metagenomic reads were preprocessed using PrinSeq-
Lite v. 0.20.3 (filtering reads and trimming 3′ and 5′ bases <

25 PHRED, removing exact duplicates, reads with undetermined
bases, and low complexity reads using Dust filter = 30)
(Schmieder and Edwards, 2011). Human reads were filtered
using Bowtie2 (Langmead and Salzberg, 2012) by mapping the
metagenomic reads against the latest human genome reference
(hg19) (Church et al., 2011). The raw 16S reads were processed
through the PacBio SmartPortal pipeline to filter out reads
shorter than 100 bp, reads with no insert, low complexity or low
quality reads and to trim adaptor sequences as described in Toma
et al. (2014).

Taxonomic Profiling with 16S and
Metagenomic Data
We used PathoLib from PathoScope 2.0 (Hong et al., 2014)
to obtain all the sequence data under the bacterial, viral, and
fungal taxonomy IDs from NCBI’s nucleotide non-redundant
(NCBI nt nr) database as of March 3, 2014 and downloaded
“The All-Species Living Tree” Project (LTP) (Yarza et al., 2008;
Munoz et al., 2011) 16S database, version 113. We mapped the
metagenomic reads against the bacterial, viral, and fungal NCBI
nt nr database and then against the hg19 and phix174 database
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using the PathoScope 2.0 PathoMap module. The reads that
mapped with a higher score to the hg19 or the phix174 database
were removed. Similarly, we mapped the 16S sample reads
against the LTP database and then against the hg19 and phix174
databases, removing the reads that mapped with a higher score
to the hg19 or the phix174. We applied a Bayesian mixture read
reassignment model (Francis et al., 2013), as implemented in the
PathoID module of PathoScope 2.0, to both of the PathoMap
mapping results. If a sample’s results had multiple strains of
the same species in the top hits, the PathoID module was
run again with a new theta parameter of 10,000. In order to
determine the presence or absence of the mecA gene (GenBank
Acession number NX52593), we used BLAST+ (Camacho et al.,
2009) to create a blast database from the reads of each sample’s
metagenomic sequences and queried the mecA gene sequence
against each database using BLAST. All analyses were conducted
on GWU’s ColonialOne High-Performance computer cluster
and computational time was recorded using the linux time(1)
module.

Lab Validation of Fungal DNA
To confirm the presence of fungal DNA detected by the
metagenomic analysis, we performed subsequent PCR using
fungal ITS primers to verify inferred taxa from the original
samples for which there was no 16S amplification. A PCR
reaction for sequencing was performed using universal primers
ITS1F and ITS4 targeting the nuclear ITS region (White et al.,
1990) in samples s017 and s074. Amplification was performed
in a 15 µL reaction volume consisting of 10.025 µL nuclease
free water, 12.5 µL GoTaq green buffer (Promega, Madison, WI),
0.3 µL forward primer, 0.3 µL reverse primer, 0.3 µL dNTPs,
0.075 µL GoTaq (Promega, Madison, WI), and 1 µL of template,
either gDNA from sample s017 or s074. PCR was performed
using a Mastercycle Nexus Gradient PCR machine (Eppendorf).
The thermal cycler was programmed for 2 min at 95◦C for
initial denaturation, followed by 30 cycles of 1 min at 95◦C for
denaturation, 1 min at 52◦C for annealing, 3 min at 72◦C for
extension, and 10 min at 72◦C for the final extension.

We cleaned the PCR products using ExoSAP (Affymetrix,
Santa Clara, CA). Each ExoSAP reaction contained 1 µL PCR
product and 2 µL of ExoSAP diluted 1:3, and the thermal cycler
was programed for 37◦C for 15 min and 80◦C for 15 min. Each
product was sequenced in both directions and in duplicates. The
cycle sequencing reaction contained 6.75µL water, 0.5µL primer
(forward or reverse), 1.25 µL 5X buffer, 0.5 µL Big Dye (Life
Technologies) mix, and 1 µL of the cleaned PCR product. The
thermo cycler was programed for 30 cycles of 95◦C for 30 s, 50◦C
for 30 s, and 60◦C for 4 min. ITS amplicons were sequenced on
an ABI 3730XL platform.

We revised chromatograms, adjusted quality, and created
the consensus sequences, one contig for sample s017 and
two contigs for sample s074, in Geneious v. 7.1.5 (Kearse
et al., 2012). These consensus sequences were aligned along
with 32 other sequences from Candida glabrata, C. albicans,
C. dubliniensis, C. parapsilosis, C. rugosa, C. tropicalis, and
Malassezia globosa using MUSCLE alignment with 8 iterations
(Supplementary Table 1). These species were chosen either
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because they were identified by the metagenomic analysis (C.
glabrata, C. tropicalis, C. albicans, and M. globosa) or because
they are closely related to the top hit, C. glabrata, (C. dubliniensis
and C. rugosa). A maximum-likelihood tree was created using
RAxML (Stamatakis, 2006) with 50 independent replicates and
10,000 bootstrap replicates. Analyses were performed using
Geneious v. 7.1.5 (Kearse et al., 2012) and SumTrees (Guss et al.,
2011).

RESULTS AND DISCUSSION

Our study resulted in three data sets. First, the 16S data (PacBio)
which was collected previously (Toma et al., 2014) and raw
data files with sequence from each patient were submitted in
bas.h5 format to the NCBI Short Read Archive (SRA) under
the accession numbers SRP028704 and SRP031650. Second,
metagenomic data are new to this study and sequences were
submitted in fastq format to NCBI SRA under the accession
numbers SRX682947 to SRX682954. Third, the fungal ITS data
are new to this study and those amplicon target sequences
were deposited at NCBI under accession numbers KU936092-
KU936095. Using these data, we found differences in the abilities
of the metataxonomic approach vs. the metagenomic approach
to identify pathogens characterized through culture techniques.
Computational time also differed between approaches.
Furthermore, the metagenomic approach identified fungal
pathogens not captured in the metataxonomic approach or
culture approach. These comparisons are detailed below.

The Effect of Sequencing Type on
Computational Time
The mapping stage for the 16S analysis took an average of 7 min
and 13 s and used an average of 50.65 CPU seconds in kernel. The
mapping stage of the metagenomic analysis took an average of 23
h and 1 min and used an average of 80,427.72 CPU seconds in
kernel,∼1500 times longer.

As predicted, the 16S analysis was much faster than the
metagenomic analysis, due to the smaller number of sequences
and the smaller database (Supplementary Table 2). The average
16S analysis took 5% of the time of the average metagenomic
analysis and used only 0.1% of the CPU seconds. The turnaround
time for eachmethod is important because the integration ofHTS
into diagnostics hinges in part on whether or not a diagnosis can
be produced as fast as or faster than current culture methods. A
timely diagnosis allows clinicians to prescribe treatments quickly,
which should improve the outcome of the treatment. Culture
methods take on average 48 h to produce results (Didelot et al.,
2012; Köser et al., 2012). Based on our results, the 16S analysis,
at its most efficient, can match the 48 h turnaround timeline
of culture, but the metagenomic analysis currently takes longer
than the culture methods. The cost-effectiveness, efficiency, and
coverage of metagenomic sequencing, and HTS in general, varies
among differentmachines (Quail et al., 2012). However, if current
trends continue, higher coverage with a shorter run time and
lower cost should be achievable as the technology improves.
While time and cost will not affect downstream analyses, an

increase in coverage will increase the already time-intensive
mapping stage. Before a metagenomic analysis can be considered
comparable to culture methods, improvements will have to be
made in the mapping stage of the taxonomic profiling to decrease
the amount of time required for metagenomic sequencing. It
should be noted that the 48-h turnaround for culture methods
is not true for all bacteria. Slow-growing bacteria or bacteria
that require a series of cultures for diagnosis could take upwards
of 2 weeks to complete the identification (Didelot et al.,
2012). Likewise, fungal culture growth can take up to 1 week.
Metagenomic sequencing does not depend on a culture step and
all of the genetic information should, in theory, be collected
through DNA extraction of the primary sample in a single step.
Consequently, metataxonomic and metagenomic analyses are
not affected by slow-growing or multi-culture pathogens and the
turnaround times for these analyses have much smaller ranges
than for the culture methods (Didelot et al., 2012).

Taxonomic Identification
The metataxonomic (16S) analysis identified an average of 8.5
operational taxonomic units (OTUs) per sample with a range
of 3-18 OTUs. We designate OTUs as 16S (as mentioned in the
introduction) often does not have resolving power for species and
certainly strains due to the lack of sequence divergence at this one
conserved locus (Caro-Quintero and Ochman, 2015). However,
our approach does capitalize on the PacBio platform to achieve
full-length amplimers of the 16S (∼1500 bps) with greater than
100x coverage resulting in very high accuracy compared to many
metataxonomic approaches that use short-read technology with
lower coverage (Toma et al., 2014). The metagenomic analysis
identified a larger number of OTUs with an average of ∼374
OTUs per sample with a range of 185-797 OTUs. This high level
of diversity is not unexpected; studies of the lung microbiome
have found over 50 different bacterial genera in the lungs (Erb-
Downward et al., 2011; Guss et al., 2011). For four of the samples,
the metagenomic analysis identified several OTUs of the top
hit species, while the 16S analysis did not contain any strain
differentiation due to the lack of resolving power of this single
locus approach. Multiple OTUs in the top hits could be indicative
of multiple strains of the same species circulating in the sample
or the presence of a novel species not found in the database.
Samples s043 and s049 both had multiple OTUs in their top hits
and the possibility of each scenario described above was explored
using the PathoID theta parameter. The theta parameter controls
the assumed number of ambiguous reads in a sample. Raising
the theta parameter to 10,000 from the default assumes a more
even distribution over several genomes in the database. A lack
of change in the overall distribution between the results with the
increased theta parameter vs. the default parameter indicates the
top hit identified by PathoScope is most likely the correct strain
in each sample (Supplementary Table 3).

While the increased diversity of hits inHTS analysis compared
to PCR ormicroarraysmay provide additional information, it has
been shown that PathoScope and other Bayesian Mixture Models
might create a tail of false positives (Lindner and Renard, 2015;
Morfopoulou and Plagnol, 2015) (Figure 1). In the context of a
clinical diagnosis, this tail of false positives should not influence
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FIGURE 1 | The proportion of reads mapping to each identified

taxonomic unit by results rank. The proportion of reads are highly skewed

toward the top hits, more than 75% of the reads of each sample are

represented by the first five results.

the final interpretation. We assume any pathogen causing an
infection would be expected to constitute a large percentage of
the pathogen population present in a sample and therefore would
not be included in the tail of false positives. There are diseases
for which this assumption will not hold, that is, the pathogen
will not be the microbe in greatest abundance. This is especially
true in non-sterile settings such as the gut, lung, nasal passage,
where there is an abundance of microbes, some commensal,
some opportunistic, and perhaps some pathogenic. Under these
circumstances, it is essential to have appropriate controls for
direct comparison of potentially pathogenic microbes that differ
from “normal” microbiome components. With the metagenomic
approach with RNAseq reads, one can also use the host data to
examine host response to potential “infection” to help validate
the identification of pathogens (Castro-Nallar et al., 2015).

The Effect of Sequencing on Clinical
Diagnosis
The top hit from the metagenomic analysis was consistent with
the culture inference at the species level in five of the six samples,
while the culture inference and the 16S analysis top hitmatched at
the species level for only two of the six samples (Figure 2A). The
two sequencing methods were only close in accuracy when the
matches were considered at the genus level and the top five hits
were taken into account (Figure 2D). The two samples that did
not produce 16S amplification, s017 and s074, both had top hits
of C. glabrata. This diagnosis is consistent with culture inference
of s017 but not s074.

Sample s014 was the only sample that did not have the
clinical diagnosis, i.e., yeast, matched as the top hit by either
HTS method. However, the metagenomic analysis reported the
fungus C. parapsilosis as the fourth hit with 2% of the reads. The
16S analysis never identified yeast, which is expected because
the LTP database only contained bacterial sequences and 16S
sequencing is restricted to bacteria. This is the only sample of
the six samples analyzed by both HTS methods for which the

metagenomic analysis did not recover an organism that was
identified by culture techniques.

The 16S and the metagenomic analyses were both able
to match the culture inference for samples s070 and s071.
The culture inference for sample s071 was MRSA and both
sequencing analyses identified S. aureus as the top hit. However,
the metagenomic analysis was able to provide additional
information about a resistance profile that the 16S analysis could
not. Sample s071 was the only sample for which metagenomic
sequences mapped to the mecA gene at a significant abundance
both in terms of breadth across the gene and depth in coverage
(Figure 3). All 27 metagenomic sequences which mapped to the
mecA gene during the BLAST search also map to the S. aureus
JH1 genome during the metagenomic analysis, specifically to
the SaurJH1_0029 locus which corresponds to the mecA gene.
This gene has been shown to produce a penicillin binding
protein, PBP 2′, which has a low affinity for β-lactam antibiotics,
including methicillin (Ubukata et al., 1989). Resistance profiles
are incredibly important to clinicians and are critical for
developing an appropriate antibiotic regimen. These results
indicate it is possible to design sequencing based diagnostic
tests which incorporate antibiotic resistance profiling along
with taxonomic identification. The top hits of the 16S analysis
and the metagenomic analysis of sample s070 corresponded
to different species from the genus Neisseria. We consider this
consistent with the culture inference of opportunistic flora. The
top hit for the 16S analysis was N. cinerea and the top hit for
the metagenomic analysis was N. meningitidis. N. meningitidis is
found in the nasopharyngeal mucosa (Van Deuren et al., 2000)
and can cause meningococcal pneumonia (Rose et al., 1981).
N. cinerea is closely related to N. gonorrhoeae; while it is found
in the oropharynx it has not been associated with lung infections
(Knapp and Hook, 1988). The ambiguity of the culture inference
does not allow for a clear distinction between the accuracy of 16S
analysis and the accuracy of the metagenomic analysis. However,
the metagenomic analysis does produce a top hit that is more
likely to be the causative agent of pneumonia than 16S analysis
top hit for sample s071.

The 16S and metagenomic analysis of samples s043 and s049
were consistent with the culture inference at the genus level,
but the 16S analysis did not match the same species as the
culture method. Both the metagenomic analysis and the culture
approach detected the presence of P. aeruginosa, which is a
known cause of pneumonia and often associated with nosocomial
infections (Lister et al., 2009). The 16S analysis of both s043 and
s049 identified P. otitidis, which is mainly associated with inner
ear infections (Clark et al., 2006). The LTP database contains
both P. aeruginosa and P. otitidis. However, the reassignment
algorithm of PathoID (Francis et al., 2013) takes into account the
uniqueness of the reads and for both samples there were more
unique mappings to P. otitidis than P. aeruginosa. Therefore,
PathoID reassigned all of the reads mapping to P. otitidis or
P. aeruginosa to P. otitidis, resulting in the incorrect inference by
the 16S analysis.

The final sample for which the 16S analysis failed to match
the culture inference is sample s002. The clinical diagnosis,
Acinetobacter baumannii, is the second hit for the 16S analysis,
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FIGURE 2 | (A–D): Proportion of samples matching the clinical diagnosis at different taxonomic levels and results rank. The metagenomic analysis is more accurate

than the 16S analysis in every scenario. The ideal combination, a match between the clinical diagnosis and the tophit at the species level, showed the largest

discrepancy between the two sequencing types.

FIGURE 3 | Twenty-seven metagenomic reads from sample s070 mapping to the mec-A (penicillin-binding protein CDS) region of the Staphylococcus

aureus genome.

but is only reported as having 16.7% of the reads while the top
hit, Stenotrophomonas maltophilia, is reported as having 83% of
the reads. However, Stenotrophomonas is a well-known pathogen
in patients who develop VAP.Whether this was the true pathogen
as opposed to Acinetobacter cannot be determined by the data at
hand.

Samples s017 and s074 were not included in the comparisons
of metataxonomic andmetagenomic analysis results summarized

in Figure 2 because the 16S PCR failed in both samples. The
metagenomic sequencing was successful and the metagenomic
analysis for both samples produced a top hit of C. glabrata, a
fungus. The metagenomic sequencing inference was confirmed,
in part, by the PCRs of the fungal ITS region of both samples.
The PCR products cluster with the C. glabrata sequences in the
phylogenetic tree with a bootstrap value of 0.83 (phylogeny not
shown). The culture inference for sample s017 was yeast and

Frontiers in Microbiology | www.frontiersin.org 8 April 2016 | Volume 7 | Article 484

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Hilton et al. Metataxonomics and Metagenomics for Pathology

moderate Klebsiella; the metagenomic analysis has C. glabrata
as the top hit and K. pneumoniae as the third hit. The culture
inference of sample s074 was a moderate Gram-positive bacteria
and moderate S. pneumoniae. The majority of the reads in s074
were C. glabrata and uncultured fungus, but the first bacterial
identification, S. pasteurianus, matches the culture diagnosis at
the genus level. The PCR test can only confirm the presence of
C. glabrata in the sample and cannot confirm that C. glabrata
is indeed the most prevalent organism. However, these results
do show metagenomic sequencing is able to produce plausible
results even when the 16S sequencing fails.

The Effect of Sequencing on Human
Respiratory Pathogen Identification
HTS, with its many advantageous characteristics, including lack
of specific primer/probe design and easy multiplexing which
produces large amounts of sequence data, has been instrumental
in investigating the humanmicrobiome (Turnbaugh et al., 2007).
Characterization of the microbiome provides the context of
a “healthy” bacterial composition to studies that investigate
diseases traditionally associated with an infectious component
(Beck et al., 2012) and opens the door to understanding disease
as an alteration in the overall microbial community, rather than
as the invasion of one particular pathogen, exemplified by the
metataxonomic study of Clostridium difficile infections (Chang
et al., 2008).

The microbiome of the lung has been particularly difficult
to characterize due to prior assumptions about the community
composition of the lung, the diversity of pathogens causing
diseases, and sampling concerns. Until very recently, the lung
was considered to be a sterile body site and it was not
included as a sampling site in the original Human Microbiome
Project (Beck et al., 2012). Newer studies have shown there
is indeed a microbial community within the lung, but it has
been difficult to characterize this community. Some studies
have failed to find a distinct lung microbiome (Charlson
et al., 2011), while others have found the location of the
sampling within the lung will produce different results (Erb-
Downward et al., 2011), or have raised concerns about the
level of contamination of the lung microbiome from other
body sites, such as the oropharynx (Morris et al., 2013).
While the resolution is not particularly clear, there are several
genera that are proposed as possible core genera of the lung
microbiome including Pseudomonas, Streptococcus, Prevotella,
Fusobacterium, Haemophilus, Veillonella, and Porphyromonas
(Morris et al., 2013). Patients with pneumonia have been
found to have microbiomes dominated by pathogens such as
S. pneumoniae, H. influenzae, and K. pneumoniae (Linder et al.,
2014). The core genera of the microbiome proposed by Morris
et al. can be found in the metagenomic analyses. However, not all
of the genera are found in all of the samples, and they are found in
small proportions unless they are a top hit, such as Pseudomonas
in samples s043 and s049. The metataxonomic analysis produced
an even sparser representation of these core genera than the
metagenomic analysis. Of the pathogens that are said to dominate
the microbiomes of patients with pneumonia, K. pneumoniae is

the only one found among the top hits of any sample. The results
of our study have some similarities in genera with other lung
microbiome studies, but these species are often found in small
proportions. This may be a result of our samples coming from
infected individuals, or may be because the lung microbiome is
still in the process of being well-characterized.

While the results of our study were not completely congruent
with other lung microbiome studies, the results did seem to
correlate with respiratory pathogens. Of the top four hits of
the metataxonomic and metagenomic analyses that would be
considered part of the human flora or human pathogens rather
than environmental pathogens, there were six organisms—
N. meningitidis (Van Deuren et al., 2000), Corynebacterium
pseudodiphtheriticum (Nhan et al., 2012), K. pneumoniae (Bratu
et al., 2005), A. baumannii (Garnacho-Montero et al., 2003),
P. aeruginosa (de Bentzmann et al., 1996; Lister et al., 2009),
and S. aureus (Hooper and Smith, 2012) - that commonly
cause respiratory infections. Of these respiratory pathogens,
A. baumannii, P. aeruginosa, and S. aureus are commonly
associated with VAP (Ashraf and Ostrosky-Zeichner, 2012).
These respiratory pathogens were identified as the top hit
more frequently by the metagenomic analysis than by the
metataxonomic analysis. Out of the eight metagenomic analyses,
five of the top hits are represented in this list of six respiratory
pathogens. In the 16S analyses, only one of the six top hits fall
into this category.

With only three exceptions, the top four hits in both
the metataxonomic and metagenomic approaches identified
microbes found in humans, either as part of the normal
flora or as pathogens. These exceptions were found in both
the metagenomic and the metataxonomic analyses, but the
environmental microbes never accounted for more than 10% of
the reads. The first exception, Delftia acidovorans, was identified
by the metagenomic analysis in every sample except for s070
and s071. D. acidovorans is mainly found in soil, though it has
been identified in the infection of a child with an endotracheal
tube (Khan et al., 2012). Themetagenomic analysis also identified
Acidovorax JS42 as the third hit for sample s002. Acidovorax
is an environmental bacteria most often associated with plant
infections, rather than human infections, though there has been
one reported case of sepsis caused by Acidovorax (Willems et al.,
1990; Shetty et al., 2005). Finally, the second hit in the 16S analysis
of sample s049 wasAzomonas agilis, an environmental bacterium
that has neither been found in human flora nor been linked
to an infection (Chebotar et al., 2001). These environmental
microbes are not expected in the human lung. Their presence
could be explained by contamination, the inhalation of soil
particles by the patient or an improperly cleaned medical device,
but a computational reason, such as an improperly mapped read,
cannot be ruled out.

HTS beyond Primary Identification of
Pathogens
Metagenomic analysis also presents opportunities to investigate
a patient’s infection that go beyond taxonomic identification of
microbes. Metagenomic sequencing has been used on numerous
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clinical examples of antibiotic resistance pathogens to identify
new genes linked to antibiotic resistance and to characterize the
distribution of these genes outside the clinical setting (Forsberg
et al., 2012; Wright and Poinar, 2012). All of the resulting
information is being pooled in many databases, such as the
Comprehensive Antibiotic Resistance Database (McArthur et al.,
2013). Dual gene expression uses RNA sequences to analyze the
transcriptomes of the pathogen and the host during infection
(Perez-Losada et al., 2015). This should shed light on new
virulence factors in the pathogens and pathways activated in
response to pathogens or pathogen-associatedmolecular patterns
as the infection progresses (Chang et al., 2011; Westermann
et al., 2012). These features of metagenomics provide added value
and insights into infections and potential treatment options.
Metagenomics could also be useful with infections of unknown
etiology due to the immense amount of genetic information
captured via an unbiased method (Wilson et al., 2014) or for
creating strain or population specific primers (Rohde et al., 2011).

CONCLUSION

While our sample size is limited, our results indicate HTS
has the potential to match standard culture techniques for the
identification of bacterial pathogens. The two different HTS
methods used for this study did have differences in their
diagnostic capabilities and represent a tradeoff, namely between
the speed of metataxonomic analyses and the accuracy and
added information of metagenomic analyses. Metataxonomics
is a quick, inexpensive choice when the pathogen of interest
is a known bacterium, but if there are unknown pathogens,
novel pathogens, a mixture of viruses, fungi and bacteria, our
results show metagenomics performs better (e.g., our ability
to identify fungal species with metagenomics). An effective
diagnostic test must not only be fast and accurate, but must
also be inexpensive, because hospitals and other healthcare
facilities would be running numerous tests at anytime. Based
on our results, neither HTS method can compete with the
culture method in all three of these categories. However, HTS
technology has seen rapid improvement over the last decade,
and as these improvements continue (Shinshkin et al., 2015),
HTS as a diagnostic tool will become faster and cheaper. Because
diagnosis of infectious diseases is an important component of
patient care, any improvements (e.g., speed, accuracy, and/or
related features such as drug resistance profiles, human immune
response profiles) to the diagnostic process would have an
immediate impact for patients.
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