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Cronobacter spp. have been responsible for severe infections in infants associated
with consumption of powdered infant formula and follow-up formulae. Despite several
risk assessments described in published studies, few approaches have considered the
tremendous variability in cell response that small micropopulations or single cells can
have in infant formula during storage, preparation or post process/preparation before
the feeding of infants. Stochastic approaches can better describe microbial single cell
response than deterministic models as we prove in this study. A large variability of lag
phase was observed in single cell and micropopulations of ≤50 cells. This variability
increased as the heat shock increased and growth temperature decreased. Obviously,
variability of growth of individual Cronobacter sakazakii cell is affected by inoculum size,
growth temperature and the probability of cells able to grow at the conditions imposed
by the experimental conditions should be taken into account, especially when errors in
bottle-preparation practices, such as improper holding temperatures, or manipulation,
may lead to growth of the pathogen to a critical cell level. The mean probability of illness
from initial inoculum size of 1 cell was below 0.2 in all the cases and for inoculum size
of 50 cells the mean probability of illness, in most of the cases, was above 0.7.

Keywords: Cronobacter sakazakii, PIF/FUF, food safety, variability, risk assessment, heat treatment

INTRODUCTION

Cronobacter spp. are members of the family Enterobacteriaceae and can cause serious infection
of all human age groups (Farmer et al., 1980; van Acker et al., 2001; Iversen and Forsythe, 2003;
FAO/WHO, 2006; Holý and Forsythe, 2014), but infants of less than 1 year are at particular risk
(Bowen and Braden, 2006; Pagotto and Farber, 2009) mainly the neonates, who are less than
4 weeks old (Yan et al., 2012). Severe symptoms related to Cronobacter spp., include necrotizing
enterocolitis and meningitis (Simmons et al., 1989; van Acker et al., 2001; Himelright et al., 2002;
FAO/WHO, 2004, 2006, 2008; O’Brien et al., 2009). The overall mortality rate caused by the
microorganism is between 20 and 80% in infected infants (Lai, 2001; Hunter and Bean, 2013).
The incidence of Cronobacter spp. infection among infants is relatively low (8.7 per 100 000 low
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birth weight neonates) (Cawthorn et al., 2008; Tóthová et al.,
2011), however, it is assumed that the number of infections
caused by Cronobacter is underreported (Tóthová et al., 2011).

Occasional contamination of powdered infant formula
(PIF) and follow-up formulae (FUF) during manufacture is
an important source of the microorganism’s occurrence in
reconstituted product (FAO/WHO, 2008). However, Cronobacter
spp. have been also detected in other foods (Friedemann, 2007)
and environments such as food processing plants, hospital
equipment and households (Kandhai et al., 2004; Guillaume-
Gentil et al., 2005; Hurrell et al., 2009).

Powdered infant formula/follow-up formulae are not sterile
(Farber, 2004; FAO/WHO, 2008). At least two outbreaks
demonstrated a relationship between Cronobacter isolates from
infected patients and the isolated cultured from unopened cans
of PIF consumed by these same patients (Clark et al., 1990;
Block et al., 2002). Although the levels of Cronobacter spp. are
generally very low (<1 CFU/g) (Osaili and Forsythe, 2009),
reconstituted infant formula is a good medium for growth (Parra
et al., 2015). Furthermore, Cronobacter spp. may be recovered
after, at least, 2.5 years from a dairy formula (Barron and
Forsythe, 2007). When this bacterium contaminates one of these
formulae, it may grow during preparation, cooling, storage,
and holding of the reconstituted infant formula in bottles,
Cronobacter spp. may grow resulting in an increased probability
of illness. According to FAO/WHO (2006), the incidence rate
among infants weighting less than 2500 g at birth was 8.7 per
100,000 infants in the United States of America during their
1st year of life. Other group of concern is the elderly who have
experienced strokes that cause dysphagia and, therefore, may
require reconstituted powdered supplements as part of their diet
(FAO/WHO, 2006).

Recalls of infant formula contaminated with Cronobacter
sakazakii have occurred in the United States, Europe, and
other countries (Simmons et al., 1989; van Acker et al., 2001;
Weir, 2002; Drudy et al., 2006; Schreck, 2010; Tomasulo,
2012; Herriman, 2015). This has resulted in increased efforts
to implement appropriate strategies to reduce the health risks
associated with the use of reconstituted infant formula and to
provide guidance to risk-based management decisions (Reij et al.,
2009; Pina-Pérez et al., 2014).

A microbial risk assessment (MRA) for E. sakazakii and
other micro-organisms in PIF was developed in 2004 during
a FAO/WHO expert meeting (FAO/WHO, 2004). This MRA
was estimated in terms of relative risk, comparing different
“what-if ” scenarios regarding contamination levels and risk
mitigation measures. During a second expert consultation in
2006, a more elaborate risk assessment model was presented,
that allows comparing scenarios to a baseline scenario to be
chosen by the user (FAO/WHO, 2006). In these MRAs risk
estimates were made using the average response of microbial
cells based on deterministic approaches, however, deterministic
models are not effective in describing the behavior of small
microbial populations or individual cells (Baranyi, 1998) since
they ignore the proven variability between individual cells
(Elfwing et al., 2004; Métris et al., 2005, 2008; Pin and Baranyi,
2006; Koutsoumanis, 2008; Niven et al., 2008; Dupont and

Augustin, 2009; Aguirre et al., 2009; Cuevas-Muñoz et al., 2013;
Lianou and Koutsoumanis, 2013; Aspridou and Koutsoumanis,
2015). Stochastic modeling approaches seem to solve the above
problem since they are able to deal with more “realistic” food
contamination events with few cells (Ross and McMeekin, 2003;
Koutsoumanis, 2008; Koutsoumanis and Lianou, 2013; Alonso
et al., 2014; Skandamis and Jeanson, 2015).

Cronobacter spp., especially the most virulent ones, may be
present in reconstituted infant formula and possibly survive
the mild heat stress associated with reconstitution because
clinical strains appeared to be more thermotolerant than their
environmental counterparts (Yan et al., 2012). On the other
hand, as cross contamination can occur at any point, cells
present in reconstituted infant formula may not be heat damaged.
Despite the advice of FAO/WHO (2006) to use water at 70◦C
to reconstitute PIF, instructions for reconstitution may suggest
use of water at temperatures as low as 40◦C (Xu et al., 2015;
Parra-Flores et al., 2015) due to the undesirable effects on the
organoleptic, nutritional, and functional properties (Pina-Pérez
et al., 2015) or risk of burns during preparation and feedings
(Agence Francaise de Securite Sanitaire Des Aliments [AFSSA],
2005).

In both cases of contamination, it may lead to the
PIF becoming unsafe, as untreated and mildly heat treated
Cronobacter spp. present in the PIF may have the potential to
recover and grow during the holding time. The assumption, in
these cases, that all cells (treated and untreated cell survivors)
will have the same lag phase and that all services will have the
same dose per service (number of cells) can lead to unrealistic and
inaccurate predictions, which is unlikely to be a sufficient basis for
management decisions on the safety risk (European Commission
[EC], 2002; Lammerding and Todd, 2006).

In contrast to extensive studies on individual lag for other
microorganisms (Elfwing et al., 2004; Métris et al., 2005, 2008;
Pin and Baranyi, 2006; Koutsoumanis, 2008; Niven et al., 2008;
Aguirre et al., 2009; Cuevas-Muñoz et al., 2013; Aspridou and
Koutsoumanis, 2015), few data are available on variability of
single cell lag time of Cronobacter spp. (Miled et al., 2011; Xu
et al., 2015).

In this study we compared both lag phases, estimated by
deterministic and stochastic approaches of two inoculum sizes
(individual single cell and fifty cells) of untreated or sublethal
heat treated C. sakazakii at four storage and abuse temperatures.
In addition, the effect of both approaches on the probability of
illness was assessed.

MATERIALS AND METHODS

Culture Preparation
Cronobacter sakazakii ATCC 29544 was used. The strain was
kept frozen at −20◦C in tryptic soy broth (TSB; Pronadisa,
Madrid, Spain) supplemented with 20% glycerol. The strain was
subcultured twice in sterile TSB at 37◦C for 24 h to reach
the stationary phase, with a concentration of ca. 109 CFU/ml.
Cells were harvested by centrifugation at 10,000×g, 15 min at
4◦C in a Sorvall RC5B refrigerated centrifuge. The final pellets
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were resuspended in sterile saline solution (0.75% NaCl). Cell
suspensions were then used to inoculate sterile TSB solution.

Heat Shock
Cells were treated at 50◦ C during 5 and 10 min, based on the
experiments described by Parra-Flores et al. (2015) and Xu et al.
(2015).

To apply the heat treatments, the protocol described by
Aguirre et al. (2009) was used with few modifications. Briefly,
10 tubes for each time of treatment containing 9.9 ml of sterile
TSB were immersed in a temperature-controlled water baths
(model TFB, Bunsen S.A., Madrid, Spain) set at the target
temperature which was monitored using a thermocouple (Testo
AG 720, Kirchzarten, Germany). Once tubes reached the target
temperature, 100 µl of the bacterial suspension were inoculated.
When the heat treatment was complete, at each sampling time
(5 and 10 min), aliquots of 100 µl were removed and immediately
mixed with 900 µl of cold sterile TSB in a tube immersed in an ice
water bath. Surviving bacteria were properly diluted and plated
on tryptic soy agar (TSA, Pronadisa, Spain) for counting. Initial
inoculum size (non-heated cells) was also estimated to determine
the degree of inactivation achieved.

Based on the methodology of Koutsoumanis (2008), from
the above suspensions and untreated ones, a dilution containing
around 100 cells (by previous plate counting) was plated in
TSA to estimate the cell growth probability (Pg) of treated and
untreated ones. Plates were incubated at 5, 10, 15, or 25◦C for
30, 20, 10, and 5 days, respectively. Before storage, plates were
covered with Parafilm (Parafilm ‘M’, American National Can,
Greenwich, CT, USA) to avoid dehydration.

Inoculum Size, Growth Rate, Growth
Temperature, and Lag Phase
From the above two treated and untreated suspensions (50◦ C by
5 and 10 min of exposure), serial-dilutions in TSB were prepared
in order to obtain several inoculum sizes from 106 to 101 cells/ml
as described in Aguirre et al. (2013).

The specific growth rate (µmax) was estimated in TSB at
5, 10, 15, and 25◦C from turbidity growth curves in three
replicate experiments using an automated spectrophotometer
(Bioscreen C, Labsystems, Helsinki, Finland) kept in a controlled
temperature room as described in several studies (Guillier et al.,
2005; Métris et al., 2005; Aguirre et al., 2013).

Briefly, from the above mentioned inoculum sizes, 20 replicate
samples (350 ml) from each dilution were inoculated into
wells of Bioscreen microplates (honeycomb plates, Thermo
Fisher Scientific, Basingstoke, UK). The plates were loaded into
the Bioscreen C at incubation temperatures of 5, 10, 15, or
25◦C. After shaking at medium intensity for 10 s, turbidity
measurements were determined using a wide band filter at 420
to 580 nm at 15-min intervals. Plates were incubated for enough
time to reach stationary phase in the most diluted samples [for
up to 1 month or enough time to observed optical density (OD)
above 0.35]. The reading chamber of the Bioscreen was pre-
heated to a set-point temperature 1 day before the experiment
to allow equilibration.

Dilutions of each initial inoculum were plated by spreading
onto TSA, then they were incubated at 5, 10, 15, or 25◦C
in a controlled incubator for the same time as the Bioscreen
experiment’s and finally colonies were counted. Using the
Bioscreen device, the time to detection (Td), defined as the
time required to reach an absorbance of 0.20 (Aguirre et al.,
2012, 2013), was obtained from each well, and a mean value
was calculated for each dilution. µmax was estimated from the
reciprocal of the absolute value of the regression slope of the
Td versus Ln (N), where N is the initial number of cells. The
experiment was carried out at least three times.

To estimate the lag time (λ) in TSB from the solutions
mentioned above (heat shocked at 50◦C during 5 and 10 min and
untreated ones), the same protocol described by Aguirre et al.,
2013 was followed using the Bioscreen C equipment with few
modifications. To do this, 350 µl from the dilution expecting that
contain 101 and 100 CFU/ml (100 samples per dilution) were
transferred to the two microplates of the Bioscreen (100 wells
per dilution) and incubated at 5, 10, 15, or 25◦C, kept in at a
controlled room temperature. The increase in OD was tracked by
measuring it in the wavelength range from 420 to 580 nm using
the Bioscreen C every 30 min for up to 30, 25, 15, and 10 days for
5, 10, 15, or 25◦C, respectively. Cultures were shaken for 10 s at
medium intensity before OD was measured.

Lag times were estimated using the detection time (Td),
defined as the time required for the OD in the wavelength range
between 420 and 580 nm to reach 0.2 units, which corresponds
to an average concentration of 1.57∗ 107 CFU/well obtained by
OD calibration curve (data not shown) as described in previous
studies (Métris et al., 2005, 2006; Aguirre et al., 2013). More
specifically, lag times were estimated based on the following
equation (Baranyi and Pin, 1999):

Lag = Td −

(
Ln (Nd) − Ln (N0)

µ

)
(1)

where Nd is the bacterial number (CFU) at Td, N0 the initial
number of cells (CFU), and µ (h−1) is the specific growth
rate determined from the growth curve obtained under the
experimental conditions described above.

To estimate the initial average number of cells (N0) per well
that were able to grow at each growth temperature, 350 µl
from each dilution were mixed with molten TSA in plates and
incubated at 5, 10, 15, or 25◦C in a controlled incubator for the
same time as the lag time experiments and then colonies were
counted. Approximately 20 plates were counted for each dilution
and treatment. To be considered, Guillier et al. (2005) stated that
if 35% of samples (microplates) show growth, this should not
significantly affect individual cell lag phase distributions because
at least 80% of samples contain one cell, according to the Poisson
distribution function (Francois et al., 2003). Finally, number of
cells per well was assessed based on the number of positives
as described in Aguirre et al. (2012) and each experiment was
replicated two or three times to obtain at least 80 individual cell
lag times. A similar protocol was used to estimate the kinetic
parameters of 50 cells per well.

Frontiers in Microbiology | www.frontiersin.org 3 April 2016 | Volume 7 | Article 535

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-07-00535 April 19, 2016 Time: 10:40 # 4

Parra-Flores et al. Variability Cell Response to Mild Treatments

Data Analysis and Modeling
The data of λ and µmax were fitted to various distributions
using the @Risk 4.5 for Excel software (Palisade Corporation,
Newfield, NY, USA). The goodness of fit was compared using
three different methods: X2, Anderson–Darling (A–D) and
Kolmogorov–Smirnov (K–S). The best-fitted distributions based
on the mentioned criteria were further introduced into an
exponential model with lag to describe the growth of individual
treated and untreated cells using Monte Carlo simulations as
described by Koutsoumanis and Lianou (2013):

Nt = (N0 −Ng)+

Ng∑
1

{
1 for t≤λt
eµmaxt(t−λt) for t>λt

}
(2)

where Nt is the total number of cells in a population at time
t, N0 is the initial number of cells in the population at t = 0,
Ng∼Binomial (N0, Pg) is the initial number of cells in the
population at t = 0 that are able to grow and form a colony, Pg is
the mean probability of growth at each condition (heat shock and
growth temperature) determined as described by Koutsoumanis
(2008), µmax and λ are introduced as probability distributions
from the best fit, respectively, of a microcolony originating from
an untreated and a treated single cell, respectively. The output of
the model was assessed for N0 of 1 and 50 cells using Monte Carlo
simulation with 10,000 iterations and with a uniform distribution
for t [t∼Uniform (0, tn)], with tn 250, 600 and 900 h for each
temperature of cells untreated and heat treated at 50◦C for 5 or
10 min, respectively.

The above approach takes into account the heterogeneity
(variability) in the growth dynamics of single cells by introducing
the kinetic parameters in the model as probability distributions
using Monte Carlo simulation. In addition, this approach
predicts the probability of growth of individual cells as a function
of prior heat treatment.

Growth in PIF
To test the applicability of the model in commercial PIF, packages
of infant product from the same batch were bought locally.
Before use, they were checked for absence of anaerobic and
aerobic microorganisms, includingCronobacter spp, based on the
method of Chap et al. (2009). The PIF was reconstituted using
sterile water at 50◦C and 900 ml of the reconstituted milk were
distributed in 100 Eppendorf tubes for each growth temperature
(5, 10, 15, and 25◦C). Once stabilized the temperature, tubes were
inoculated with 100 µl of 1 or 50 Cronobacter cells that survived
heat treatment at 50◦C for 5 or 10 min or that were not subjected
to prior heat treatment. Tubes were incubated at 5, 10, 15, and
25◦C for up to 1 month and everyday duplicate samples were
mixed in molten TSA in plates and incubated at 5, 10, 15, and
25◦C.

The obtained growth curves were then fitted to the
deterministic primary model of Baranyi and Roberts (1994) for
the estimation of λ and µmax. As suggested by Koutsoumanis and
Lianou (2013), in order to describe the abrupt transition from the
lag to the exponential phase characterizing the observed growth,

the values of the parameters m and n of the model were fixed to 0
and 20, respectively.

Probability of Illness of Infants by
Cronobacter sakazakii from
Consumption of PIF
Through the consideration of the storage stages between
preparation of the formula and feeding of the infant, we
used the Risk Assessment Model for Enterobacter sakazakii
in PIF designed by FAO/WHO (2006) although including the
probability distribution provided by our data as an input of
the model, hence the risk characterization provides the level of
contamination, the ingested dose, and the probability of illness
resulting from feeding PIF.

To include the uncertainty in our results and since infants can
take different amounts of milk, we fitted a distribution to the
weight of the infant and the expected consumptions provided by
FAO/WHO (2006) which are shown in Table 1.

To estimate the probability of illness (Pill), the exponential
dose-response model was used (Haas et al., 1999).

Pill = 1− exp(−rdc) (3)

where r is the exponential dose-response parameter and dc is the
dose at consumption that results from an initial contamination
level of 1 or 50 cells of Cronobacter spp per serving.

As mentioned by FAO/WHO (2006), there are no data
currently available to estimate the parameter r, however, in
the report they proposed six options for r, ranging from
1∗10−5 to 1∗10−10. In our approach, a Uniform distribution
was used with these values. To estimate dc, the volume of
consumption and the concentration of Cronobacter spp. at
the time of consumption have to be considered. A Normal
distribution (413.39; 206.61) was fitted to the estimated
milk consumption, which was obtained by the product
between weight of the infant and the daily intake shown in
Table 1.

To estimate the concentration of Cronobacter at the time of
consumption, two approaches (probabilistic and deterministic)
were assessed based on our data, considering the time to reach
a hypothetical infected dose of 1000 CFU (Iversen and Forsythe,
2004; Mittal et al., 2009) with an initial concentration of 1 or 50
untreated cells or heat treated at 50◦C for 5 or 10 min and the
concentration reached after 50 h of incubation at 15◦C for a single
cell survivors to heat treatment at 50◦C for 5 or 10 min.

Finally, to have an idea of the probability of illness in real a
situation, Eq. 3 was multiply by the prevalence of Cronobacter
in PIF obtained from the literature (Iversen and Forsythe, 2004;
FAO/WHO, 2008; Chap et al., 2009; Siqueira et al., 2013), from
3 to 30%. To do this, we assumed a Uniform distribution (0.03,
0.3).

RESULTS

Experimentally obtained lag phase and specific growth rate
values are shown in Table 2. As expected, the higher the
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TABLE 1 | Infant group definitions presents as options in the risk assessment model (modified from FAO/WHO, 2006).

Infant group Definition Weight
(g)

Daily intake
(ml/kg/day)

ml/day

Extremely low birth weight Birth weight <1000g 800 150 120

Very low birth weight Birth weight <1500g 1250 200 250

Low birth weight Birth weight <2500g 2000 200 400

Premature neonate Prior to 37 complete weeks 2250 150 334

Term non-LBW Neonate 0 to 28 days of age 3600 150 540

Young infant 29 days to 6 months of age 5000 150 750

Older infant 6 to 12 months of age 9000 55.55 500

growth temperature, the shorter the lag phase was, reflecting the
known mesophilic character of this species (Nazarowec-White
and Farber, 1997). At the same growth temperature, the lag phase
increased as the time of exposure to heat treatment increased with
untreated cells showing the shortest lag phases. For example, at
25◦C, lag phase was 3.9 h for an untreated single cell whereas it
was 424 h for a single cell that survived at 50◦C for 10 min. In the
case of the inoculum size of 50 cells, the shorter lag was 1.75 h
and the higher was 272 h in the same conditions as those of 1
cell.

Inoculum size also affected the lag phase (Table 2). Lag phase
of single cells were longer on average than lag phase for samples
that contained 50 cells. In contrast, growth rates did not show
substantial differences between treated and untreated cells at

TABLE 2 | Kinetic parameter (lag and umax) of 1 and 50 cells of
Cronobacter sakazakii growth of cells able to growth at three different
temperatures in tryptic soy broth (TSB).

Cell (s) Growth (◦C)
temperature

treat
(min)

mean lag (h) SD (lag h) Growth rate
(LnN) h−1

1 5 0 84.6 10.61 0.035

5 285.6 78.04 0.037

10 424.0 101.19 0.038

10 0 32.0 5.28 0.097

5 108.5 33.24 0.098

10 198.5 51.00 0.097

15 0 14.9 2.87 0.278

5 49.4 16.44 0.275

10 97.8 27.86 0.279

25 0 3.9 1.26 1.134

5 17.5 7.02 1.135

10 36.6 12.89 1.134

50 5 0 45.8 8.49 0.039

5 177 48.24 0.038

10 272.6 77.22 0.038

10 0 15.9 4.12 0.098

5 59.9 26.11 0.098

10 116 42.51 0.099

15 0 5.08 1.92 0.280

5 27.38 11.62 0.279

10 58.58 20.01 0.278

25 0 1.75 0.87 1.139

5 10.08 4.38 1.141

10 20.35 8.03 1.143

the same growth temperature. In addition, the specific growth
rate was not affected significantly by inoculum size. However,
as expected, temperature did affect the growth rate; the higher
the temperature the higher the growth rate. For example, the
highest mean growth rate (1.134 h−1) was obtained with cells
grown at 25◦C, and the lowest mean growth rate (0.035 h−1) was
observed with cells grown at 5◦C, a decrease of approximately
97%.

Figure 1 shows the fitted Gamma distributions for lag
phase of single cells of Cronobacter sakazakii as a function
of temperature and heat treatments. For the same growth
temperature, the variability of the lag phase increased as the
severity of heat shock increased. For example, at 5◦C, the lag
phase of the untreated samples ranged from 45 to 125 h whereas
it ranged from 80 to 420 h for cells heat shocked at 50◦C
for 5 min and from 176 to 650 h for cells heat shocked at
50◦C for 10 min. As the growth temperature increased, the
distributions for lag phase became less variable (Figure 1).
Similar results were obtained for the higher inoculum size (i.e.,
50 cells) although the distributions were narrower; reflecting
the smaller standard deviations than those of 1 cells (data not
shown).

Figure 2 shows the mean probability of cell able to growth (Pg)
as a function of the time of heat treatment and temperature. It
was observed that as the heat treatment increased, Pg decreased;
in addition, the higher the temperature, the higher was the Pg,
indicating a significant variation in the number cells with growth
ability. For example, at 25◦C, the Pg was 0.05 for cells that
survived heating at 50◦C for 10 min, whereas the Pg was 0.97 for
cells treated for 10 min at 50◦C.

We found an explicit linear relationship (Figure 2) between Pg
and the heat treatment at the three different growth temperatures
with a high coefficient of determination (R2

≥ 0.99). We also
observed variability in the Pg within the same time of treatment.
This variability increased when the heat treatment increased and
the growth temperature decreased (presented in the Figure 2
as bar of standard deviation). However, the standard deviation
come from 10 observations, that the authors consider not enough
to result in robust results and to affirm that the probability of
growth is more variable when growth is less probable, hence, we
continued working with the mean Pg, but this observation can be
important for further research.

Table 3 describes the estimated parameters of the distribution
fitted to the experimental data and the variables used in Monte
Carlo simulations. The best fitted distribution (according to
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FIGURE 1 | Frequency distribution of individual Cronobacter sakazakii lag phases fitted by gamma distribution at different growth temperatures after
50◦C heat shock by 0, 5, and 10 min.

X2, A–D, or K–S test, data not shown) to the experimental
lag phases and specific growth rate were gamma and normal,
respectively.

Figure 3 shows the fitted distributions together with the
density data for λ and µmax of one cell based on the stochastic
growth model (Eq. 2) in TSB at 5 (A), 10 (B), 15 (C), and
25◦C (D) and simulated using Monte Carlo approach with
10.000 iterations and the deterministic growth model of Baranyi
and Roberts (1994) fitted to data of C. sakazakii in PIF. From
the stochastic approach it can be observed that the higher the
heat treatment, the higher the dispersion of the data [from
right (3) to the left (1)]. This dispersion decreased as the
growth temperature increased [from 5◦C (A) to 25◦C (D],
indeed deterministic and stochastic approaches were similar at
25◦C (Figures 3D1–D3). In addition, it can be observed that
the tendency of the fitted model is situated in the average
of the stochastic outputs. For example, at 5◦C, the stochastic
growth model predicted that the dangerous dose level of 1000
CFU/ml was reached at 250 min (discontinuous black line
Figure 3A2), while the deterministic approach indicated that this
concentrations was reached after 490 min (discontinuous gray
line Figure 3A2) from a single survivor that was heat shocked
at 50◦C for 5 min and growing at 5◦C. A similar tendency
was observed in the simulations of an inoculum size of 50

cells (results not shown). In addition, it can be observed in the
vertical discontinuous gray line in Figure 3B2, the differences
in the concentrations at the time 190 min (when deterministic
model reaches 1000 CFU/ml), the stochastic growth model
at the same time can have concentrations ranging from 0 to
107 CFU/ml.

The comparison between stochastic and deterministic
approaches showed a relevant difference between the
probabilities of illness determined by both approaches. For
example, the deterministic approach predicted (using Eq. 3) a
probability of illness of 0.144 for a dose of 1000 CFU/ml, in
contrast, the probabilistic approach predicts a probability of
illness ranging from 0 to 0.285 for untreated cells, 0 to 0.071 for
cell treated for 5 min at 50◦C and from 0 to 0.002 (95% of the
cases) when deterministic growth model reached 1000 CFU/ml
(Concentrations are taken from Figures 3C1–C3, respectively).
Note that for every case the time to reach 1000 CFU/h was
different.

As expected the previous finding was affected by growth
conditions and previous history of the cells (heat treatment
intensity). The higher the previous heat treatment the lower
the probability of illness, indeed the predicted mean probability
of illness in this conditions was close to 0 (0.0006) as shows
Figure 4, in contrast, untreated cells showed the higher mean
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FIGURE 2 | Probability of growth (Pg) of C. sakazakii as a function of exposure time at 50◦C by 0, 5, and 10 min and growth temperatures of 5, 10, 15,
and 25◦C. The continuous black lines, for which equations are shown in the figure, show the relationships found in our experiments.

TABLE 3 | Incubation temperature, duration of heat treatments, fitted distribution and parameters used to simulate growth of untreated and heat treated
cells of a single cell of C. sakazakii.

Distribution of parameter

Growth
temperature (◦C)

Treat (min) Lag (h) Specific m (h−1)

5 0 Gamma [7.8; 3.8; Shift(55)] Normal [0.03; 0.01; Shift(0.005)]

5 Gamma [11.438; 23.076; Shift(21.629)] Normal [0.03; 0.05; Shift(0.007)]

10 Gamma [11.028; 30.471; Shift(87.929)] Normal [0.03; 0.06; Shift(0.008)]

10 0 Gamma [2.9; 3.1; Shift(23)] Normal [0.092; 0.01; Shift(0.005)]

5 Gamma [8.5; 11.4; Shift(11.629)] Normal [0.0912; 0.05; Shift(0.007)]

10 Gamma [12.9; 14.2; Shift(15.29)] Normal [0.091; 0.05; Shift(0.006)]

10 0 Gamma [1.7; 2.2; Shift(11.14)] Normal [0.25; 0.02; Shift(0.028)]

5 Gamma [6.4; 6.5; Shift(7.84)] Normal [0.25; 0.02; Shift(0.025)]

10 Gamma [9.8; 8.9; Shift(10.41)] Normal [0.25; 0.02; Shift(0.029)]

25 0 Gamma [1.1; 1.2; Shift(2.54)] Normal [1.13; 0.05; Shift(0.004)]

5 Gamma [3.6; 3.7; Shift(4.17)] Normal [1.133; 0.06; Shift(0.002)]

10 Gamma [5.7; 5.4; Shift(5.84)] Normal [1.133; 0.03; Shift(0.001)]

probability of illness (0.165), while heat treated cells for
5 min had a mean probability of 0.003. These estimation
are affected directly by the concentration of cells at the
time of consumption, in this example, after 50 h of keeping
the PIF at 15◦C, the stochastic growth model of untreated
cells (Figure 3C1–C3) predicted concentration ranged from
2282 to 32205 cells/ml (95% CI) while heat treated cells
by 50◦C for 10 min there were no growth (1 cell) to 3
cells/ml (95% CI), in the other hand, at 5 min of heat
treatment the concentration observed was 1 to 873 cells/ml
(95% CI).

In contrast, deterministic growth model predicted a
concentration after 50 h at 15◦C of 16384 cells/ml for untreated
cells, 2 and 1 cells/ml for cells heat treated at 50◦C for 5 and
10 min, respectively. These concentrations resulted in probability
of illness of 0.165, 0.0007 and 0.0003, respectively.

Figure 5 shows the mean probability of illness by
consumption of PIF contaminated with an initial inoculum
of 1 (Figure 5A) and 50 (Figure 5B) cells growing at four
different temperatures with the input of the stochastic growth
model at the concentrations when the deterministic model
reached 1000 CF/ml (Figure 3). It can be observed that the effect
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FIGURE 3 | Simulation output of stochastic (gray diamonds) and deterministic (continuos black lines) growth models of an individual C. sakazakii at 5
(A), 10 (B), 15 (C), and 25 ◦C (D) and treated with 50◦C by 0, 5, and 10 min (numbers 1, 2, and 3, respectively). Discontinuous vertical lines (A2) represent
the time at which deterministic and stochastic models reach the concentration of 103 CFU/ml. Stochastic predictions for the growth of a single cell using Monte
Carlo simulation with 10,000 iterations.

of the temperature and the inoculum size in the probability
of illness. As expected the higher inoculum size and growth
temperature were, the higher the mean probability of illness.
The probability of illness from initial inoculum size of 1 cell
were below 0.2 in all the cases and for inoculum size of 50 cells
the probability of illness were, in most of the cases, above 0.7;
the probability of illness was 0.68 and 0.69 by consumption of
PIF with cell survivor to 50◦C by 5 and 10 min, respectively
(Figure 5B).

In contrast, it can be observed that there were no differences
among untreated or heat treated probabilities of illness for
the two times considered (5 and 10 min) within the same
growth temperature and inoculum size. To note that, to
estimate the probability of illness it was used the output
of the stochastic growth model but when the deterministic
model reached 1000 CFU/ml, in this point of cut-off, the
distribution of cells of treated and untreated cells were similar
(See Figure 3).

DISCUSSION

A major goal of scientists, industry, public health, and
regulatory authorities is to control pathogenic microorganisms
and improve food products hygiene and safety within a country
and internationally (Sofos and Geomaras, 2010). However, in
reality, it would be impossible to measure all parameters and
conditions under which food pathogens, such as Cronobacter
spp. can growth. Deterministic models for the behavior of
microorganism are not effective in describing the behavior of
small microbial populations or individual cells (Baranyi, 1998),
since they ignore the observed variability between individual cells
(Nauta, 2000; Koutsoumanis, 2008; Niven et al., 2008; Métris
et al., 2008; Aguirre et al., 2009; Lianou and Koutsoumanis,
2011; Cuevas-Muñoz et al., 2013; Aspridou and Koutsoumanis,
2015). Stochastic modeling approaches seem to solve the above
problem since they are able to deal with more “realistic” food
contamination events with few cells (Koutsoumanis, 2008).
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FIGURE 4 | Mean probability of illness by consumption of PIF
contaminated with a concentration of cells (taken from
Figures 3C1–C3, stochastic approach at 50 h of incubation at 15◦C of
a single cell survivor to 50◦C for 5 and 10 min). The control is also
showed as untreated cells and the prevalence is included as a uniform
distribution between 3 and 30%.

In this study we compare both lag phases, estimated by
deterministic and stochastic approaches of two inoculum sizes
(individual single cell and fifty cells) of untreated or sublethally
heat treated C. sakazakii at four temperatures and the effect of
both approaches on the probability of illness was assessed.

We observed considerable variability in the lag phase in
our experiments (Figure 1), with a remarkable influence of
the previous heat shock, the inoculum size and the growth
temperatures (Table 2); in addition, we observed an effect of the
heat shock and growth temperature on the probability (Pg) of
cells able to growth (Figure 2). Both findings are in agreement
with similar results in previous studies (Koutsoumanis, 2008;
Métris et al., 2008; Aguirre et al., 2011, 2013; Lianou and
Koutsoumanis, 2011). Miled et al. (2011) confirmed that the
variability of individual cell lag times has a major impact on
the growth of Cronobacter; however, the microorganism was
subjected to dry stress, rather than mild heating. Recently, Xu
et al. (2015) also observed that lag phase of individualC. turicensis
cells was variable after mild heat treatment. They stated that
an increase in the stress on cells resulted in increases in lag
variability, as mentioned also by other authors (Stephens et al.,
1997; Smelt et al., 2002; Métris et al., 2006; Rasch et al., 2007).

Generally, the specific growth rate in TSB (Table 2) in this
study is in agreement with previous studies (Nazarowec-White
and Farber, 1997; Iversen et al., 2004; Kandhai et al., 2004;
Ghassem et al., 2011; Miled et al., 2011; Xu et al., 2015), the higher
the growth temperature, the higher the growth rate.

In the published scientific literature, many researchers have
characterized and explained the reason of kinetic variability from
a biological point of view. Since this aspect is beyond the scope of
this study, we direct the readers to different references for further
information on the explanation of biological variability (Nauta,
2000; Robinson et al., 2001; Korobkova et al., 2004; Stewart
et al., 2005; Avery, 2006; Lianou et al., 2006; Koutsoumanis and
Lianou, 2013; Jackson et al., 2014; Huertas et al., 2015). However,

we point out the information provided by Pin and Baranyi,
(2006) who mentioned the presence of fast-growing cells and
their subsequent subpopulations which have a dominant effect
on the growth of the total culture (Pin and Baranyi, 2006),
denoting the presence of different types of subpopulations, in
this case, sensitive, less sensitive and resistant to environmental
stressor, which can be supported by the several D values and its
variation reported in the literature (Huertas et al., 2015). The
presence of different types of cells will affect to the adaptation
to the environmental condition, in the recovery and the ability
to initiate growth. Also, it is important to mention that, not all
cells within a population have the same probability to grow which
is affected by the inoculum size (Koutsoumanis, 2008) and the
growth temperature (Aguirre et al., 2013), which are expressed as
genotype (Noma et al., 2006) or non-genotypic differences (den
Besten et al., 2006), which is one of the biggest assumptions used
in predictive microbiology models when survivors are counted
at optimum growth conditions rather than at the temperature
of the “real growth conditions”, which is demonstrated here.
Although other factors may have a large impact on the exposure
to Cronobacter spp., the initial level of the micro-organism in PIF
is one of the key to its impact on public health and thus insight in
this level is important for governmental risk managers as well as
for PIF manufacturers (Reij et al., 2009).

We found that a gamma distribution described well the
distribution of lag times whereas a normal distribution described
well the distribution of µmax for both heat stressed and
unstressed C. sakazakii cells (Table 3). These findings are in
agreement with those reported by others authors (Métris et al.,
2008; Aguirre et al., 2013; Koutsoumanis and Lianou, 2013;
Xu et al., 2015). In conditions of very low contamination,
individual cell variability can have an important impact on
pathogen growth (Guillier and Augustin, 2006). Knowing how
their long term presence in PIF, and subsequent stress, affect
the variability of single-cell lag times is important in assessing
the risk of cell recovery and growth in reconstituted milk,
where low numbers of stressed cells of pathogenic bacteria
may be distributed among PIF samples (Miled et al., 2011)
or may enter into the infant formula post preparation, during
the manipulation or storage (Reich et al., 2010; Kucerova
et al., 2011; Parra et al., 2015). Moreover, the heterogeneous
distribution of Cronobacter cells in PIF makes this even more
the case. In a real situation, a distribution of the inoculum
size can be observed in a batch of food, which markedly
influences public health risk. This heterogeneity can be due
to the structural heterogeneity of the food matrix, incomplete
mixing, incidental (post-processing) contamination, and/or
localized microbial growth (Jongenburger et al., 2011). It is
critical to take into account variability in microbial response
because the credibility of a microbial risk assessment is based
on its ability to consider the variability and uncertainty of
each parameter involved in estimating final risk (Delignette-
Muller and Rosso, 2000). The presence of a few atypical cells
with short lag phase can unexpectedly shorten population lag
time (Baranyi, 2002), which may shorten food shelf-life or, if
pathogens are present in the food, increase the health risk to
consumers.
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FIGURE 5 | Mean Probability of illness by consumption of PIF contaminated with an initial inoculum of 1 cell (A) and 50 (B) cells and growth at four
different temperatures. Each temperature has three probability of illness according to cells treated with 50◦C by 0 (P ill 1), 5 min (P ill 2), and 10 min (P ill 3) and so
on, respectively. The concentration to estimate the probabilities were taken from stochastic growth model using the cut-off point when the deterministic growth
model reached 1000 CFU/ml (See Figure 3).

The probabilistic approach proposed by Koutsoumanis and
Lianou (2013) and replicated in the present study (Figure 3)
is a stochastic growth curve in which the number of cells in
the population at any time is a probability distribution based
on a Monte Carlo simulation for describing the variability of
parameters. For example, the number of cells in a microcolony
generated from a single untreated cell after 100 h of growth at
10◦C (Figure 3B1) can be either 155 (1st percentile) or 5252 (99th
percentile); in contrast the deterministic model predicts a number
of cell in average of 777, or from a heat shocked single cell

(50◦C for 5 min, Figure 3B2) growth at 10◦C, the number of cells
can be either 1 (1st percentile) or 76 (99th percentile), while the
deterministic model predict no growth (1 cell with no duplication
yet). The above variation in concentration of Cronobacter spp.
at the time of consumption can affect the response of the host,
however, in the case of this pathogen several aspects need more
work to establish a proper dose-response model for premature
newborns.

Here, it is easy to understand and visualize the impact of
the variability of the kinetic parameters in the estimation of the

Frontiers in Microbiology | www.frontiersin.org 10 April 2016 | Volume 7 | Article 535

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-07-00535 April 19, 2016 Time: 10:40 # 11

Parra-Flores et al. Variability Cell Response to Mild Treatments

concentration at certain time of growth and the impact between
stochastic and deterministic approaches in our estimations,
indeed, if we graph an imaginary line (Figure 3A2) we can
observe that after 250 min the stochastic model predicted a
concentration of 1000 CFU/ml while in the deterministic model,
this concentration is reached after 490 min from a single cell
growth sublethaly injured at 50◦C for 5 min and grown at 10◦C.
Hence, the impact of individual cell variability on the growth of
Cronobacter as affected by inoculum size, growth temperature,
and the probability of growth should be taken into account,
especially when errors in feeding bottle-preparation practices,
such as improper holding temperatures, may lead to growth
of the pathogen to a critical cell level (Miled et al., 2011).
In addition, to better estimate risk (Aguirre et al., 2013) the
above variability should be used in a dose response model, in
contrast to providing the mean average probability of illness
(Figures 4 and 5), however, care should be taken with the
effect of the inoculum size, because even the best studied host–
pathogen systems, the exact relation between the inoculum
size and the probability of disease is unclear (Cornforth et al.,
2015).

Current manufacturing processes are not capable of producing
a sterile PIF (Kent et al., 2015), in addition, intrinsic
contamination of PIF can occur at any stage during manufacture
at the factory before distribution of product for retail; also,
extrinsic contamination of product can occur after the factory
container is first opened by the user; at any stage of reconstitution
through the use of contaminated water, utensils, work surfaces; at
the time of feeding (e.g., using contaminated feeding bottles or
enteral tubing with existing biofilm); or because of inappropriate
storage conditions (e.g., poor refrigeration or storage for too long
at room temperature) (Kalyantanda et al., 2015).

In this study, we established the importance of assessing the
impact of some factors (heat treatment, inoculum size, growth
temperature) on the variability response of Cronobacter and
its impact in the probability of illness by PIF consumption
contaminated with it, however, several aspects need more
work and scrutiny before being conclusive and able to us
to performance a sensitivity analysis (Poschet et al., 2004;
Membré et al., 2008; Ellouze et al., 2010). Additionally, the stress
response factors identified previously in Cronobacter species,
such as heat-shock, cold-stresses, survival in dry conditions,
water activity (aw), and pH need to be re-assessed using novel

approaches that are currently under development (Yan and
Fanning, 2015).

CONCLUSION

Extensive variation of lag phase was observed for C. sakazakii.
The inoculum size also affected the lag phase, as the inoculum
size decreased the mean lag phase and its variability increased.
The µmax was primarily affected by growth conditions and not by
inoculum size. Results of this study highlight the risks associated
with mean estimation rather stochastic approaches. Furthermore,
the information provided here demonstrates that the effect of the
growth environment and previous stress on the variability of the
kinetic behavior of the microorganism survivors to a treatment is
not negligible, and should, therefore, be characterized and taken
into account in the development of stochastic approaches utilized
in predictive microbiology and microbial risk assessment for food
safety plans.
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