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In oenology, the utilization of mixed starter cultures composed by Saccharomyces and

non-Saccharomyces yeasts is an approach of growing importance for winemakers

in order to enhance sensory quality and complexity of the final product without

compromising the general quality and safety of the oenological products. In fact, several

non-Saccharomyces yeasts are already commercialized as oenological starter cultures

to be used in combination with Saccharomyces cerevisiae, while several others are

the subject of various studies to evaluate their application. Our aim, in this study

was to assess, for the first time, the oenological potential of H. uvarum in mixed

cultures (co-inoculation) and sequential inoculation with S. cerevisiae for industrial wine

production. Three previously characterized H. uvarum strains were separately used as

multi-starter together with an autochthonous S. cerevisiae starter culture in lab-scale

micro-vinification trials. On the basis of microbial development, fermentation kinetics and

secondary compounds formation, the strain H. uvarum ITEM8795 was further selected

and it was co- and sequentially inoculated, jointly with the S. cerevisiae starter, in a pilot

scale wine production. The fermentation course and the quality of final product indicated

that the co-inoculation was the better performing modality of inoculum. The above results

were finally validated by performing an industrial scale vinification The mixed starter was

able to successfully dominate the different stages of the fermentation process and the

H. uvarum strain ITEM8795 contributed to increasing the wine organoleptic quality and to

simultaneously reduce the volatile acidity. At the best of our knowledge, the present report

is the first study regarding the utilization of a selected H. uvarum strain in multi-starter

inoculation with S. cerevisiae for the industrial production of a wine. In addition, we

demonstrated, at an industrial scale, the importance of non-Saccharomyces in the design

of tailored starter cultures for typical wines.

Keywords: oenological non-Saccharomyces, wine alcoholic fermentation, Hanseniaspora uvarum,
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INTRODUCTION

Fermentation associated with wine production represents
complex biological processes denoted by several biochemical
interactions between grape must and different micro-organisms
such as fungi, yeasts and bacteria (Fleet, 2003). In particular,
yeasts play a fundamental role, since they carry out the alcoholic
fermentation (AF), i.e., the conversion of sugars to ethanol and
CO2,but they also determine the wine organoleptic properties
by producing and secreting into the fermenting must several
secondary metabolites (Lambrechts and Pretorius, 2000; Fleet,
2003; Romano et al., 2003; Jolly et al., 2006). The AF is initially
promoted by the action of a heterogeneous consortium of
yeasts belonging to different non-Saccharomyces species usually
characterized by a low fermentative power (Heard and Fleet,
1985), while its final step is under the control of alcohol-tolerant
Saccharomyces cerevisiae strains (Fleet and Heard, 1993). The
function of non-Saccharomyces species throughout the AF is
very significant, since they strongly contribute in determining
the wine chemical composition. Autochthonous yeasts provide
distinctive regional features to wines (Romano et al., 2003; Fleet,
2008; Ciani et al., 2010; Medina et al., 2013; Garofalo et al., 2015)
thus advising their use as commercial starter cultures in order
to differentiate wine productions. Some non-Saccharomyces
yeasts are already commercialized as oenological starter cultures
(e.g., Torulaspora delbrueckii,Metschnikowia pulcherrima, Pichia
kluyveri, Lachancea thermotolerans) to be used in combination
with Saccharomyces cerevisiae (Lu et al., 2015), while several
others are the subject of various studies (e.g., Hanseniaspora
uvarum, Starmerella bacillaris) (Masneuf-Pomarede et al., 2016).

The apiculate yeast Hanseniaspora uvarum (anamorph
Kloeckera apiculata) is one of the yeast species more represented
onto grape berries and they prevail in the first steps of
spontaneous AF (Fleet and Heard, 1993). This yeast species
is important in the production of volatile compounds in
wine and the general chemical composition of wines made by
Hanseniaspora spp./S. cerevisiae combinations may differ from
reference wines produced with pure culture of S. cerevisiae
(Zironi et al., 1993; Erten, 2002; Ciani et al., 2006; Gil et al.,
2006). Previous reports indicated that several H. uvarum
physiological properties of oenological interest are strain-
dependent characters, such as ethanol production (Caridi
and Ramondino, 1999), the volatile acidity associated with
fermentation (Romano et al., 1992; Ciani and Maccarelli, 1998)
and, most of all, the production of primary metabolites (i.e.,
glycerol, acetaldehyde) and secondary metabolites, such as ethyl
acetate and hydrogen sulfide (Romano et al., 1997).

During a recent investigation, we have studied the oenological
properties of 9 different H. uvarum strains isolated during
the first 24 h of the spontaneous fermentation of Negroamaro
grape must (De Benedictis et al., 2011). The chemical analysis
of fermented must showed that all the strains produced
low amounts of hydrogen sulfide and acetic acid, showing
fructophilic character and relevant glycerol production. Analysis
of volatile compounds indicated that in particular one strain,
H. uvarum ITEM8795, could potentially enhance taste and
flavor of wines, thus indicating its possible utilization for the

formulation of mixed and/or sequential starters together with S.
cerevisiae strains.

Indeed, for several non-Saccharomyces yeasts species has been
demonstrated that they contribute to the analytical composition
and the sensorial characteristics of wine, increasing the interest
in the industrial application of apiculate yeasts (Pérez-Coello
et al., 1999; Domizio et al., 2007; Fleet, 2008; Viana et al., 2008;
Capozzi et al., 2015). In fact, the addition of non-Saccharomyces
yeast species as part of mixed starter formulations, together
with S. cerevisiae (and of malolactic bacteria), has been recently
indicated as a way of mimic the spontaneous fermentations
(Mendoza and Farías, 2010; Suzzi et al., 2012), conferring a
particular aroma and characteristics to wines (Ciani et al., 2010;
Comitini et al., 2011; Suárez-Lepe and Morata, 2012) without
increasing/reducing the risks for wine quality and safety often
associated with uncontrolled vinifications (Spano et al., 2010;
Capozzi and Spano, 2011; Tristezza et al., 2013).

On the above basis, the aim of the present study was
to assess the fermentation performances and interactions of
mixed cultures and sequential inoculation of H. uvarum and
S. cerevisiae. Data about microbial development, fermentation
kinetics and secondary compound formation in lab-scale micro-
vinification trials were further confirmed by utilization of the
above mixed starter in pilot- and industrial-scale production
of Negroamaro wine. At the best of our knowledge, the
present investigation is the first report about the utilization of
selected strain of H. uvarum in simultaneous and sequential co-
fermentation with S. cerevisiae from micro-vinification up to the
industrial scale in the production of a typical red wine.

MATERIALS AND METHODS

Yeast Strains
Yeast strains used in the present study are deposited in Agro-
Food Microbial Culture Collection of ISPA (http://www.ispacnr.
it/collezioni-microbiche/). The Saccharomyces cerevisiae strain
ITEM6920 (S) and the Hanseniaspora uvarum strains ITEM8795
(H1), ITEM8797 (H2), ITEM8799 (H3) have been previously
isolated from spontaneous fermentation of Negroamaro grapes
(De Benedictis et al., 2011; Tristezza et al., 2012). All the
strains had been previously identified and characterized for
their oenological properties, and in particular, the S. cerevisiae
strain ITEM6920 has been already used as starter culture for the
industrial production of Negroamaro wine (De Benedictis et al.,
2011; Tristezza et al., 2012). The yeast strains were sub-cultured
on YEPD (10 g/L yeast extract, 20 g/L peptone, 20 g/L glucose, 20
g/L agar) and maintained at −80◦C in glycerol 50% (Bleve et al.,
2011). Screening of Killer-Sensitive pattern (killer, sensitive and
neutral phenotypes) was carried out as described by Jacobs et al.
(1988).

Microfermentations
Fermentation tests were carried out at 25◦C in 500 mL
flask containing 450 mL of Negroamaro grape must (205 g/L
sugars, pH 3.44, assimilable nitrogen concentration 142.14 g/L)
added with 20 mg/L of potassium metabisulphite. The must
was clarified by centrifugation (10 min at 8000 g) and then
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sterilized by membrane filtration through Millipore system (0.45
µm membrane). Each flask was inoculated with the required
concentration of a yeast pre-culture in the same must (48 h at
25◦C), as previously described (Grieco et al., 2011).

The H. uvarum strains were inoculated at 107 CFU/mL,
while the S. cerevisiae strain ITEM6920 was inoculated, in a
preliminary test, at three different concentrations: 107, 105, and
103 CFU/mL, in order to reach, respectively, the inoculation
ratios H. uvarum:S. cerevisiae of 1:1, 100:1, and 10,000:1.
Each H. uvarum strain was inoculated in combination with
the S. cerevisiae strain in two different timings: simultaneous
inoculum (SM) and sequential inoculum (SQ). In the case of
SQ, S. cerevisiae was inoculated after H. uvarum, when alcohol
content reach 5% v/v. Fermentation kinetics were monitored
daily by gravimetric determinations until constant weight and
then the samples were stored at −20◦C until analysis. Each
fermentation experiment was carried out in duplicate. A pure
culture of the S. cerevisiae strain was also inoculated as positive
control, as well as a non-inoculated must was used as negative
control.

Pilot-Scale Vinification
The selected strains were tested in pilot-scale fermentation
trials. The vinification was carried out in an experimental cellar
using sterile stainless steel 100-L vessels (Grieco et al., 2011) by
inoculating 90 L of Negroamaromust (240 g/L of total sugars, 232
mg/L of yeast assimilable nitrogen, pH 3.52, added with 20 g/hL
of potassium metabisulphite) with 107 cell/mL of H. uvarum and
105 cell/mL of S. cerevisiae, both in simultaneous and sequential
approach. S. cerevisiae inoculated alone was used as control. The
kinetics of the alcoholic fermentation process was monitored
daily measuring the density. Samples of must and wines were
collected as single replicate and stored at −20◦C for further
analyses.

Industrial Vinification
Industrial fermentation was carried out in a 100,000 L stainless
steel vessel. To start must fermentation on large scale, the initial
inocula were prepared, transported to the winery and used
as starters (Tristezza et al., 2012). The mixed starters cultures
of Hanseniaspora uvarum strains ITEM8795 and S. cerevisiae
ITEM6920, respectively corresponding to 7 × 1012 CFU/hL
and 7 × 1010 CFU/hL, were mixed with 300 kg of and let
for 6 h at room temperature. After this period, the yeast-must
mixture was added to 7 tons of Negroamaro must (212.8 g/L
of total sugars, pH 3.33, yeast assimilable nitrogen 158.8 g/L,
added with 20 g/hL of potassium metabisulphite). The alcoholic
fermentation process was carried out at 25◦C and its kinetics was
daily monitored by measuring the reducing sugars concentration
and density. Samples of must and wines were collected as single
replicate for further chemical and microbiological analysis.

Differential Enumeration of Yeast
Populations
In order to determine microbial growth, must and wine
samples were collected over the fermentation processes. Serial
dilutions of each sample were spread on WL Nutrient Agar

(WLN medium, Oxoid, UK) and Lysine Agar (LA medium,
Oxoid, UK). LA medium was used for the enumeration of
non-Saccharomyces yeast population while WLN was used for
differential enumeration of total yeast population (Pallmann
et al., 2001). The identification of H. uvarum and S. cerevisiae
was carried out by performing a molecular assay. Yeast colonies,
showing a typical phenotype, were selected fromWLNplates, and
their genomic DNA was extracted according to Tristezza et al.
(2009). RAPD pattern ofH. uvarumwere performed according to
De Benedictis et al. (2011), while interdelta profiles of S. cerevisiae
were analyzed as described by Tristezza et al. (2012).

Analytical Determinations
The main chemical parameters of wines and musts were
analyzed by Fourier Transform Infrared Spectroscopy (FTIR),
employing the WineScan Flex (FOSS Analytical, DK). Samples
were centrifuged at 8000 rpm for 10 min and then analyzed
following the supplier’s instructions. Acetaldehyde, ethyl acetate
and acetoin were determined by gas-chromatography according
to Mallouchos et al. (2003). The internal standard solution
used was 4-methyl-1-pentanol. Free volatile compounds were
extracted by solid phase extractionmethod (SPE) and analyzed by
gas chromatography–mass spectrometry (GC–MS) as previously
described (Tufariello et al., 2012). The Odor Activity Values
(OAVs) were calculated according to Capone et al. (2013). To
evaluate the contribution of a volatile compound to the aroma,
the Odor Activity Value (OAV) was calculated as the ratio
between the concentration of each compound and the perception
threshold in a specified matrix reported in literature (Swiegers
et al., 2005). An aromatic series was defined as a group of volatile
compounds with similar aroma descriptors (i.e., floral, sweet,
fruity, spicy, green, fatty). The value of each aromatic series
was calculated as the sum of the OAVs of the compounds that
integrate it. Fermentation rate (FR), fermentation purity (FP),
and alcohol yield coefficient (AYC) were calculated according to
Tristezza et al. (2012).

Statistical Treatment of Data
Statistical data processing was performed using the free software
package PAST (Hammer et al., 2001).

RESULTS

Microfermentations
In a preliminary experiment we have studied the growth kinetics
of the H. uvarum/S. cerevisiae mixed cultures (data not shown).
The growth dynamics of the H. uvarum strains were comparable
in the tests when the inoculum ratio were equivalent to 100:1
and 10.000:1, i.e., the S. cerevisiae starter inoculated at 105 and
103 CFU/mL, which reached a concentration of 107 CFU/mL
respectively after 7 and 15 days. However, when the S. cerevisiae
strain was inoculated at 107 CFU/mL (inoculum ratio of 1:1) the
non-Saccharomyces cell concentration declined after 5 days (data
not shown). For these reasons, the inoculum amount chosen for
further experiments were 107 CFU/mL for H. uvarum strains
and 105 CFU /mL for the S. cerevisiae starter (ratio 100:1). The
fermentation kinetics of mixed cultures in micro-vinification

Frontiers in Microbiology | www.frontiersin.org 3 May 2016 | Volume 7 | Article 670

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Tristezza et al. Hanseniaspora/Saccharomyces Mixed Must Fermentations

trials are reported as Supplementary Data (Supplementary
Figure 1). Two different temporal approaches were tested: a
simultaneous inoculation of the two species and a sequential
inoculation with a delay of 2 days in the addition of S. cerevisiae
after H. uvarum. The time courses of simultaneous trials were
comparable to those of the S. cerevisiae pure culture. The
sequential trials presented a decrement of the initial fermentation
rate that was higher for ITEM8797 (H2) and ITEM8799 (H3).
Nonetheless, all trials gave complete fermentations in 14 days.

The microbial population dynamics of the mixed
fermentations are shown in Figure 1. In all simultaneous
trials (Figures 1A–C), both strains reached a maximum
population (around 108 CFU/mL) after 72 h. Viable counts of
S. cerevisiae kept stable at 108 CFU/mL until the 10th day of
fermentation. Then, in mixed fermentation with ITEM8795 (H1)
(Figure 1A) and H3 (Figure 1C), cells counts slightly decrease
at 107 CFU/mL. From the 3rd to the 5th day, all the three H.
uvarum strains decreased in viable counts at 106 CFU/mL and
kept stable until the 10th day. At the end of the fermentations,
the number of viable cells of H2 was 105 CFU/mL, whereas for
H1 and H3 it was up to 104 CFU/mL. In the three sequential
trials (Figures 1D–F), H. uvarum reached a maximum (1010

CFU/mL) in 5 days and then decreased at 109 CFU/mL. By the
end of the fermentations, viable counts were 105 CFU/mL for
H1, 104 CFU/mL for H2 and 106 CFU/mL for H3. The strain of
S. cerevisiae showed a similar trend in the three trials: reached
a maximum (109 CFU/mL) 3 days after inoculation and kept
constant until the end of the fermentations. The pure culture of
S. cerevisiae ITEM6920 (S) used as control reached a maximum
population (108 CFU/mL) in 3 days and kept constant until
the 10th day post-inoculation. By the 14th day, viable counts
were 107 CFU/mL. Moreover, the tests carried out to assess the
killer toxin activity excluded any cross inhibition between the
H. uvarum and S. cerevisiae strains under study (data not show).

The oenological parameters of the mixed fermentations and
the pure culture are shown in Table 1. As expected considering
the fermentation kinetics, all the trials finished the fermentation
leaving in the must less than 3 g/L of residual sugars. The
highest ethanol concentration was determined in the pure culture
of S. cerevisiae while all the mixed fermentations reached a
lower ethanol concentration ranging from 11.92 to 12.19 mL/100
mL. On the other hand, the production of glycerol was greater
(6.15–6.33 g/L) in mixed fermentations than in the control (5.24
g/L). The activity of H. uvarum did not increase volatile acidity;

FIGURE 1 | Evolution of yeast populations in micro-vinification conditions with simultaneous inoculation (A, H. uvarum ITEM 8795 + S. cerevisiae

ITEM 6920; B, H. uvarum ITEM 8797 + S. cerevisiae ITEM 6920; C, H. uvarum ITEM 8799 + S. cerevisiae ITEM 6920) and sequential inoculation (D,

H. uvarum ITEM 8795 + S. cerevisiae ITEM 6920; E, H. uvarum ITEM 8797 + S. cerevisiae ITEM 6920; F, H. uvarum ITEM 8799 + S. cerevisiae ITEM

6920). Values are mean of two independent duplicates.
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TABLE 1 | Concentration of major chemical compounds in fermented musts obtained with mixed cultures of H. uvarum /S. cerevisiae strains and with the

pure culture of S. cerevisiae as control.

Simultaneous Sequential Control

H1+S H2+S H3+S H1+S H2+S H3+S S

Alcohol (mL/100 mL) 12.14±0.114 12.05± 0.038 12.19± 0.104 11.98± 0.021 11.92±0.028 11.96± 0.007 12.33±0.007

Residual sugars (g/L) 2.09±0.047 2.15± 0.153 2.19± 0.113 2.13± 0.092 2.25±0.212 2.17± 0.099 2.18±0.120

Total acidity (g/L) 6.30±0.029 6.43± 0.087 6.46± 0.083 6.35± 0.064 6.52±0.014 6.49± 0.028 6.34±0.035

Volatile acidity (g/L) 0.34±0.000 0.37± 0.008 0.34± 0.015 0.41± 0.014 0.40±0.007 0.42± 0.014 0.41±0.000

pH 3.34±0.005 3.33± 0.014 3.33± 0.008 3.32± 0.007 3.31±0.007 3.31± 0.000 3.29±0.000

Tartaric acid (g/L) 1.87±0.029 1.80± 0.068 1.92± 0.143 1.63± 0.028 1.66±0.042 2.11± 0.092 1.73±0.078

Glycerol (g/L) 6.32±0.151 6.21± 0.266 6.32± 0.243 6.15± 0.042 6.33±0.085 6.22± 0.007 5.24±0.078

Acetaldehyde (mg/L) 20.05±0.451 19.96± 0.382 20.32± 0.297 21.4± 0.600 21.95±0.190 22.41± 0.216 24.22±0.164

Ethyl acetate (mg/L) 84.78±0.753 96.57± 0.822 98.33± 1.254 104.22± 2.660 107.53±3.918 106.88± 2.674 44.53±0.980

Acetoin (mg/L) 11.24±1.045 12.33± 1.562 12.89± 1.664 12.77± 1.331 13.05±1.258 12.87± 1.744 4.25±0.563

Values are the mean of two injections of each replicate; the standard deviation values (±) are indicated; n.d. not detectable.

in fact the co-inoculated trials had a volatile acidity concentration
statistically lower than the control. Fermentation purity (ratio
between volatile acidity and ethanol produced) were also very
low (0.03) for all samples, highlighting the good oenological
performance of these mixed starters.

The capacity to produce a number of volatile compounds
susceptible to be involved in the wine flavor formation
(acetaldehyde, ethyl acetate and acetoin) was also assessed in
mixed fermentations (Table 1). The acetaldehyde, one of the
most important carbonyl compounds synthetized all through the
alcoholic fermentation, was detected, within the range between
11.24 mg/L (H1+S) and 12.89 mg/L (H3+S) for simultaneous
inoculation and within the range between 12.77 mg/L (H1+S)
and 13.05 mg/L (H2+S) for sequential inoculation. The free
acetaldehyde has a dual role in flavor formation; at moderate
concentrations it contributes to fruity flavors, while high levels
(>200 mg/L) suppress the aroma in wines. The ethyl acetate
was identified in concentrations ranging from 84.78 mg/L
(simultaneous inoculum with H1+S) to 107.53 mg/L (sequential
inoculum with H2+S). Ethyl acetate may add pleasurable, fruity
aroma to the general wine bouquet at low concentrations,
whereas it appreciably affect the final aroma at a content higher
than 150 mg/L (Lambrechts and Pretorius, 2000). The acetoin
(3-hydroxy-2-butanone) odor threshold is relatively high (150
mg/L) and, consequently, its sensory meaning for the global
aroma is nearly irrelevant. All the H. uvarum strains under study
produced a low amount of the above compound, either in the
simultaneous and in the sequential inoculum, within the range of
11.24 mg/L (simultaneous inoculum with H1+S) to 13.05 mg/L
(sequential inoculum with H2+S).

To determine the effect of co-inoculums and sequential yeasts
on the final composition of wine, experimental wines were
analyzed by gas chromatography. The comparison of the results
obtained is shown in Figure 2. Generally, simultaneous trials
produced a higher amount of volatile compounds, esters, alcohols
and terpenes. The co-inoculated couple H1+S presented the
highest formation of esters (15.7 mg/L), alcohols (83 mg/L),
and organic acids (20.4 mg/L). Also the co-inoculated couple

H2+S presented high concentrations of alcohols (81.2 mg/L)
and organic acids (19.4 mg/L) but lower amounts of esters (10.3
mg/L).

Analysis of these compounds provides a simply way of
measuring the ability of different strains to produce wines
with different profiles, since the main difference among wines
inoculated with different yeast strains lies in the concentration
of aromatic compounds rather than in the type of metabolite
produced (Romano et al., 1997).

PCA was used to identify the specific volatile compounds best
discriminating among the wines produced by co-inoculum (i.e.,
H1+S sm, H2+S sm, H3+S sm) and sequential (i.e., H1+S sq,
H2+S sq, H3+S sq) techniques studied (Figure 3). PCA was
initially applied to the concentrations of the volatile compounds
in concentrations higher than their odor threshold are mainly
considered as aroma-contributing substances (Gómez-Mínguez
et al., 2007). The two principal components, PC1 and
PC2, accounted for 68.16% of the total variance (43.53
and 24.63%, respectively). The second dimension (24.63% of
explained variance) discriminates these two techniques studied,
simultaneous (sm) and sequential (sq) inoculum.

However, samples H2+S sm, was associated to negative
PC1(34% of explained variance), that discriminates H2+S sm
and H1+S sm from the two other samples, Control S and
H3+S sm for the high content, besides other variables, of
ethyl octanoate, ethyl butanoate, terpens responsible of floral
and fruity notes. The sample H1+S sm clustered at negative
PC1 and PC2 scores thus showed relatively high correlations
mainly with hexanoic and octanoic acids, phenylethylalcohol
and isoamyl acetate. Samples H1+S sq and H2+S sq that
cluster at positive PC1 scores scored high relative correlations
with diethyl succinate, 2-methyl-propanoic acid, 2-methyl-1-
propanol and 3-hydroxy-ethyl butanoate. Finally, H3+S sq that
clusters at positive PC2 associated to 2,6-dimethyl-7-octen-
2,6 diol. In conclusion, it was found that cultures in co-
inoculum positively influenced the production of different classes
of volatiles, terpenes, esters, acids and alcohols. In particular
H1+S sm was characterized by a higher yield of most volatile
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FIGURE 2 | Volatile composition of wines obtained in micro-vinification conditions with simultaneous (sm) and sequential (sq) inoculation. H1,

H. uvarum ITEM 8795; H2, H. uvarum ITEM 8797; H3, H. uvarum ITEM 8799; S, S. cerevisiae ITEM 6920. The pure culture of S. cerevisiae ITEM 6920 (S) was used

as control. The concentrations of the aldeydes-ketones, sulfur compounds and terpenes have been multiplied by a factor of 10. Error bars indicate standard deviation.

components that influence positively aroma bouquet, such as
isoamyl acetate, ethyl octanoate, phenylethyl acetate (fruity
notes), phenylethylalcohol (floral notes), hexanoic and octanoic
acids.

Pilot-Scale Vinification
In reason of the performances in the micro-vinification trials,
the Hanseniaspora uvarum strain ITEM8795 (H1) was selected
to be tested in pilot-scale fermentations, both in simultaneous
and sequential approaches, with S. cerevisiae ITEM6920. An
identical amount (90 L) of the same Negroamaro must was
inoculated with S. cerevisiae alone as control. Fermentation rate
was higher for the two mixed starter fermentations than for that
inoculated with the S. cerevisiae pure culture. Co-inoculation of
H. uvarum and S. cerevisiae lead to a complete fermentation
after 6 days (not shown). The three fermentations resulted in a
different profile of sugars consumption (Supplementary Figure
2 in the Supplementary Data section). As can be observed,
the simultaneous inoculation showed a good fermentation
performance which led to a complete consumption of glucose
in 4 days and fructose in 8 days. In addition, the sequential
inoculation showed good fermentation properties with a
complete consumption of glucose in 6 days and 5.7 g/L of residual
fructose by the 12th day. On the contrary, the pure culture of S.
cerevisiae showed a less efficient profile of sugar consumption
with a complete consumption of glucose in the 8th day of
fermentation and a residual fructose of 7.2 g/L at day 12. The
development of yeast populations during the three fermentations
is shown in Supplementary Figure 3 (Supplementary Data). The
H. uvarum strain reached its maximum (108 CFU/mL) at the 2nd
day, both in simultaneous and sequential trials; then, viable cells
counts decreased at 103 CFU/mL (day 4th), subsequently at 102

CFU/mL, by the 6th day, and kept stable until the 11th day.

Viable cells counts of S. cerevisiae in simultaneous
fermentation reached their maximum (108 CFU/mL) at the
2nd day and then slightly decreased at 107 CFU/mL until the
end of fermentation (11th day). In sequential inoculation,
S. cerevisiae reached a maximum population (109 CFU/mL) in
4 days and then gradually decreased. By the 11th day, viable
counts were 107 CFU/mL. The pure culture of S. cerevisiae used
as control showed a similar trend: reached a maximum (109

CFU/mL) 4 days after inoculation and constantly decreased to
107 CFU/mL until the end of the fermentations.

The analytical SPE/GC–MS method, used in this work for the
analysis of wine samples, allowed the correct identification and
quantification of 45 volatile compounds (Table 2). All the volatile
compounds were grouped according to the belonging class
(esters; aldehydes/ketons; alcohols; phenols; lactones; terpenes;
acids). For each compound, the odor threshold (OTH) and
the sensory odor descriptor were also reported. With respect
to esters, it is important to highlight that wine produced by
co-inoculation contained high concentrations of ethyl butyrate,
isoamyl acetate, ethyl hexanoate responsible of fruity notes.
On the contrary, concentrations of diethyl succinate, ethyl
9-decenoate, 2-phenylethyl acetate and diethyl malate were
significantly lower in wines from co-inoculation assays. Ethyl
esters are mainly synthesized by yeast starting from grape
precursors and by ethanolysis of acylCoA that is formed during
fatty acid synthesis or degradation.

Because alcohols are also important compounds influencing
wine aroma, it is important to highlight that wine produced
by co-inoculation contained higher 1-propanol, 1-butanol and
isoamyl alcohols concentrations. Among identified alcohols,
2-phenylethanol was the second most abundant alcohol at
concentrations higher than its threshold in all wines, contributing
with fine rose’s notes to wine aroma. In wines analyzed,
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TABLE 2 | Concentration of major volatile compounds in fermented musts obtained with the mixed starter H. uvarum/S. cerevisiae used in sequential or

simultaneous inoculum.

Volatile compounds Odor threshold

(µg/L)a
Odor descriptor Odorant

seriesb
H1+S

Simultaneous

H1+S

Sequential

S

µg/L µg/L µg/L

ESTERS

Ethyl butyrate 20 (a) Fruity 1 425 ± 77 319 ± 84 386 ± 5

Isoamyl acetate 30(c) Banana 1 2535 ± 1 2239 ± 140 2235 ± 49

Ethyl hexanoate 14 (b) 1 645 ± 118 561 ± 26 510 ± 17

Ethyl lactate 154,636 (c) Acid. medicine 6 1028 ± 459 720 ± 104 1006 ± 32

Ethyl caprilate (octanoate) 5 (b) Sweet. fruity 1.4 548 ± 111 573 ± 74 406 ± 42

3-hydroxy. ethyl butyrate 20,000 (b) Caramel. Toasted 4 52 ± 34 65 ± 10 52 ± 2

Ethyl (decanoate) caprate 200 (c) Sweet. fruity 1.4 219 ± 56 252 ± 71 188 ± 27

Diethyl succinate 200,000 (b) Vinous 7 3735 ± 1820 4216 ± 1820 3851 ± 212

Ethyl 9 decenoate 14,100 200 ± 46 234 ± 88 102 ± 6

2-phenyl ethyl acetate 250 (a) Floral 2 598 ± 93 696 ± 125 517 ± 65

Diethyl malate 760,000 (b) Over-ripe. peach. cut grass 1 340 ± 164 525 ± 310 291 ± 31

4 hydroxy-3 methoxy benzoic

acid ethyl ester (ethyl vanillate)

990 (b) Sweet. vanillin 4.5 nd 4855 ± 21 Nd

Ethyl monosuccinate 1,000,000 (c) Caramel. coffee 4 5648 ± 318 6052 ± 552 8476 ± 311

TOTAL 15,975 ± 3296 21,306 ± 3405 18,021 ± 799

CARBONYL COMPOUNDS

Acetaldehyde 500 (a) Pungent. ripe apple 1.6 269 ± 21 155 ± 65 125 ± 7

Acetoin 150,000 538 ± 192 nd 544 ± 26

Furfural 14,100 (c) nd nd nd

Benzaldehyde 350 (c) Sweet. fruity 1.4 94 ± 35 70 ± 6 58 ± 6

TOTAL 901 ± 248 224 ± 71 728 ± 38

ALCOHOLS

1-propanol 830 (b) 1.6 312 ± 33 nd 211 ±17

Isobutanol 40,000 (b) 3.6 966 ± 566 701 ± 362 1427 ± 13

1-butanol 150,000 (b) Medicinal. phenolic 6 109 ± 9 nd 178 ± 7

Isoamyl alcohol 30,000 (a) Burnt. alcohol 4.6 14,785 ± 3772 13,968 ± 3525 15,754 ± 201

3-methyl-1-pentanol 50,000 (c) Vinous. herbaceous. cacao 1.3.7 124 ± 43 118 ± 21 142 ± 7

1-hexanol 8000 (a) Flower. green. cut grass 2.3 492 ± 196 491 ± 220 776 ± 22

(E)-3-hexen-1-ol 55 ± 31 79 ± 14 81 ± 5

(Z)-3-hexen-1-ol 400 (a) 3 66 ± 21 80 ± 2 56 ± 14

2.3-butanediol (levo) 15,0000 (b) Fruity 1 2712 ± 1238 nd 1063 ± 48

2.3-butanediol (meso) fruity 820 ± 79 nd 296 ± 30

Methionol 1000 (a) Cooked vegetable 7 196 ± 82 203 ± 0 261 ± 8

Benzylalcohol 200,000 (b) Sweet. fruity 1.4 190 ± 20 184 ± 30 179 ± 16

Phenylethylalcohol 10,000 (a) Floral. roses 2 11,577 ± 2399 12,962 ± 3194 13,760 ± 1186

TOTAL 31,939 ± 8488 28,786 ± 7367 34,184 ± 1574

PHENOLS

Guaiacol 10 (c) Sweet. smoke 4.6 108 ± 22 nd nd

Eugenol 6 (c) Spices. clove. honey 4.5 nd 142 ± 62 42 ± 13

Ethyl phenol nd nd nd

4 vinyl guaiacol 40 (a) Spices. curry 5 363 ± 151 248 ± 54 218 ± 24

4 Hydroxy methyl acetophenone nd 163 ± 42 nd

Siringol 299 ± 80 148 ± 0

TOTAL 770 ± 231 553 ± 158 408 ± 37

LACTONES

Y-butyrolactone 35 (c) Sweat. toasted 4 175 ± 116 96 ± 37 174 ± 10

Cis methyl 4 octanolide 67 4 nd nd 89 ± 3

TOTAL 175 ± 116 96 ± 37 262 ± 13

(Continued)
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TABLE 2 | Continued

Volatile compounds Odor threshold

(µg/L)a
Odor descriptor Odorant

seriesb
H1+S

Simultaneous

H1+S

Sequential

S

µg/L µg/L µg/L

TERPENS

Terpineol 110 2 73 ± 1 50 ± 0 30 ± 12

TOTAL

ACIDS

Isobutyric acid 2300 (b) Rancid. butter. cheese 6 166 ± 138 93 ±31 212 ± 24

Butyric acid 173 (b) Rancid. cheese. sweat 6 115 ± 50 83 ± 14 85 ± 3

(3 methyl butanoic) isovaleric

acid

33 (c) Sweet. acid 4.6 244 ± 58 269 ± 105 434 ± 10

Hexanoic acid 420 (b) Sweet 6 2366 ± 96 2161 ± 67 2159 ± 115

Octanoic acid 500 (c) Sweet. cheese 6 4716 ± 372 4372 ± 1098 3922 ± 149

Decanoic acid 1000 (b) Rancid. fat 6 1178 ± 10 1344 ± 13 1278 ± 121

TOTAL 8785 ± 725 8322 ± 1328 8090 ± 422

The pure culture of S. cerevisiae was used as control.

Values expressed in µg/L are the mean of two injections. The standard deviation values (±) are indicated. n.d. not detectable.
a(a) Guth (1997); (b) Etievant (1991); (c) Ferreira et al. (2000).
bOdorant series: 1 = Fruity; 2 = Floral; 3 = Green; 4 = Sweet; 5 = Spicy; 6 = Fatty; 7 = Others.

we observed differences in α-terpineol concentration; in fact,
this compound was identified and quantified in a major
concentration in co-inoculated wine. Within the family of fatty
acids, isobutyric, isovaleric, hexanoic, hexanoic, octanoic and
decanoic acids were notable for their high concentrations in all
wines and have been described with fruity, cheese, fatty, and
rancid notes (Rocha et al., 2004).

The two mixed fermentations show an overall more complex
aromatic profile than the pure culture of S. cerevisiae. Its
sweet, spicy, floral odorant notes characterized the sequential
mixed fermentation. Simultaneous fermentation of H. uvarum
and S. cerevisiae was characterized by fruity and sweet aroma
descriptors (Table 2).

Industrial Vinification
These large-scale experiments were conducted in a winery cellar
of Salento by simultaneous inoculation, with the selected mixed
starterH. uvarum ITEM8795/S. cerevisiae ITEM6920, of 7 tons of
Negroamaro must. The data corresponding to the fermentation
performance of the two isolates used and their ability to dominate
the fermentation indicated that these two autochthonous yeast
strains possess the fundamental properties required for starter
cultures, in fact, the fermentations progressed regularly and sugar
depletion was accomplished in 10 days.

Viable cells counts of the two yeast species throughout the
fermentation are shown in Figure 4. H. uvarum dominated
the early stages of fermentation and its population reached
the maximum (109 CFU/mL) at the 2nd day; then gradually
decreased to 104 CFU/mL and keep stable until the end of the
fermentation period. S. cerevisiae dominate the fermentation
from day 4th, when it reached a concentration of 109 CFU/mL;
then slightly decreased to 106 CFU/mL and ultimate the
fermentation by day 8.

The dominance of the inoculated strains was confirmed by
molecular analysis. The electrophoresis patterns of green colonies
isolated on WLN agar at middle fermentation stage are shown
in Figure 5A. It can be observed that 9 out of 13 isolates have
the same profile than that of the inoculated starter H. uvarum
ITEM 8795 (H1), thus indicating that this strain got the upper
hand of indigenous non-Saccharomyces strains. Likewise, the
electrophoresis patterns of pale cream colonies isolated on WLN
agar at the end of the fermentation are shown in Figure 5B. In
this case, the 83% of isolates exhibit an identical profile to the
one of the inoculated starter S. cerevisiae ITEM 6920, it being
the evidence that the above starter was able to dominate the
final steps of the AF. The results of chemical analysis of the
wine obtained by co-fermentation H. uvarum/S. cerevisiae are
shown in Table 3, in comparison to the same must fermented
with the commercial starter in use in the winery. The total
acidity was higher in must fermented by mixed starter (5.84
g/L), while volatile acidity was lower (0.43 g/L) than in must
fermented with the commercial S. cerevisiae (5.49 and 0.45 g/L,
respectively). Both starters were able to metabolize completely
sugars. Furthermore, the mixed starter showed a lower alcohol
content (13.99 mL/100 mL).

Comparation of Selected Volatile
Compounds Concentration in Wine
Produced in Lab-, Pilot-, and Industrial
Scale
The influence of the mixed starter H. uvarum/S. cerevisiae,
used to produce Negroamaro wine in laboratory-, pilot-, and
industrial scale, on the organoleptic quality of wines was assessed
by comparing the concentrations of specific volatile compounds,
produced by yeast metabolism (Table 4). Each single analyzed
compound, chosen between different esters, acids, alcohols,
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FIGURE 3 | Two-dimensional principal component analysis (PCA).

Scores plot (A) for wines obtained in micro-vinification conditions and loading

plot (B) for volatiles higher than odor threesold. Simultaneous (sm) and

sequential (sq) inoculation. H1, H. uvarum ITEM 8795; H2, H. uvarum ITEM

8797; H3, H. uvarum ITEM 8799; S, S. cerevisiae ITEM 6920.

terpenes, and aldehydes, showed comparable concentration in
the wines produced by the three vinifications.

When compared to the wines produced by using the
S. cerevisiae as starter, the three wines produced by inoculation
of the mixed starter showed an increment of acetate esters (ethyl
acetate, isoamyl acetate, and phenylacetate) and fatty acids esters
(ethyl hexanoate, ethyl octanoate, and ethyl decanoate). Esters
is one of the large groups of volatiles found in wines. These
compounds are important in young wine aroma and are among
key compounds in the fruity flavors of wines (Rapp andMandery,
1986). Ethyl acetate, in particular, adds complexity to the aroma
of wine, with fruity notes at concentrations lower than 150 mg/L,
while at higher concentrations it can donate a sour, vinegary
off-odor. Its higher concentration was found in H1+S industrial
scale (87.04 mg/L).

Regarding alcohols, in particular isoamylalcohols and 2-
phenylethanol were determined in the analyzed wines and they
resulted to be quantitatively the most representative compounds
in this group, showing a higher concentrations of these molecules

TABLE 3 | Analysis of final wine obtained by cofermentation of H. uvarum

and S. cerevisiae in comparison to the same must fermented with the

commercial starter in use in the industrial vinification.

Compound Cofermentation

H. uvarum/S.

cerevisiae

Commercial starter

Alcohol (mL/100 mL) 13.99 ± 0.003 14.03 ± 0.01

Residual sugars (g/L) n.d. n.d.

Total acidity (g/L) 5.84 ± 0.067 5.49 ± 0.028

Volatile acidity (g/L) 0.43 ± 0.005 0.45 ± 0.003

pH 3.48 ± 0.009 3.44 ± 0.003

Malic acid (g/L) 1.1 ± 0.008 0.96 ± 0.005

Lactic acid (g/L) 0.18 ± 0.034 0.17 ± 0.023

Tartaric acid (g/L) 2.34 ± 0.105 1.89 ± 0.021

Citric acid (g/L) 0.45 ± 0.011 0.43 ± 0.02

Density (g/mL) 0.99093 ± 0.00003 0.99025 ± 0.000043

Dry matter (g/L) 22.79 ± 0.112 21.11 ± 0.111

Glycerol (g/L) 7.07 ± 0.014 7.01 ± 0.038

Methanol (mL/100 mL) n.d. n.d

Total polyphenols (mg/L) 547 ± 92 671 ± 25

Anthocyanins (mg/L) 410 ± 71 180 ± 22

Absorbance at 420 0.88 ± 0.001 0.81 ± 0.028

Absorbance at 520 0.97 ± 0.001 1.11 ± 0.031

Absorbance at 620 0.41 ± 0.001 0.23 ± 0.032

Values are the mean of three injections; the standard deviation values (±) are indicated;

n.d. not detectable.

when compared to the wines produced by the S. cerevisiae starter.
Isoamylalcohols can have both positive and negative impacts on
wine aroma. In fact alcohols concentrations exceeding 400 mg/L
can have a detrimental effect (Rapp and Versini, 1991; Romano
et al., 1997), whereas lower concentrations impart positive
fruity characters (Lambrechts and Pretorius, 2000; Saurina,
2010). In our sample the concentrations detected were below
this threshold. However, 2-phenylethanol was the second most
abundant alcohol at concentrations higher than its threshold (10
mg/L), contributing with fine rose’s notes to wine aroma.

DISCUSSION

The utilization of non-Saccharomyces starters together with
Saccharomyces cerevisiae in grape must fermentations has been
investigated by Zironi and coworkers since 1993. The addition
of yeasts belonging to non-Saccharomyces species as part of
formulations of mixed starters, together with S. cerevisiae, has
recently been indicated as a way to mimic the biotechnological
potential associated with spontaneous fermentations to improve
the quality of the wine (Rojas et al., 2001; Romano et al., 2003;
Ciani et al., 2010).

Several non-Saccharomyces species, such as H. uvarum,
Zygosaccharomyces bailii, Lachancea thermotolerans, Candida
cantarelli, and C. zemplinina have been studied thus far in mixed
fermentations with the scope of adding peculiar features to the
wine (Toro and Vazquez, 2002; Ciani et al., 2006; Comitini et al.,
2011; Suzzi et al., 2012; Gobbi et al., 2013; Garavaglia et al., 2015).
In fact, a current trend in the wine market is to develop unique
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FIGURE 4 | Viable cell counts of the two inoculated yeast species throughout the industrial vinification.

TABLE 4 | Concentration of selected volatile compounds in wines obtained with the mixed starter H. uvarum/S. cerevisiae used in simultaneous inoculum.

Lab-scale Pilot-scale Industrial-scale

Control H1+S Control H1+S Control H1+S

ESTERS

Isoamyl acetate 369.35 2330.00 2234.67 2239.18 312.05 2596.76

Ethyl hexanoate 434.51 510.00 510.49 560.85 433.73 547.57

Ethyl octanoate 371.69 604.91 406.42 573.12 476.00 661.15

3-Hydroxy-ethyl butanoate 53.79 69.78 52.23 65.35 51.41 67.74

Ethyl decanoate 183.24 230.00 188.19 252.18 234.87 229.38

Phenylethyl acetate 413.57 620.00 516.66 695.84 493.73 649.92

Ethyl acetate (mg/L) 42.11 84.78 22.07 92.04 25.05 87.04

ALCOHOLS

Isoamyl alcohols 547.85 750.00 554.01 767.61 680.33 801.87

Phenylethylalcohol 11,480.03 11,994.45 13,760.43 12,962.32 10,555.51 11,716.07

ACIDS

Hexanoic acid 2088.15 2246.68 2159.34 2366.45 2200.32 2246.68

Octanoic acid 3869.21 4574.65 3921.89 4716.22 3722.84 4574.65

TERPENS

Terpineol 54.13 66.50 50.40 72.80 57.15 68.80

KETONS/ALDEHYDES

Acetoin (mg/L) 4.11 11.24 7.65 11.85 6.05 11.34

Acetaldehyde (mg/L) 5.04 25.05 6.05 28.00 5.11 24.11

The pure culture of S. cerevisiae was used as control.

products, thus the mixed starter could be a good approach to
give a special flavor and improve the quality of wines from both
the organoleptic and microbiological point of view (Zironi et al.,
1993; Mingorance-Cazorla et al., 2003; Capozzi et al., 2015; Lu
et al., 2015; Masneuf-Pomarede et al., 2016). Moreover, in the
contexst of the oenological production of Southern Italy (and
other similar climates) denoted by high alcohol content and high
total acidity, the preliminary utilization of a non-Saccharomyces
starter (fructophylic and able to produce low amounts of acetic
acid), might be an interesting approach in order to consume
sugars in the early stage of fermentation, thus reducing the
impact of osmotic stress for the S. cerevisiae starter (Rantsiou
et al., 2012; Tofalo et al., 2012).

In the present investigation, we evaluated the fermentation
performance of a culture of non-Saccharomyces yeasts belonging
to the oenological species H. uvarum in micro-fermentation
and, thereafter, in fermentations on pilot and industrial scale,
conducted in mixed fermentations with yeasts belonging the
species S. cerevisiae. These two different cultures were inoculated
simultaneously or sequentially and the fermentation dynamics
were studied in both fermentations. From the results of this
series of tests, we obtained useful information on the kinetics of
growth and fermentation activity, supported by analytical data of
fermented musts and final wines.

In micro-fermentation trials, the presence of S. cerevisiae
stimulated the persistence of the non-Saccharomyces strains
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FIGURE 5 | Electrophoretic profiles patterns of (A) RAPD analysis with

primer RM13 of Hanseniaspora uvarum randomly isolated from the

large scale fermentation. The strain-specific profile of the 8795 strain is

reported (H1); (B) interdelta region patterns obtained from Saccharomyces

cerevisiae randomly isolated at the end of the large scale fermentation. The

strain-specific profile for the 6920 strain is reported (S). Molecular marker (M):

Thermo Scientific GeneRuler 1 Kb DNA Ladder.

during the fermentation process, in accordance with previous
studies (Ciani et al., 2006; Mendoza et al., 2007; Mendoza and
Farías, 2010), and this effect was more relevant in the sequential
fermentations. Indeed, the three H. uvarum strains stayed viable,
at significant high concentration levels of about 104–106 CFU/mL
until the end of the fermentation even with an alcohol content
of about 12% (v/v). On the other hand, in the simultaneous
inoculation, the presence of the non-Saccharomyces strains
since the early stages of fermentation seems to affect the cell
growth and biomass production of S. cerevisiae probably due to
the competition for nutrients (Mendoza et al., 2007; Domizio
et al., 2011; Suzzi et al., 2012). However, the interactions
between the two species during grape must/wine fermentation
should be further studied and deepened. In fact, the knowledge
about the metabolic interactions between S. cerevisiae and non-
Saccharomyces strains in winemaking is still limited (Wang
et al., 2015). Nevertheless, the fermentation rates of the mixed
fermentation were comparable to that of the S. cerevisiae pure
culture. Regardless the biomass production or fermentation rates,
all themixed cultures reached the completion but produced lower
concentrations of ethanol than the pure culture of S. cerevisiae
in accordance with previous studies (Mendoza and Farías, 2010;
Mendoza et al., 2011).

The fermentations on a laboratory scale carried on regularly
and the analysis of the corresponding fermented musts have
not revealed the presence of compounds with possible negative

impact to a level that will exceed the threshold of sensory
perception. On the contrary, wines obtained with the association
H. uvarum/S. cerevisiae showed some interesting characters.
In fact, the evidence obtained during this investigation
confirm previous data indicating that the combination and the
interaction between the starter cultures of S. cerevisiae and non-
Saccharomyces species has led to a reduction of acetic acid, even
at concentrations lower than those produced by the pure culture
of S. cerevisiae (Ciani et al., 2006; Mendoza and Farías, 2010;
Domizio et al., 2011).

Several studies on the use of associated S. cerevisiae and
non-Saccharomyces yeasts have highlighted many of the positive
effects produced in these mixed fermentations such as the
increasing in isoamyl acetate and 2-phenyl acetate (Moreira
et al., 2008; Andorrà et al., 2010) or glycerol (Ciani and Ferraro,
1996) content in wine. Indeed, in the trial H1+S_sm, it was
possible to note an increase of glycerol as well as of some
volatile compounds, such as esters and aliphatic higher alcohols,
as previously reported (Garde-Cerdán and Ancín-Azpilicueta,
2006). However, the impact of glycerol on the wine quality is still
under discussion (Marchal et al., 2011).

These results were further confirmed in a pilot-scale
vinification using a H. uvarum strain (ITEM 8795) in
combination with S. cerevisiae ITEM 6920. The wines produced
using two different strategies of inoculation (simultaneous and
sequential) of the H. uvarum/S. cerevisiae starter were compared
with that obtained after inoculation of a pure culture of S.
cerevisiae, mainly focusing on their aromatic profile. It was also
observed a different use of sugars in the tests in co-inoculation
withH. uvarum. In fact, this fructophilic yeast interacts positively
with the strain of S. cerevisiae, which is glucophilic, with the result
of a more rapid utilization of the sugars (Ciani and Fatichenti,
1999). H. uvarum ITEM 8795, in simultaneous and sequential
cultures, showed the maximal cell concentration after 2 days
and then they die but remained in countable numbers until the
end of the fermentation. This behavior of the apiculate yeast
is in agreement with data reported in literature, which indicate
that non-Saccharomyces yeasts dominate during the first 3–4
days of fermentations up to an ethanol concentration of about
4–7% (v/v) and then they start the phase of death (Fleet and
Heard, 1993; Fleet, 2003). Moreover, it has been demonstrated
that non-Saccharomyces yeasts kept their viability for longer
period in composite cultures with S. cerevisiae (Ciani et al., 2006;
Mendoza et al., 2007). The estimation of some of the principal
volatile compounds confirmed that the H. uvarum ITEM 8975
did not form high amounts of ethyl acetate in mixed cultures
(De Benedictis et al., 2011). However, in mixed cultures, the
concentration of ethyl acetate produced are likely to contribute
to the fruity notes and add to the general complexity to the
produced wine (Ciani et al., 2006). The H. uvarum ITEM 8975
confirmed to be an acetoin low-producer even in multi-starter
fermentations, it being this compound probably also consumed
by the vigorously fermenting S. cerevisiae starter strain (Romano
et al., 2003).

The amounts of acetaldehyde, a relevant secondary product
of fermentation (Romano et al., 1997), did not appear to be
negatively influenced by mixed cultures of H. uvarum, with a
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behavior similar to that described by Ciani et al. (2006) during
the studies of lab-scale H. uvarummulti-started fermentations.

Ethyl esters concentrations are influenced by yeast strain,
fermentation temperature, aeration degree and sugar content.
Both ethyl esters and acetate esters have a key importance
in the whole wine aroma impressing a positive contribution
by distinct sensory notes: sweet-fruity, grape-like odor, sweet-
balsamic (Rapp, 1990; Swiegers and Pretorius, 2005). Indeed,
wine yeasts such as Hanseniaspora spp. in mixed fermentations
with S. cerevisiae, have improved the formation of esters with
a positive sensorial impact, as well as the reduction of volatile
acidity production (Rojas et al., 2003; Moreira et al., 2005;
Medina et al., 2013). Chemical analysis of the wines produced
using the mixed cultures H. uvarum/S. cerevisiae clearly differ
from wine produced with the solo S. cerevisiae. Both mixed
fermentations led to a higher content of esters such as 2-
phenylethyl acetate, which is in agreement with previous studies
conducted with H. vineae (Viana et al., 2011; Medina et al.,
2013) and H. guilliermondii (Rojas et al., 2003; Moreira et al.,
2011). This compound contributes to the rose, honey, fruity
and flower aromas of wines (Swiegers et al., 2005). Likewise,
2-phenylethanol contributes with a floral (rose) aroma in the
final wine (Swiegers et al., 2005) though, an excess in higher
alcohols concentrations in wine would bring a strong, pungent
smell and taste (Moreira et al., 2011). In our study, the use
of the apiculate yeast H. uvarum in mixed starter culture with
S. cerevisiae decreased the total higher alcohol content and
resulted in a concentration of 2-phenylethyl alcohol just above
its sensory threshold (Moreira et al., 2008; Medina et al., 2013).
Mixed fermentations also resulted in decreases in isovaleric acid
and increases in hexanoic, octanoic acid and ethyl octanoate.
Moreover, the presence of higher levels of decanoic acid and
ethyl decanoate was correlated with greater rates of cell lysis,
which could contribute to the tropical fruit aroma, texture
and body of wines (Medina et al., 2013). On the basis of
the above findings, we can say that co-inoculation represents
an alternative approach in commercial winemaking and its
success strongly depends on the selection of suitable yeast
strains. In this study carried out at industrial level, the use
of selected yeasts provides good results in terms of lack of
wine alterations. The scale-up of mixed fermentation, for the
first time, to an industrial level was the key step to validate
the results obtained in the laboratory and in pilot-scale. The
winemaking process has largely confirmed both the evolution

of the cultures inoculated and the analytical characteristics of
wines given by the strains of H. uvarum and S. cerevisiae
used for the fermentation. The results obtained were supported
by the fact that both inoculated strains were dominant on
indigenous microflora and, thus, they have certainly conducted
the fermentative process. The data achieved during the present
investigation confirmed the concept that oenological non-
Saccharomyces yeasts represent a resource of great value for
the winemaking industry. Indeed, the obtained results indicated
the H. uvarum strain ITEM 8795 can be used in association
with S. cerevisiae starter cultures in the in the winemaking
conditions typical of Southern Italy (Puglia) wine production.
The here-described multi-starter fermentation was able to
enhance the quality, improve the aromatic profile and reduce
the effect of the undesired characters of the final Negroamaro
wine.
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