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Growing evidence supports the efficacy of many probiotic strains in the management of
gastrointestinal disorders associated with deregulated intestinal barrier function and/or
structure. In particular, bifidobacteria have been studied for their efficacy to both prevent
and treat a broad spectrum of animal and/or human gut disorders. The aim of the
current work was thus to evaluate effects on intestinal barrier function of Bifidobacterium
animalis ssp. lactis CNCM-I2494, a strain used in fermented dairy products. A chronic
dinitrobenzene sulfonic acid (DNBS)-induced low-grade inflammation model causing
gut dysfunction in mice was used in order to study markers of inflammation, intestinal
permeability, and immune function in the presence of the bacterial strain. In this chronic
low-grade inflammation mice model several parameters pointed out the absence of an
over active inflammation process. However, gut permeability, lymphocyte populations,
and colonic cytokines were found to be altered. B. animalis ssp. lactis CNCM-I2494
was able to protect barrier functions by restoring intestinal permeability, colonic goblet
cell populations, and cytokine levels. Furthermore, tight junction (TJ) proteins levels
were also measured by qRT-PCR showing the ability of this strain to specifically
normalize the level of several TJ proteins, in particular for claudin-4. Finally, B. lactis
strain counterbalanced CD4+ lymphocyte alterations in both spleen and mesenteric
lymphoid nodes. It restores the Th1/Th2 ratio altered by the DNBS challenge (which
locally augments CD4+ Th1 cells) by increasing the Th2 response as measured by the
increase in the production of major representative Th2 cytokines (IL-4, IL-5, and IL-10).
Altogether, these data suggest that B. animalis ssp. lactis CNCM-I2494 may efficiently
prevent disorders associated with increased barrier permeability.
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INTRODUCTION

The intestinal barrier is an effective defense mechanism that
depends on the integrity of the cells and the junctional complexes
between them. The gut barrier is a functional unit organized
as a multilayer system composed by a physical barrier which
prevents bacterial adhesion and regulates paracellular diffusion
and a functional layer able to discriminate between pathogens
and commensal microorganisms (Lopetuso et al., 2015). The
physical barrier is formed by a mucus layer followed by a
monolayer of epithelial cells (Denker and Nigam, 1998; Natividad
and Verdu, 2013) performing the paracellular transport across
the barrier controlled by apical junction proteins (Natividad
and Verdu, 2013). The mucus protects the epithelium from
harmful microorganisms and antigens being also a lubricant
for intestinal motility (Lopetuso et al., 2015). Outer mucus
is composed of the highly glycosylated mucin MUC2 protein
produced by the goblet cells (Lopetuso et al., 2015). The
regulation of its function is mediated by both endogenous and
exogenous factors (Agostini et al., 2012; Distrutti et al., 2013) and
is a key factor in the development of several diseases involving
altered gut permeability and dysfunction such as irritable bowel
syndrome (IBS), food allergies, type-1 diabetes, and obesity
(Perrier and Corthésy, 2011; Camilleri et al., 2012; Vaarala,
2012). Diverse microorganisms have shown to protect barrier
integrity and promote its restoration when damaged. Among
them, increasing evidence points out that strains of lactic acid
bacteria (Gaudier et al., 2004) and bifidobacteria regulate gut
barrier function using different mechanisms (Agostini et al., 2012;
Distrutti et al., 2013). For instance, Lactobacillus rhamnosus GG
(LGG), B. breve NCC2950 and a mixture of lactobacilli and
bifidobacteria (L. casei, L. plantarum, L. acidophilus, L. delbrueckii
ssp. bulgaricus, B. longum, B. breve, and B. infantis) prevent the
increase in intestinal permeability in vivo (Ukena et al., 2007;
Mennigen et al., 2009; Donato et al., 2010; Natividad et al.,
2013).

Bifidobacteria, naturally present in the colonic microbiota,
correspond to up to 80% of the cultivable fecal microorganisms
in full-term breastfed infants (Picard et al., 2005). They have
been traditionally considered as safe microorganisms, due to
their Generally Recognized As Safe (GRAS) status and are widely
used as health-promoting bacteria in functional foods. Especially,
B. animalis ssp. lactis (B. lactis) CNCM I-2494 has a long
history of use in fermented dairy products and shows a high
gastrointestinal survival (Picard et al., 2005; Rochet et al., 2008).
A fermented milk product (FMP)-containing B. lactis CNCM I-
2494 together with lactic acid bacterial starter cultures has shown
positive effects on gut function in several randomized controlled
studies (Picard et al., 2005) improving: (i) gastrointestinal well-
being and digestive symptoms in women reporting minor
digestive problems (Guyonnet et al., 2009a), (ii) abdominal
girth and gastrointestinal transit (Agrawal et al., 2009),
(iii) health related quality of life and symptoms in IBS in adults
(Guyonnet et al., 2009b), and (iv) colonic transit time and
minor digestive problems in healthy women (Marteau et al.,
2002, 2013). The physiological effects of this strain have been
also evaluated in animal studies where it has been capable

to reduce the aberrant crypts incidence in chemically induced
carcinogenesis models in rats (Tavan et al., 2002), improve
colitis in mice (Veiga et al., 2010), hydrolyze bile salts in the
gastrointestinal tract of pigs (Lepercq et al., 2004), and prevent
the increase of intestinal permeability induced by partial restraint
stress in rats (Agostini et al., 2012). The molecular mechanisms
underlying the positive effects of strain CNCM I-2494 are far
from being completely understood although its genome have
been sequenced (Chervaux et al., 2011). Recent identification
of several restriction and modification systems in this strain
and development of specific molecular tools opened the way in
studying specific bacterial mechanisms involved in the cross-talk
of strain CNCM I-2494 with the host (O’Connell Motherway
et al., 2014).

The clear relationship between B. lactis CNCM I-2494 and the
protection of gut dysfunction in both animal models and clinical
trials combined to the industrial importance of this strain has
prompted us to deeper analyze its possible effects on an altered
permeability and gut dysfunction model. Gut dysfunction was
achieved thanks to a first inflammatory insult followed with a
second subclinical chemical challenge as previously described
(Laval et al., 2015; Martin et al., 2015). The aim of this work was
to clarify the direct effect of the strain in the murine intestinal
epithelium barrier and function.

MATERIALS AND METHODS

Bacterial Growth Conditions and Animals
Bifidobacterium animalis ssp. lactis CNCM-I2494 was grown
in MRS medium (Difco, USA) supplemented with cysteine
(0.5 mg/ml; Sigma–Aldrich) under anaerobic conditions at 37◦C.

Male C57BL/six mice (6–8 weeks old; Janvier, Le Genest Saint
Isle, France) were maintained at the animal care facilities of the
National Institute of Agricultural Research (IERP, INRA, Jouy-
en-Josas, France) under specific pathogen-free (SPF) conditions.
Mice were housed under standard conditions for a minimum of
1 week before experimentation. All experiments were performed
in accordance with European Community rules for animal care
and were approved by the relevant local committee (Comethea).
Protocol number 02550.01.

Experimental Design
Inflammation was induced as previously described (Laval
et al., 2015) (Supplementary Figure S1). Briefly, mice where
challenged, under anesthesia, with a first intra-rectal dose of
100 mg/Kg of dinitrobenzene sulfonic acid (DNBS) solution
(ICN, Biomedical Inc.) in 30% ethanol (EtOH). Control mice
(without colitis) received only 30% EtOH. Thirteen days after the
first DNBS injection, 5 × 109 CFU of viable bacteria in 200 μl
of PBS or PBS alone were administered intra-gastrically, daily for
10 days (gavage period). Finally, 21 days after the first challenge,
the mice were challenged again with a second administration of
50 mg/kg of DNBS or EtOH. Weight loss was monitored during
3 days following the second DNBS injection to assess possible
clinical signs of distress.
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To confirm the absence of over inflammation, colonic macro-
scopic and histological scores as well as colonic myeloperoxidase
(MPO) activity (a marker of the degree of infiltration by
polymorphonuclear neutrophils) and serum lipocalin-2 levels
(an early inflammation marker) were determined as previously
described (Shashidharamurthy et al., 2013; Martin et al., 2014;
Laval et al., 2015).

Histological Features Analysis
Flushed colons were fixed in 4% paraformaldehyde or Carnoy
buffer, dehydrated and embedded in paraffin according to
a standard protocol. Histological features were analyzed by
hematoxylin–eosin–safran (Perrier and Corthésy, 2011) staining.
Periodic acid-Schiff (PAS) and Alcian blue (AB) staining were
performed as in Wrzosek et al. (2013).

Intestinal Permeability In Vivo
Permeability in vivo was assessed using fluorescein
isothiocyanate-conjugated dextran (FITC–dextran 3000–
5000 Da, Sigma–Aldrich) tracer as previously described
(Tambuwala et al., 2010). Briefly, at the endpoint 0.6 mg/g body
weight of FITC–dextran dissolved in PBS was administered to
mice by oral gavage. To measure the presence of FITC–dextran
in blood, 3.5 h after the gavage blood samples were recovered
from the retro-orbital venous plexus and kept in dark at 4◦C until
analysis. Mice were housed under standard conditions during
this period with un-limited access to water and food. Serum
has separated by centrifugation and plasma FITC levels were
determined using a fluorescence microplate reader (excitation
485 nm and emission 530 nm; Tecan, Lyon, France).

Apical Junctional Analysis by
Quantitative Real-time PCR (qPCR)
Total RNA was isolated from 20 to 30 mg samples of colon
with an RNeasy Mini Kit (Qiagen) as previously described
(Laval et al., 2015). qPCR was performed with diluted cDNA
(10×) in triplicate and with an iQ5 Real-Time Detection System
(Bio-Rad). The reaction mix consisted of Ssofast Evagreen
Supermix (Bio-Rad), primers at 0.5 μM (Martin et al., 2015),
and 2 μL of diluted cDNA. Values are expressed as relative fold
differences normalized to a housekeeping gene, Gapdh, by the
2−��CT method. All procedures were performed according to the
manufacturers’ instructions.

Analyses of Lymphoid Populations
Present in the Spleen and in the
Mesenteric Lymphoid Nodes (MLNs)
Mononuclear cells were isolated from spleens and MLN by
gentle extrusion of the tissue through a 50 μm-mesh Nylon
cell strainer (BD). Cells were suspended in Dulbecco’s Modified
Eagle Medium (DMEM) medium supplemented with 10% of
fetal calf serum (FCS), 2 mM L-glutamine, 50 U/mg penicillin,
and 50 U/mg streptomycin (Lonza, Levallois-Perret, France).
Erythrocytes were lysed with red blood-cell lysing buffer (Sigma–
Aldrich).

For flow cytometry analysis, aliquots of 106–107 cells per
sample were pre-incubated with purified anti-mouse CD16/
CD32 (eBioscience, San Diego, CA, USA) and then labeled
with anti-CD4-FITC, anti-CD3e-PE, and anti-CD8-PerCP (all
from eBioscience) according to the manufacturer’s instructions.
The stained cells were analyzed by flow cytometry (Accuri,
BDbioscience) with CFlow Sampler software (BD).

For stimulation experiments, 2 × 105 cells per well were
cultured for 48 h (37◦C, 10% CO2) in DMEM medium
in P24 plates pre-coated with anti-CD3/CD28 antibodies
(4 μg/mL each; eBioscience) or phorbol 12-myristate 13-acetate
(PMA)/ionomycin (cell stimulation cocktail, 1×, ebioscience).
Culture supernatant was frozen at −80◦C until processing.

Cytokine Assays
Blood samples were obtained from the retro-orbital venous
plexus before the mice were euthanized and centrifuged, and the
sera stored at −80◦C until analysis. One centimeter samples of
distal colon were recovered and homogenized in an appropriate
volume of PBS (final concentration of 50 mg/ml) in a Tissue
Lyser (Qiagen). IL-6, IL-10, IFN-γ, TNF-α, IL-5, IL-2, IL-22,
IL-1α, IL-13, IL-17, IL-4, IL-27, and IL-12p70 were assayed in
blood and colon samples with a cytometric bead array system
(Mouse Th1/Th2/Th17/Th22 13plex Flowcytomix; eBioscience,
San Diego, CA, USA). For cytokine quantification in cell
culture supernatants the following ELISA tests were performed
according to manufacturer’s instruction: IL-4, IL-5, IFNγ, IL-17,
IL-12p70, and IL-10 (MabTech); TGFβ and IL-22 (ebioscience).

Statistical Analysis
GraphPad software (GraphPad Sofware, La Jolla, CA, USA) was
used for statistical analysis. Results are presented as bar graphs or
dot plots with means ± SEM. Comparisons involved the non-
parametric Kruskal-Wallis test followed by a Dunn’s Multiple
Comparison test. A p value of less than 0.05 was considered
significant.

RESULTS

Confirmation of Micro-inflammation in
DNBS Challenged Mice
The induction of a low-grade inflammation status following a
chronic low-dose DNBS in the mice was confirmed through
the follow-up of health, histological and inflammatory
parameters (Supplementary Figure S1). In particular, weight
loss (Supplementary Figure S2A), colonic macroscopic and
histological scores (Supplementary Figures S2B,C) as well as
the MPO activity in the colon (Supplementary Figure S2D)
and the Lipocalin-2 concentration in serum (Supplementary
Figure S2E) were measured. The absence of differences for all
these parameters among the groups, even in presence of B. lactis
CNCM-I2494, added to the lack of detection of cytokine levels
in serum samples (IL-6, IL-10, IFN-γ, TNF-α, IL-5, IL-2, IL-22,
IL-1α, IL-13, IL-17, IL-4, IL-27, and IL-12p70, data not shown)
discards the presence of an overt and active inflammation in this
model.
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FIGURE 1 | Cytokine concentrations in colon in the dinitrobenzene sulfonic acid (DNBS) micro-inflammation model. Control non-inflamed (EtOH–PBS),
control inflamed (DNBS–PBS), and B. lactis CNCM I-2494 strain (DNBS–CNCM-I2494). ∗p < 0.05 (n = 8).

However, the presence of slightly elevated, although no
statistically significant, cytokines IL-13, IL-1α, IL-6, IL-22, IL-2,
IL-27, IL-4, IFN-γ, and TNF-α levels in colonic tissues, compared
to healthy controls, suggest a local low-grade inflammation
(Figure 1). Treatment with B. lactis CNCM-I2494 reduced these
increases in cytokine production (Figure 1): Notably, restoration
was statistically significant for IL-2, IL-13, and IFNγ (p < 0.05).

Bifidobacterium lactis CNCM-I2494
Restores Colonic Permeability by
Modulating Apical Junction Protein
Levels
The integrity of the gut barrier was assessed by the analysis
of the permeability with the paracellular tracer FITC-dextran
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in vivo at the endpoint. Of note, all the animals were submitted
to exactly the same protocol and waiting time to avoid differences
due to a minimal possible clearance phenomenon due to
renal function. The mice treated with DNBS showed high
permeability to the tracer (p < 0.05) (Figure 2A) confirming an
alteration in the barrier permeability as it has been previously
observed (Laval et al., 2015; Martin et al., 2015). The oral
administration of B. lactis CNCM-I2494 strain resulted in a
decrease in permeability (p < 0.05). To further analyze the
effect on the barrier function the expression of the relevant
mRNAs of adherent junction (AJ) and tight junction (TJ) proteins
were measured by qRT-PCR (Figure 2B). The mRNAs for
Claudin-3, 4, E-cadherin, Occludin, and the zona occludens
proteins (ZO-1) were all less abundant in DNBS-treated mice
than in control mice (p < 0.05). CNCM-I2494 tends to
partially re-establish the levels of all of them (Figure 2B).
Notably, this effect was statistically significant for Claudin-
4 (p < 0.05). Taken together, both the histological analysis
and the transcriptional data demonstrate that strain B. lactis
CNCM I-2494 protects against DNBS-induced chronic barrier
dysfunction.

Bifidobacterium lactis CNCM-I2494
Restores Goblet Cell Population Altered
by DNBS Chronic Challenge
Histological features, analyzed by hematoxylin–eosin–safran
(Perrier and Corthésy, 2011) staining, showed no significant
differences in general morphology, crypt depth or total
numbers of cells per crypt (data not shown). The numbers
of goblet cells stained either by AB (Figure 3A), specific for
acidic mucopolysaccharides, or PAS (Figure 3B), specific for
neutral mucopolysaccharides, were significantly lower in DNBS
challenged control group (p < 0.05). B. lactis CNCM-I2494 was
able to enhance the percentage of AB or PAS positive cells per
crypt (p < 0.05) reaching the values of the non-inflamed control
group (Figure 3).

Bifidobacterium. lactis CNCM I-2494
Modulates CD3+/CD4+ T-Cell
Populations in Spleen and MLNs by
Increasing T Helper (Th) Profile 2
To study further the mechanism by which B. lactis CNCM-
I2494 exerts protective function, T-cells from spleen and MLN
were isolated and analyzed by flow cytometry. DNBS-treated
mice showed lower CD3+/CD4+ T-cell percentages in spleen
(Figure 4A) than the control group and higher CD3+/CD4+ cell
percentages in MLN (Figure 5A; p < 0.05). B. lactis CNCM-
I-2494 tends to reduce the CD3+/CD4+ decrease in spleen
(Figure 4A) and significantly control CD3+/CD4+ increase in
MLN (p < 0.05; Figure 5A). No variations were observed in
CD3+/CD8+ T-cell percentages in spleen or MLN (data not
shown).

As variations in CD4+ T-cell populations were found, MLN
and spleen cells were cultured after isolation in the presence
of two different stimulators during 48 h: CD28+/CD3+ to
specifically stimulate lymphocytes and PMA/IO to stimulate

all the cells present in the organ disaggregate. Representative
cytokines of the major Th profiles (IL-4, IL-5, IFNγ, IL-17, IL-
12p70, IL-10, TGFβ, and IL-22) were determined in the culture
supernatants (Figures 4B and 5B and data not shown). The
IL-17, IL-22, IL-12p70, and TGFβ levels as well as IFNγ in
spleen samples were under the ELISA detection limits (2.4,
5.5, 8.6, 10, and 6.5 pg/ml, respectively; data not shown).
This fact, in addition to slight increases of Th1 levels (IFNγ)
by the DNBS treatment in MLN (Figure 5B) confirms the
low-grade inflammation status of the mice model. Differences
were found in the levels of IL-4, IL-5, and IL-10 in both
spleen (Figure 4B) and MLN (Figure 5B) (p < 0.05). Strain
CNCM-I2494 increased Th2 levels as measured by IL-4 and
IL-10 augmentation in both spleen (Figure 4B) and MLN
(Figure 5B) and also IL-5 in spleen samples corresponding to an
anti-inflammatory patter in this model. This anti-inflammatory
patter has been confirmed locally by the INFγ/IL-4 ratio in
MLN samples (Figure 5B). Nevertheless, CNCM-I2494 was
not able to control the small increase in IFNγ caused by the
DNBS challenge (Figure 5). Finally, DNBS treatment caused
also an increase in IL-5 in MLN samples. No significant
differences were found between CD3+/CD28+ and PMA/IO
stimulations, excepting IL-4 and IL-5 in spleen where a major
level of stimulation was achieved with the first one (Figures 4
and 5). Taken together these data demonstrate that CNCM-
I2494 strain is able to counterbalance the Th1/Th2 ratio
altered by the DNBS challenge (which locally augments CD4+
Th1 cells) by increasing the Th2 response as measured by
the increase in the production of major representative Th2
cytokines.

DISCUSION

Epithelial barrier dysfunction is now considered as one of
the major contributors to the development of several diseases
and syndromes (Perrier and Corthésy, 2011; Camilleri et al.,
2012; Vaarala, 2012). In several of them, such as IBS, studies
suggest an interplay between luminal factors (e.g, foods and
bacteria residing in the intestine), the epithelial barrier, and
the mucosal immune system (Barbara et al., 2012). In a
healthy state, the epithelial barrier allows a low translocation
of luminal antigens by paracellular transport by receptor-
mediated or non-selective endocytosis (Natividad and Verdu,
2013). Therefore, a higher local antigen exposure caused by
an increase of intestinal permeability could activate intestinal
immune system and inflammation may thus occur (Ohman
and Simren, 2007; Natividad and Verdu, 2013). Preclinical
studies have shown that selective probiotic strains exhibit the
potential to improving mucosal barrier homeostasis (Barbara
et al., 2012).

As related above, the administration of fermented milk
containing B. lactis CNCM I-2494 has been found to prevent
in vivo the increase of intestinal permeability in rats (Agostini
et al., 2012). However, due to possible synergistic interplay
of the different strains and/or metabolites contained in this
product the specific effect of this B. lactis strain on gut
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FIGURE 2 | In vivo permeability measurements and effect on apical junction protein mRNAs. For in vivo measurements of gut permeability, animals were
orally gavaged with fluorescein isothiocyanate (FITC)-dextran (A). Apical junction protein expression levels were determined by real-time qPCR (B). Control
non-inflamed (EtOH-PBS, black circles) control inflamed (DNBS-PBS, black squares) B. lactis CNCM I-2494 strain (DNBS-CNCM-I2494, black triangles). ∗p < 0.05,
∗∗p < 0.01, ∗∗∗p < 0.001 (n = 8).

barrier is still unknown. Here, we aimed to clarify the specific
effect of B. lactis CNCM-I2494 strain on intestinal barrier
function.

As previously observed, DNBS-treatedmice showed alteration
in gut permeability (Laval et al., 2015). In vivo values with
the paracellular tracer FITC-dextran showed an increase in
permeability in DNBS-challenged mice that was restored when
mice were treated with B. lactis CNCM-I2494 suggesting an
effect of the strain on gut barrier function. To better decipher
the beneficial effect of B. lactis CNCM-I9434 strain on gut

permeability, mucus producing cells were analyzed by two
different specific staining: AB, which specifically stains acidic
mucopolysaccharides and PAS staining, specific for neutral
mucopolysaccharides. Both staining protocols reveal the decrease
of goblet cell mucus producing cells in mice challenged with
DNBS, confirming the functional abnormalities on the tissue
despite the lack of macroscopic or microscopic damages. Mice
treated with B. lactis CNCM-I2494 strain recover the same goblet
cell accounts than control mice pointing out a positive effect
of the strain in restoring epithelial normal cell composition
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FIGURE 3 | Goblet cell detection. Representative photos and % of positive cells stained with AB (Alcian Blue) (A) and PAS (Periodic Acid-Schiff) (B). Control
non-inflamed (EtOH–PBS), control inflamed (DNBS–PBS), B. lactis CNCM I-2494 strain (DNBS–CNCM-I2494). ∗p < 0.05 ∗∗p < 0.01 (n = 4).

and probably the mucus production. In fact, mucus production
was previously shown to be affected during inflammation with
intestinal dysbiosis (Fyderek et al., 2009). Several bifidobacteria
strains, alone or in mixture, induce mucus production and/or are
able to adhere to it (He et al., 2001; Gaudier et al., 2005). Even if
the goblet cell depletion observed in DNBS challengedmice could
explain the differences found in in vivo permeability, alterations
in apical junction proteins have been also reported previously in
this model (Laval et al., 2015). The apical junctions are formed
by TJ and AJ proteins. Here, according to our previous results,
the expression of TJ proteins measured by RT-qPCR is reduced
by the DNBS intra-rectal administration in a protein-specific
way (Laval et al., 2015). The treatment with B. lactis CNCM-
I2494 strain tended to restore F11r, Occludin, E-cadherin and
ZO-1 expression, showing this effect especially remarkable for
claudin 4. These results are consistent with previous studies in
which some lactic bacteria and bifidobacteria prevented changes
in occludin, ZO-1, claudin-1, claudin-3, claudin-4, and claudin-
5 proteins (Mennigen et al., 2009). Indeed, Agostini et al. (2012)
showed that B. lactis CNCM-I2494 restored occludin and JAM-A

concentrations to control levels after partial restrain stress in rat
administration of fermented milk containing Lactococcus lactis
CNCM-I1631 and two classical yogurt starters.

Changes on mucosal permeability as the ones observed in
the DNBS low-dose model can be the cause or the consequence
of a low immune activation. To assess the effect of B. lactis
CNCM-I2494 strain on mucosal immunity and decipher its
possible effect on host immune response, colonic cytokine levels,
and spleen MLN lymphocyte populations were analyzed. In this
specific context, B. lactis CNCN-I2494 treatment restored the
mild increased IL-13, IL-2, IL-4, and INF-γ colonic values to
normal. Several studies pointed out the cytokines as one of
the causes of TJ protein modulation. For instance, in vitro test
have shown a relationship between IL-13 and an increase in
paracellular permeability (Prasad et al., 2005) and INF-γ or IL-
4 increases have been linked to TJ protein expression alterations
(Bruewer et al., 2005; Wisner et al., 2008; Suzuki et al., 2011).
Therefore, the effect of B. Lactis CNCM-I2494 on cytokine
down-regulation could be the factor which triggered permeability
restoration.
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FIGURE 4 | Splenocyte population levels. CD3/CD4 positive cells detected by flow cytometry (A) and cytokine production in spleen cell cultures stimulated with
CD3+/CD28+ or PAM/IO (B). Control non-inflamed (EtOH-PBS), control inflamed (DNBS-PBS), B. lactis CNCM I-2494 strain (DNBS-CNCM-I2494). ∗p < 0.05
(n = 8).
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FIGURE 5 | MLN population levels. CD3/CD4 positive cells detected by flow cytometry (A) and cytokine production in MLN cultures stimulated with CD3+/CD28+
or PMA/IO (B). Control non-inflamed (EtOH–PBS), control inflamed (DNBS–PBS), B. lactis CNCM I-2494 strain (DNBS–CNCM-I2494). ∗p < 0.05 (n = 8).
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Mucosal dendritic cells present antigens to the adaptative
immune system which directs the polarization of naïve CD4 T
cells toward different T-helper cell subsets (Th1 and Th2 among
others; Zhu and Paul, 2008). Classically, hapten-mediated colon
inflammation protocols trinitrobenzene sulfonic acid (TNBS and
DNBS) have been associated with Th1 response (Zuo et al.,
2014). Our study confirms that, even in a gut dysfunction model
provoked by a low-grade inflammation, DNBS challenge increase
lightly Th1 response. Although B. lactis CNCM-I2494 was not
able to decrease Th1 response, an upper-regulation of Th2
subset has been observed counterbalancing the Th1/Th2 ratio
at local level. The increased Th2 cell subset may contribute to
the decreased Th1 cell subset due to the mutual antagonizing
effects of both Th substets (Donato et al., 2010). Several studies
have been performed to assert the role of Bifidobacterium strains
in modulating T-cell populations, being their results strain and
model dependent (Lopez et al., 2011). Our results are consistent
with those of Zheng et al. (2014) who showed that one strain of
B. breve modulates T cell polarization toward Th2 and Treg cell-
associated responses in vitro and in vivo in a murine model of
DSS-induced colitis.

Our results support the hypothesis of Agostini et al.
(2012) who pointed out the improvement of the intestinal
barrier (epithelial cells and mucus layers) permeability
as part of the beneficial effect of the fermented milk
commercial product containing CNCM-I2494. In addition,
here we firstly point to CNCM-I2494 strain as a possible
responsible of this effect. Furthermore, the present study
supports that the action mechanism of this protective
effect may be mediated by improvement on apical
junction proteins and goblet cell population. Finally, the
modulation of the host T-cell composition by CNCM-
I2494 strain may be the host pathway involved in this
phenomenon.
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FIGURE S1 | Low-grade inflammation experimental protocol. Colitis was
induced by intra-rectal administration of 100 mg/kg of DNBS in solution in 30%
ethanol. Control mice (without colitis) received only 30% EtOH. The effects of
DNBS are highest during the first 3 days after its administration (DNBS period).
Ten days after the end of the DNBS period bacterial culture or PBS were
intra-gastrically administered daily for 10 days (gavage period). Colitis was
reactivated 21 days after the first DNBS injection with a second injection of
50 mg/kg of DNBS solution. Three days after reactivation mice were sacrificed.
Modified from Martin et al. (2015).

FIGURE S2 | Evaluation of inflammatory status of DNBS-challenged mice.
Inflammatory status assessed from (A) the recovery after reactivation (%weight
change); (B) macroscopic score; (C) histological score; (D) MPO activity n = 24
mice per group, and (E) Lipocalin-2 levels (n = 8 mice per group) in the control
non-inflamed group (EtOH–PBS), control inflamed group (DNBS–PBS), B. lactis
CNCM I-2494 strain (DNBS–CNCM-I2494).
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