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Bacteria possess many kinases that catalyze phosphorylation of proteins on diverse
amino acids including arginine, cysteine, histidine, aspartate, serine, threonine, and
tyrosine. These protein kinases regulate different physiological processes in response
to environmental modifications. For example, in response to nutritional stresses, the
Gram-positive bacterium Bacillus subtilis can differentiate into an endospore; the
initiation of sporulation is controlled by the master regulator SpoOA, which is activated
by phosphorylation. SpoOA phosphorylation is carried out by a multi-component
phosphorelay system. These phosphorylation events on histidine and aspartate residues
are labile, highly dynamic and permit a temporal control of the sporulation initiation
decision. More recently, another kind of phosphorylation, more stable yet still dynamic,
on serine or threonine residues, was proposed to play a role in spore maintenance and
spore revival. Kinases that perform these phosphorylation events mainly belong to the
Hanks family and could regulate spore dormancy and spore germination. The aim of this
mini review is to focus on the regulation of sporulation in B. subtilis by these serine and
threonine phosphorylation events and the kinases catalyzing them.
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INTRODUCTION

Many Gram-positive bacteria form endospores in response to stress or nutrient limitation (Stragier
and Losick, 1996; Higgins and Dworkin, 2012). Spores are morphologically distinct cells that are
highly resistant to heat, chemicals, and radiation (Nicholson et al., 2000; Setlow, 2003, 2006, 2008).
These dormant cells are able to reinitiate growth rapidly in response to environmental signals
like amino acids or cell-wall muropeptides released by growing cells (Setlow, 2003, 2008). These
processes are well regulated and orchestrated by a series of protein phosphorylation events and
changes in gene expressions controlled by sigma factors (oF, o¥, 6 and 6X). In Bacillus subtilis, a
landmark of the initiation of sporulation is the activation of the transcriptional master regulator
SpoOA. It is activated by phosphorylation through a remarkable multi-component phosphorelay
system of autophosphorylating histidine kinases (KinA-KinE) (Burbulys et al., 1991; LeDeaux et al.,
1995; Tan and Ramamurthi, 2014). These phosphorylations are labile and highly dynamic, thus
permitting a temporal regulation of the sporulation initiation decision (De Jong et al., 2010). More
recently, another kind of phosphorylation, more stable yet still dynamic, on serine or threonine
residues of protein substrates, has been proposed to play a role in sporulation (Cousin et al.,
2013). These phosphorylation reactions are generally catalyzed by Ser/Thr protein kinases (STPKs)
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of the Hanks family (Hanks and Hunter, 1995). They seem to
regulate entry into sporulation, dormancy, and spore revival.
These kinases share a common fold for their cytosolic catalytic
domain typically composed of 12 subdomains organized in two-
lobes surrounding the active site (Kornev and Taylor, 2010). In
some STPKs, the kinase domain is attached to a transmembrane
helix connected to an extracellular ligand binding domain
responsible for kinase activation. In some, the kinase domain is
connected to a transmembrane helix without any extracellular
domain. In others, the kinase domain is soluble. They are
themselves activated by autophosphorylation on Ser or Thr
residues of their activation loop (Pereira et al., 2011). In addition,
each kinase is able to phosphorylate various substrates on Ser
and/or Thr residues. In B. subtilis, four Ser/Thr kinases of the
Hanks family have been characterized to date: PrkA, PrkC,
PrkD, and YabT. All of them, except PrkD, are implicated at
different levels of the sporulation process: onset, dormancy,
germination, and outgrowth (Figure 1) (Shah et al., 2008;
Bidnenko et al.,, 2013; Yan et al., 2015). Several phosphoproteome
studies have been performed during the last 10 years and

thanks to technical progress especially in mass spectrometry,
more and more phosphorylated proteins have been identified
in B. subtilis (Eymann et al., 2007; Macek et al., 2007; Soufi
et al,, 2010; Kobir et al., 2011; Ravikumar et al., 2014; Rosenberg
et al,, 2015). In early studies, only one experimental condition
was probed. Nowadays, dynamic phosphoproteomes can be
analyzed, and allow to explore several growth conditions for
the same bacterial population. Furthermore, it has recently
been proposed that cross-talks exist between two-component
systems and STPKs as well as cross-phosphorylations among
STPKs (Pereira et al., 2011; Shi et al., 2014a). This network
of regulations may also be complicated by cross-talk with
bacterial tyrosine kinases (BY-kinases) (Cousin et al, 2013).
Such a complex regulatory network could allow quick and
efficient regulation of bacterial physiology in response to the
environmental variations. Broadly, the role of phosphorylation
in several bacterial processes like DNA-related mechanisms,
cell division and morphogenesis have been discussed recently
(Garcia-Garcia et al., 2016; Manuse et al., 2016). In this review,
we will specially focus on regulations mediated by STPKs during
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FIGURE 1 | Schematic illustration of regulations by Ser/Thr phosphorylation during a Bacillus subtilis spore life. The sporulation steps are presented in
the green panel and the spore revival steps in the red panel. The stages described in the review are underlined. In the schematic spore, the core is in yellow, the
cortex in green and the coat in gray. The two types of spore signal receptors are represented: the GerA, B, and K in sticks, the STPK PrkC in balls (purple: kinase
domain, pink: PASTA domains, and white: IgG-like domain) and stick (transmembrane domain). For a detailed structure of a STPK, see (Pereira et al., 2011). For
examples of PrkC substrates identified during vegetative growth, see references (Foulquier et al., 2014; Pompeo et al., 2015). The two-component cascade leading
to SpoOA phosphorylation is presented in the framed rectangle and regulations by STPKSs are listed in the white rectangles. Other possible cross-regulations by
two-component systems, BY-kinases, or other phosphorylations are not represented here in order to not overload the drawing.
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the different stages of sporulation in the model bacterium
B. subtilis.

SPORULATION

Sporulation is a morphological differentiation event that is
initiated by an asymmetric division yielding a smaller forespore
and a larger mother cell (Stragier and Losick, 1996; Higgins and
Dworkin, 2012). Several steps are necessary from the formation
of a forespore to the release of a mature spore after lysis of
the mother cell. These include engulfment, cortex synthesis and
coat formation (Figure 1) in order to confer to the spore the
resistance properties required to survive extreme conditions of
temperature, desiccation and ionization (Setlow, 2006). This
robustness is the result of several factors like dehydration, DNA
compaction, and dormant metabolism (Nicholson et al., 20005
Setlow, 2007; Camp and Losick, 2009; Doan et al., 2009). As
mentioned before, initiation of sporulation is controlled by a
cascade of phosphorylation events catalyzed by two-component
systems and eventually leading to the activation of SpoOA.
When the level of SpoOA-P is sufficient (Vishnoi et al., 2013),
the compartment-specific transcription factor of is activated,
definitely engaging the sporulating cell into a specific program
of genes expression (Tan and Ramamurthi, 2014). In addition,
the expression of two genes encoding the STPKs PrkA and YabT
increases strongly during sporulation under the control of the
spore-specific sigma factors, oF and oF, respectively (Figure 2).
These two kinases have been indeed shown to participate in the
regulation of several mechanisms occurring during the initiation
of sporulation (Fischer et al., 1996; Bidnenko et al., 2013; Yan
et al., 2015). PrkA is a STPK that only possesses a catalytical

domain and localizes in the coat of the forespore (Eichenberger
et al., 2003). This protein also shows a distant homology to
eukaryotic cAMP-dependent protein kinases and several essential
residues of their active site are apparently conserved in PrkA.
Using a B. subtilis crude extract, it has been proposed that PrkA
phosphorylates an unidentified 60-kDa protein on Ser residue(s)
(Fischer et al.,, 1996). However, no PrkA autophosphorylation
was detected. That is surprising since STPKs generally need
to be autophosphorylated to be active. However, even if the
enzymatic properties of PrkA are poorly characterized, the role
of this protein in sporulation seems clearly established. Actually,
deletion of prkA gene leads to a sporulation defect corresponding
to a delay in the entry into sporulation and a decrease in
the number of spores. It has recently been shown that PrkA
was involved in the synthesis of the oX transcription factor
(Yan et al, 2015). Indeed, PrkA increases the expression of
oX and its downstream target genes, by inhibiting the negative
transcriptional regulator ScoC (Hpr) (Figure 1). However, the
complete mechanism of regulation, potentially via the kinase
activity of PrkA, is not known: how does PrkA act on ScoC?
Is it a direct or indirect regulation of ScoC and does PrkA
phosphorylate ScoC on Ser/Thr residue(s)? What are the exact
targets of PrkA phosphorylation? Though it appears that PrkA
is a key player in the regulation of sporulation in B. subtilis,
more work needs to be done in order to completely understand
the role of this putative STPK. The second regulatory protein
YabT is a STPK containing three domains: a transmembrane
region, a kinase domain and a DNA-binding domain. YabT kinase
activity has been clearly established and targets of YabT have been
identified. Binding of YabT to DNA activates its kinase activity;
YabT is then able to autophosphorylate and to phosphorylate
exogenous substrates (Bidnenko et al., 2013). It colocalizes with
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FIGURE 2 | Schematic view of STPK gene expression during growth. The growth curve of a B. subtilis cell culture in rich medium is presented in gray
(ODgoo nm)- The levels of kinase gene expression are obtained from http://subtiwiki.uni-goettingen.de/ (Michna et al., 2016) and from Nicolas et al. (2012). They are
presented in color: blue for prkC, green for prkD, red for prkA, and black for yabT. Signals for starvation (highlighted in green) and germination (highlighted in red) are
indicated by arrows.
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the septal inner membrane separating the forespore from the
mother cell. As for prkA, deletion of the yabT gene leads to
a sporulation delay. Furthermore, resistance to DNA damages
decreases in the yabT mutant spores. Both phenotypes were also
observed in a recA mutant (Shafikhani et al., 2004; Bidnenko
et al,, 2013). The recombinase RecA is actually a YabT substrate
in vitro (phosphorylation on Ser2) and consistently, RecA was
previously identified in a phosphoproteome study revealing the
same phosphorylated residue (Soufi et al., 2010). It is, therefore,
likely that YabT regulates RecA activity in the forespore in order
to allow DNA damage repair before nucleoid compaction in the
spore (Sciochetti et al., 2001). Similarities between the bacterial
STPK YabT and the eukaryotic STPKs C-Abl and Mec1 have been
found: all these kinases are activated by DNA and phosphorylate
proteins involved in DNA damage repair mechanisms (Bidnenko
et al, 2013). In vitro, YabT is able to phosphorylate RacA,
another DNA-related protein involved in DNA anchoring to
the cell pole (Ben-Yehuda et al., 2003; Shi et al., 2014b). RacA
can be dephosphorylated in vitro by SpollE, a serine protein
phosphatase known to modulate the phosphorylation state of the
anti-anti of factor SpolIAA (Arigoni et al., 1996). Interestingly,
YabT and SpollE have been found associated to the same protein
partners in a recent yeast two-hybrid screen suggesting that they
function as a kinase/phosphatase couple during sporulation (Shi
et al,, 2014b). Another potential substrate of YabT is the global
transcriptional regulator AbrB which is phosphorylated on Ser86
in vivo (Figure 1) (Soufi et al, 2010) as well as in vitro by
YabT, PrkC and PrkD (Kobir et al., 2014). AbrB is a global gene
regulator involved in transition phases (i.e., from exponential to
stationary growth phase) that also antagonizes sporulation by
repressing the expression of SpoOA (Phillips and Strauch, 2002).
It has been proposed that AbrB phosphorylation serves as an
additional input for a subtle control of AbrB activity. Indeed,
AbrB phosphorylation inhibits its ability to bind its DNA targets
(Kobir et al., 2014). In addition, a strain expressing phospho-
mimetic AbrB produces fewer spores and sporulates much
slower. Because the YabT kinase is produced just after the onset
of sporulation, it is the best candidate for AbrB phosphorylation
in sporulation conditions.

DORMANCY

It is commonly accepted that when the mature spore is
released by the mother cell, it is metabolically dormant and
environmentally resistant. The spore is protected by thick layers:
the cortex and the coat, and contains a high level of dipicolinic
acid (DPA) and a low amount of water. However, it has been
recently shown that the spore RNA profile is highly dynamic a
few days following sporulation (Segev et al., 2012). During this
short period, spores are responsive to environmental changes and
can adapt their RNA content consequently. Furthermore, some
enzymatic activities necessary for full maturation of coat proteins
have been described in spores (Zilhdo et al., 2005; Sanchez-
Salas et al,, 2011). Taking these observations into account, it is
possible to consider that regulation of enzymatic activities or
protein synthesis by phosphorylation reactions exist in spore

during this adaptive period. For example, the overall metabolism
is down regulated, in particular protein synthesis, which is an
energy-intensive cellular process. This regulation is mediated by
phosphorylation of the elongation factor Tu (EF-Tu). Indeed,
phosphorylated EF-Tu is unable to hydrolyze GTP and remains
bound to the ribosome which leads to a dominant-negative effect
in elongation, thus inhibiting protein synthesis (Pereira et al.,
2015). It has been proposed that the kinase involved in this
phosphorylation is YabT because it is present in the spore during
dormancy and it is able to phosphorylate EF-Tu in vitro on
Thr63. In vivo experiments confirmed that YabT is responsible
of EF-Tu phosphorylation in the spore since no phosphorylated
EF-Tu was found in a yabT mutant (Figure 1) (Pereira et al.,
2015). Moreover, in vitro phosphorylation of EF-Tu by PrkC
was previously reported on Thr384 but the in vivo regulatory
function of this phosphorylation has not been accounted for so
far (Absalon et al., 2009).

GERMINATION AND OUTGROWTH

Spores of B. subtilis can remain dormant for years but return to
life quickly after exposure to nutrients or muropeptides (Setlow,
2003, 2008, 2014). Specific receptors (including GerA, GerB, and
GerK) that detect nutrients have been known for years (Atluri
et al., 2006; Ramirez-Peralta et al., 2013). More recently, in
the inner spore membrane, the STPK PrkC has been shown
to bind muropeptides released by growing cells thus inducing
germination (Shah et al., 2008). Spores can also reinitiate growth
stochastically at a low frequency due to phenotypic variations
in individual spore (Sturm and Dworkin, 2015). The revival
process (Figure 1) can be divided into three consecutive phases:
(i) germination with spore rehydration, release of DPA, cortex
hydrolysis, and coat disassembly, then (ii) a ripening period with
no morphological changes but a molecular reorganization of the
cell, and finally (iii) outgrowth with synthesis of macromolecules,
membrane elongation, and cell division (Sinai et al., 2015).
However, it seems that synthesis of proteins might start earlier, as
early as 30 min after the initiation of germination. Up to 650 new
proteins are synthesized during the three steps described above
(Sinai et al., 2015). A dynamic phosphoproteome of reviving
spores established a functional connection between Ser/Thr/Tyr-
phosphorylation and progression of this process (Rosenberg
et al,, 2015). Though it was proposed that the STPK PrkC, and,
therefore, phosphorylation of PrkC protein substrates, stimulates
germination only in the presence of muropeptides as germinant
(Shah et al., 2008), this phosphoproteome analysis was only done
in the presence of L-Ala as germinant. It will be interesting
to perform the same study using muropeptides as germinant
to compare the profile of phosphorylated proteins identified.
Nevertheless, the high number of new phosphoproteins already
characterized (Rosenberg et al., 2015) suggests an important
modulation of protein activity during this cellular transition to
vegetative growth. The phosphoproteins identified are involved
in spore-specific functions, transcription, metabolism, and stress
response, some of which are probably phosphorylated by STPKs.
YabT and PrkA are highly synthesized during sporulation
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whereas PrkC is more expressed during germination (Figure 2).
However, these three kinases and possibly other still unknown
protein kinases (with weak homology to classical STPK)
could contribute to these regulatory mechanisms. PrkC is a
transmembrane protein composed of an intracellular catalytic
domain and an extracellular regulatory C-terminal region
containing several beta-lactam-binding domains. These PASTA
domains (for penicillin-binding protein and serine/threonine
kinase-associated domains) are predicted to interact with the
peptidoglycan (PG) (Yeats et al., 2002). Biochemical studies of
PrkC homologues confirmed the in vitro interaction between
PG fragments and PrkC (Mir et al., 2011; Ruggiero et al., 2011;
Squeglia et al., 2011). Thus, binding of PG fragments released
from growing cells to the extracellular domain of PrkC could
stimulate PrkC kinase activity to induce the germination of the
spore (Figure 1) (Shah et al., 2008). The prkC gene expression
is low during sporulation and stimulated during germination
but its expression level during vegetative growth and especially
during stationary phase is not negligible (Figure 2). Hence, PrkC
can phosphorylate several substrates produced during vegetative
growth or sporulation and, up to now, more than 10 substrates of
PrkC have been identified in vitro. These targets include proteins
of carbon metabolism (Pietack et al., 2010) or proteins involved
in protein synthesis like CpgA, a GTPase involved in a late stage
of ribosome assembly, and the elongation factors EF-G and EF-
Tu (Shah et al., 2008; Absalon et al., 2009; Pompeo et al., 2012).
It has beeen proposed that PrkC phosphorylates EF-G in the
spore to allow re-initiation of protein synthesis. But, it is unlikely
that this phosphorylation is the only cause of germination.
PrkC also promotes the expression of yocH, a muralytic enzyme
encoding gene. YocH is exported and digests the PG of other
growing bacteria, thus producing more muropeptides that in turn
stimulate germination (Shah and Dworkin, 2010; Libby et al.,
2015). Moreover, the phosphorylation of several proteins has
been shown to be important for germination. These include
the spore specific proteins SspA et SspB involved in DNA
protection, the ribosomal protein Rps], the elongation factors EF-
Tu and EF-G, and the phosphocarrier protein HPr (Rosenberg
et al., 2015). But, for many of them, the kinase that catalyzes
their phosphorylation is still unknown. In the particular case
of HPr, which is a component of the phosphoenolpyruvate-
dependent sugar system (PTS) and a key player of carbon
catabolite regulation in B. subtilis, phosphorylation is catalyzed by
HprK/P, an atypical ATP-dependent kinase/phosphorylase. This
enzyme does not share homology with eukaryotic STPKs and
does not belong to the Hanks kinase family. Instead, it shares
limited homology with the phosphoenolpyruvate carboxykinase
(Galinier et al, 2002). It does not autophosphorylate but
phosphorylates two protein substrates, HPr and its homologue
Crh, on the Ser46 residue (Galinier et al., 1997, 1998). HprK/P
is stimulated by phosphorylated sugars like glucose 6-phosphate
or fructose 1,6-bisphosphate (Jault et al., 2000) for the regulation
of carbohydrate utilization (Galinier et al, 1998; Martin-
Verstraete et al., 1999). However, during spore revival, it may be
activated in the presence of alternative PTS sugars (Rosenberg
et al,, 2015). In addition, strains producing some HPr mutant
proteins on the Ser46 phosphorylation site (both phosphoablative

and phosphomimetic mutants) exhibited reduced sporulation
efficiency (Rosenberg et al., 2015). These results indicate that
the phosphorylation level of HPr is important for spore revival.
This is not surprising since optimal carbon utilization needs
to take place rapidly upon revival. Therefore, the regulation of
spore revival by phosphorylation on Ser and Thr residues is an
important mechanism that can be mediated by several types of
kinases like STPKs and HprK/P, or even other atypical protein
kinases not yet identified. This network of regulations may also
be complicated by cross-talk with other phosphorylation systems
like BY-kinases (Cousin et al., 2013), two-component systems,
or recently identified Arg phosphorylations (Elsholz et al., 2012;
Schmidt et al., 2014).

CONCLUSION

It is now widely accepted that regulatory Ser/Thr
phosphorylation is as present in prokaryotes as in eukaryotes
and that enzymes responsible for these modifications are
mainly eukaryotic-like Ser/Thr kinases. To date, four of these
proteins have been characterized in B. subtilis (PrkA, PrkC,
PrkD, and YabT) and several examples highlight their regulatory
role in cellular physiology during vegetative growth as well as
during sporulation. In this mini review, we focused on their
regulatory functions in spores and showed that STPKs have
relaxed substrate selectivity that confers to the cell a quick way to
adapt to the physiological conditions. Taking into account that
cross-phosphorylation events occur among STPKs, BY-kinases,
and two-component systems, the regulatory network controlling
a spore life is highly dynamic and sophisticated. Given the role
of spores in many diseases, understanding mechanisms and
regulation of spore formation and spore germination has long
been a researcher’s interest in order to find a way to get rid of
them more efficiently. However, a new interest has now emerged
with the use of spores as a tool in biotechnology (Isticato and
Ricca, 2014).
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