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Chagas disease is a serious illness caused by the protozoan parasite Trypanosoma

cruzi. Nearly 30% of chronically infected people develop cardiac, digestive, or mixed

alterations, suggesting a broad range of host-parasite interactions that finally impact

upon chronic disease outcome. The ability of T. cruzi to persist and cause pathology

seems to depend on diverse factors like T. cruzi strains, the infective load and

the route of infection, presence of virulence factors, the parasite capacity to avoid

protective immune response, the strength and type of host defense mechanisms and the

genetic background of the host. The host-parasite interaction is subject to a constant

neuro-endocrine regulation that is thought to influence the adaptive immune system,

and as the infection proceeds it can lead to a broad range of outcomes, ranging from

pathogen elimination to its continued persistence in the host. In this context, T. cruzi

evasion strategies and host defense mechanisms can be envisioned as two sides of the

same coin, influencing parasite persistence and different outcomes observed in Chagas

disease. Understanding how T. cruzi evade host’s innate and adaptive immune response

will provide important clues to better dissect mechanisms underlying the pathophysiology

of Chagas disease.
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INTRODUCTION

Trypanosoma cruzi is a protozoan parasite that causes Chagas disease (WHO, 2015). Nearly
30% of chronically infected people develop cardiomyopathy, megacolon, and megaesophagus
or a mixed of these alterations, suggesting a broad range of host-parasite interactions that
finally impact upon chronic disease outcome (Rassi et al., 2010). Different and not mutually
exclusive hypotheses have been considered for the pathogenesis of chronic Chagas disease,
including autoimmunity by molecular mimicry, microvascular (Ramos and Rossi, 1999), and
autonomic dysfunction (Dávila et al., 2004), and tissue damage by parasite persistence (Gironès
et al., 2005; Gutierrez et al., 2009; Cunha-Neto et al., 2011). The parasite persistence hypothesis
predicts a chronic inflammatory reactivity as result of a failure in parasite burden control,
thus promoting the development of disease pathology (Tarleton, 2001). In addition, a subpatent
parasite-induced cell lysis as consequence of amastigote differentiation into trypomastigotes
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(Bonney and Engman, 2008) might fuel inflammation. The
presence of parasites (Añez et al., 1999; Buckner et al., 1999)
or their products, such as DNA, in blood and myocardium of
chronic infected hosts is well documented (Añez et al., 1999;
Zhang and Tarleton, 1999; Salomone et al., 2000; Elias et al.,
2003). T. cruzi reactivation in HIV co-infected, transplanted
or immunocompromised chronic chagasic patients provides
convincing evidence of parasite persistence (Tarleton, 2001;
Andrade et al., 2014), reinforcing the view that disease pathology
and its severity are directly related to T. cruzi presence within the
affected tissue (Tarleton, 2001). In this review, we examined the
complexity of cellular, molecular and physiologic factors involved
in T. cruzi evasion and persistence in the light of current data.

PARASITE EVASION INVOLVE DIRECT
HOST IMMUNE REGULATION AND
LATENCY ESTABLISHMENT

T. cruzi has a complex biological cycle involving mammals
and insect vectors. The strategies that T. cruzi employs to
guarantee its long-term survival withinmammalian hosts include
evasion from phagolysosome, expression of virulence factors,
direct immunomodulation and the establishment of latency sites
(Figure 1). Trypomastigotes can invade nucleated cells through
different mechanisms depending on whether the target cell is
phagocytic or nonphagocytic (Figure 2A; Romano et al., 2012).
Macrophages are the most important innate effector cells in
the fight against T. cruzi, but when subverted in the infection
they can be also exploited by the parasite as its primary niche,
thus avoiding cell-mediated immunity. Protective classically
activated (M1) macrophages are activated by IFN-γ, increasing
the expression of nitric oxide synthase (iNOS) and nitric oxide
(NO) production favoring the parasite killing. In contrast,
parasite clearance is prevented when macrophages acquire
an alternatively activated (M2) phenotype, with reduced NO
production thus increasing the parasite persistence (Sizirensen
et al., 1994; Desjardins and Descoteaux, 1997; Paulnock and
Coller, 2001; Stempin et al., 2002; Martinez and Gordon, 2014).
Unlike other parasites that prevent phagolysosome maturation
(David Sibley, 2011), T. cruzi evades macrophage microbicidal
activity by escaping from phagolysosome to cytoplasm, an event
that is mediated by the cytolitic activity of parasite’s C9 cross-
reactive protein (Tc-Tox; Andrews et al., 1990; Bogdan and
Röllinghoff, 1999). Once inside the cytoplasm, T. cruzi parasites
promote STAT1 dephosphorylation, thus interfering with the
transcription of IL-12 and TNF-α (De Diego et al., 1997)
that ultimately abrogate IFN-γ-mediated microbicidal responses
(Gazzinelli et al., 1992; Stahl et al., 2014). In addition, parasite-
derived proteases shutdown IL-12 expression by interrupting the
NF-κB signaling pathway (Doyle et al., 2011). Furthermore, T.
cruzi stimulate the secretion of anti-inflammatory cytokines such
as IL-10 and TGF-β that impair the development of protective
immune responses hence favoring the spread of infection and
parasite persistence in the host (Silva et al., 1991; Hunter et al.,
1997; Freire-de-Lima et al., 2000). T. cruzi can also disrupt the
classical and alternative complement pathways: parasite CRP and

T-DAF proteins bind to C3b and C4b fragments, inhibiting the
assembly of C3 and C5 convertase on the parasite membrane
(Joiner et al., 1986; Norris et al., 1991; Tambourgi et al., 1993;
Zambrano-Villa et al., 2002).

The acute phase of infection is marked by a transient state
of immunosuppression (Liew et al., 1987; Kierszenbaum et al.,
1999, 2002; Van Overtvelt et al., 2002; Alcaide and Fresno,
2004; Gutierrez et al., 2009; Padilla et al., 2009; DosReis, 2011;
Oladiran and Belosevic, 2012; Pinazo et al., 2013) involving,
among other things, a strong polyclonal B cell stimulation
which restricts the development of antigen-specific lymphocytes,
promoting apoptosis and cell cycle arrest (Ortiz-Ortiz et al., 1980;
Maleckar and Kierszenbaum, 1983; Zuñiga et al., 2000). In fact
T. cruzi provides a good example of such immunosuppression
strategy: T cells from infected mice respond poorly to mitogens
(Kierszenbaum et al., 1999, 2002; Alcaide and Fresno, 2004)
and they also undergo enhanced apoptosis upon stimulation of
T cell receptor (TCR), increasing the unresponsiveness of host
immunity (Abrahamsohn and Coffman, 1995; Martins et al.,
1998; Nunes et al., 1998). Studies have supported that IL-2
deficiency is one of the hallmarks of the disease-induced T cell
immunosuppression (Abrahamsohn and Coffman, 1995). The
T cell unresponsiveness in Chagas disease is also the result
of a direct downregulation of IL-2 receptor by the parasite
glycoprotein AGC10 (Kierszenbaum et al., 1999). Recently, a
novel immunosuppressive mechanism was described, which
implies the IFN-γ-dependent NO secretion by immaturemyeloid
cells (Goñi et al., 2002).

ADIPOSE TISSUE ACTS AS A RESERVOIR
OF TRYPANOSOMA CRUZI

Another adaptive strategy displayed by T. cruzi parasites to
optimize its persistence in the host consists in targeting tissues
with particular characteristics. Some studies have shown that
adipose tissue (AT) might serve as a reservoir where parasite
could persist in a latent state to avoid the host-defense
mechanisms, acting as a possible site of reactivation, similarly
to that observed for other intracellular pathogens (Figure 2B;
Neyrolles et al., 2006; Bechah et al., 2010, 2014). Adipocytes could
harbor a significant number of parasites even in the chronic
phase of infection (Combs et al., 2005). Recently, more robust
evidence that AT can act as a reservoir ofT. cruzi have arisen from
experiments in which infected mice were subsequently treated
with an anti-parasitic drug and afterwards immunosuppressed.
Intriguingly, in a significant number of animals, the AT was
the major site of parasite recrudescence (Fortes Francisco et al.,
2015). Moreover, studies carried out in patients with chronic
chagasic cardiomyopathy have revealed the presence of parasite-
derived DNA in AT (Ferreira et al., 2011). In this sense,
AT may be a reservoir from which reactivation of infection
may occur, especially during periods of immunosuppression, as
observed in chagasic patients co-infected with HIV, transplanted
or undergoing immunosuppressive therapies (Almeida et al.,
1996; Sartori et al., 1998; Campos et al., 2008; Cordova et al.,
2008; Pinazo et al., 2013). Moreover, in HIV co-infected chagasic
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FIGURE 1 | Pathogenesis of Trypanosoma cruzi infection. Several hypotheses have been considered for the pathogenesis of chronic Chagas disease,

comprising tissue damage by parasite persistence, autoimmunity, microvascular injury, and autonomic dysfunction. Since diverse factors are involved in parasite

evasion and persistence, most of all may influence the infection outcome and the development of pathology in almost 30% of infected individuals. The ability of T. cruzi

to evade immune system seems to depend on diverse factors like T. cruzi strains, the infective load and the route of infection and the presence of virulence factors;

but also can be determined by the type and strength of host defense mechanisms and the genetic background of the host.

FIGURE 2 | Aspects of Trypanosoma cruzi evasion and persistence in the vertebrate host. T. cruzi parasites develop different strategies to evade the host

defenses and establish a persistent infection. T. cruzi parasites evade the host innate immune responses associated with macrophage and complement system (A).

The trans-sialidase (TS), a T. cruzi-derived virulence factor, can also overcome the host resistance responses to optimize the invasion and parasite persistence in

chronic infection (B). The development of anti-parasite immune response is coupled with the activation of neuroendocrine axes that may affect the course of disease

(C). Adipose tissue can be considered as a parasite reservoir and may contribute to the establishment of persistent infections, playing a major role in T. cruzi burst

during immunosuppression periods (D). The recognition of T. cruzi-derived antigens in the thymus may restrict the central tolerance to parasite infection, while the

release of immature and potentially autoimmune T cells to the peripheral non-lymphoid tissues may be related with disease pathology in the chronic phase (E).
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patients, periods of lipoatrophy may result in the release of
parasites into the circulation (Ferreira et al., 2011). It remains to
be investigated why T. cruzi persists in the AT. Possible reasons
could be the special metabolic conditions thatT. cruzi finds inside
the adipocyte and the slow turnover of these cells. After infection,
there is an influx of inflammatory cells to AT, accompanied by an
in situ upregulation of both TNF-α and IL-6, concomitantly to a
diminution of adipocytokine levels (Desjardins and Descoteaux,
1997; Chandrasekar et al., 2000; Manarin et al., 2013). Moreover,
some studies suggested that metabolic alterations induced by
T. cruzi persistence in AT may increase the risk of diabetes,
metabolic syndrome and cardiovascular disease (Chandrasekar
et al., 2000; Nagajyothi et al., 2009; Manarin et al., 2013).

TRYPANOSOMA CRUZI VIRULENCE
FACTORS OVERCOME THE HOST
RESISTANCE RESPONSE TO ESTABLISH
PERSISTENT INFECTIONS

The ability of T. cruzi parasites to persist and cause pathology
partially depends on factors such as the parasite strain, the genetic
background of the host (Andrade et al., 2002; Savino et al., 2007)
and the route of infection (Barreto-de-Albuquerque et al., 2015).
T. cruzi species display a broad range of biological, biochemical,
molecular and genetic characteristics, being grouped in six
discrete typing units (DTUs; Macedo et al., 2004; Zingales et al.,
2009). The parasite immune modulatory effects seems to be
strain-dependent, a feature that might influence parasite-host
interactions (Lauria-Pires, 1996; Briones et al., 1999). Different
parasite strains coexist dynamically in natural reservoirs and
combinations of them have been found in triatomine bugs from
domestic and peridomestic areas (Noireau et al., 2009), as well as
in infected patients (Cura et al., 2015; Monje-Rumi et al., 2015).

The damping of host immune response during the acute

phase of Chagas disease is partially caused by T. cruzi-derived

virulence factors (Figure 2C; DosReis et al., 2005; Gutierrez
et al., 2009; Nagajyothi et al., 2012). One of the hallmarks of

parasite’s cell membrane composition is the presence of mucin-
like molecules presenting sialic acid residues attached to their

terminal β-galactosyl residues. These residues are transferred

from host glycoconjugates by the action of parasite trans-sialidase

(Schenkman et al., 1991, 1994; Previato et al., 1995; Eugenia
Giorgi and De Lederkremer, 2011). Parasite mucins are encoded
by more than 800 genes comprising∼1% of the parasite genome,
represented as O-glycosylated Thr/Ser/Pro-rich glycoproteins
(Di Noia et al., 1995; Buscaglia et al., 2006; Mendonça-
Previato et al., 2013). The T. cruzi-derived mucin molecules are
determinant in the host-parasite interplay, since they mediate
processes related to invasion of the vertebrate cells as well
as subvert the host immune system. The sialylated forms of
mucin-like molecules protect the parasite antigenic determinants
from host humoral responses, avoiding the humoral attack
mediated by anti-galactosyl antibodies and complement factor
B (Kipnis et al., 1981; Joiner et al., 1986; Gazzinelli et al., 1991;
Pereira-Chioccola et al., 2000). Moreover, it has been shown

that once sialylated, mucin-like molecules are able to impair
the host dendritic cell function through inhibition of the IL-
12 expression (Erdmann et al., 2009), possibly at transcriptional
level as described for IL-2 gene (Kierszenbaum et al., 1999,
2002). Furthermore, the parasite sialoglycoproteins are able to
inhibit tyrosine phosphorylation of the adapter protein SLP-76
and tyrosine kinase ZAP-70, both involved in the early events of
T cell activation (Alcaide and Fresno, 2004).

Recently, it has been shown that in vivo exposure to
T. cruzi mucins enhances the host susceptibility, as seen by the
increased parasitemia and heart tissue damage. These effects
were associated with a reduction in Th1 and Th2 cytokine
production, together with decreased levels in the frequency of
IFN-γ producing CD4+ T cells in the spleen of mice treated
with parasite mucins in comparison with untreated controls
(Nunes et al., 2013). Interestingly, it has been shown that the
binding of acid-binding Ig-like lectin Siglec-E (CD33) by T. cruzi
mucins inhibits the mitogenic responses of CD4+ T cells. Studies
conducted to address the molecular mechanisms underlying
these effects have shown that the impairment of TCR/CD3-
mediated activation of CD4+ T cells by T. cruzi-derived mucins
was correlated with induction of G1-phase cell cycle arrest.
Importantly, it has been demonstrated that interactions of the
terminal sialyl residues of T. cruzi mucins with CD4+ T cells led
to the induction of the cell cycle regulator p27/Kip1 responsible
to block the transition from G1 to S phase of mytosis, thus
preventing the proliferative responses (Nunes et al., 2013).

Interestingly, the limited T cell responses observed in T.
cruzi infection contrast with the large polyclonal expansion
of B lymphocytes seen in the acute phase (Ortiz-Ortiz et al.,
1980), as demonstrated by the increased frequency of IgG2a and
IgG2b secreting B cells in peripheral lymphoid organs of infected
mice. This phenomenon results in high frequency of nonspecific
antibodies with low affinity for T. cruzi antigens (Ouaissi et al.,
2001), some of them cross-reacting with heart and neural
autoantigens (Acosta and Santos-Buch, 1985; Kierszenbaum,
1999; Engman and Leon, 2002). The auto-reactive B cell
responses are thought to play secondary roles in the pathogenesis
of Chagas disease. The extensive polyclonal expansion of the B
cells could partly affect lymphoid compartments by increasing
the competition for activation and survival signals needed to
promote the generation of antigen-specific lymphocyte responses
against T. cruzi (Freitas and Rocha, 2000; Montaudouin et al.,
2013).

In addition, parasite-derived glycol-inositol-phospholipids
(GIPLs), which are components of the dense glycolipid layer
covering the parasite cell surface, also promote alterations in the
B cell compartment. These molecules work as TLR4 agonists,
mediating pro-inflammatory effects (Oliveira et al., 2004).
Another virulence factor encoded by T. cruzi that target the B
cell compartment is the proline racemase, which participates in
arginine and proline metabolism, acting as a potent mitogen
for B cells. Shortly, T. cruzi -derived virulence factors are active
players in the subversion of the host immune system and are
determinant for the establishment of chronic persistent infection
(Reina-San-Martín et al., 2000; Chamond et al., 2003).
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THE IMMUNE-ENDOCRINE IMBALANCE IS
A KEY DETERMINANT OF PARASITE
PERSISTENCE

Immune and neuro-endocrine systems are integrated through

a complex network of mediators, involving cytokines,

adipocytokines, hormones, and neuropeptides that collectively

act to maintain homeostasis (Besedovsky and del Rey, 1996;
Fantuzzi, 2005). However, when vertebrate hosts are challenged

by infectious pathogens, acute and short-term stress signals

are delivered by this network to initiate and build global host

mechanisms of defense (Besedovsky and del Rey, 1996). In

parallel, pathogens could interfere with this neuro-endocrine

response at several levels. Thus, a race between pathogen-
mediated evasion mechanisms and host immune response

will determine whether the microorganisms will be rapidly

eliminated or persist in the host (Figure 2D). In mice, the
anti-T. cruzi immune response is associated with the activation
of neuro-endocrine circuitries, mainly the hypothalamic-
pituitary-adrenocortical (HPA) axis (Roggero et al., 2006;
Corrêa-De-Santana et al., 2006b). In this scenario, pro-
inflammatory cytokines released during infection activate the
HPA axis, leading to production of glucocorticoids (GC), crucial
for host survival. Evidently, the neuro-endocrine circutries
initiates an anti-inflammatory response attempting to minimize
the infection-induced collateral tissue damage. However its
immunoregulatory effect ultimately favor the parasitism and
establishment of persistent infection. Comparative studies
between susceptible and resistant experimental mice models
have indicated that the course of T. cruzi infection strongly
depends on the appropriate timing and magnitude of the
immune-endocrine response (Roggero et al., 2006). Susceptible
animals succumb as consequence of increased inflammatory
response poorly counteracted by the HPA axis, while resistant
animals develop a more balanced immune-endocrine response
that lead to the establishment of a chronic infection and mild
pathology. Moreover, when GC signaling was abrogated by
adrenalectomy or treatment with GC receptor antagonist RU486,
the severity of infection increased dramatically as a result of an
augmented inflammation-based immunopathology (Roggero
et al., 2006; Pérez et al., 2007). These findings indicate that a
delicate balance between the immune and endocrine systems play
a role in the establishment of chronic infections. Additionally,
the activation of HPA axis leads to secretion of other adrenal
steroids, such as dehydroepiandrosterone (DHEA). In this
regard, the increased vulnerability of T. cruzi infected young
animals was associated with a high corticosterone/DHEA-sulfate
ratio as compared to the adult counterparts (Pérez et al., 2011).
Similarly, patients with severe chronic chagasic myocarditis
also revealed a disruption in the activation of HPA axis as
characterized by decreased concentrations of DHEA-sulfate
and unbalanced cortisol/DHEA-sulfate ratio in comparison to
asymptomatic or healthy individuals (Pérez et al., 2011). Overall,
these findings reinforce the view that during T. cruzi human
infection there are endocrine disturbances that might favor
parasite persistence, thus influencing the disease pathology.

Moreover, pro-inflammatory cytokines associated to T. cruzi
infection such as TNF-α, IL-6, or IL-1β could affect the release
of hypothalamic, pituitary or adrenal hormones by their direct
action on the endocrine glands (Kanczkowski et al., 2013,
2015; Hueston and Deak, 2014). During experimental T. cruzi
infection, TNF-α has been implicated in the HPA activation at
central level (Roggero et al., 2006; Pérez et al., 2007), although
inhibitory actions at adrenal level has been also observed (Villar
et al., 2013). Acutely infected TNF-R1 knock-out mice showed an
enhanced transcription of adrenal steroidogenic proteins StAR,
CYP11A1, CYP11B1 and 11β-HSD1 as compared to wild type
mice, suggesting that GC secretion can be down regulated by
TNF-α in situ, independently of the signaling pathway induced by
adrenocorticotropic hormone (ACTH; Corrêa-De-Santana et al.,
2006a; Villar et al., 2013). Since both parasites and their antigens
had been detected within adrenal glands (Corrêa-De-Santana
et al., 2006a; Villar et al., 2013), their presence might induce
in situ the release of TNF-α, with the consequent modulation
of GC secretion. In addition, IL-6 has also been associated
with enhanced activity of the HPA axis during experimental T.
cruzi infection. In this regard, supernatants of adenopituitary
cell cultures challenged with the parasite contained more IL-
6, while infected mice also showed augmented circulating
levels of this cytokine systemically (Corrêa-De-Santana et al.,
2006a). The activation of hypothalamus-pituitary unit also
results in the release of both growth hormone (GH) and
prolactin (PRL), which are capable of improving the immune
response, counteracting the GC-driven immunosuppression. T.
cruzi infection appears to directly modulate the secretion of both
hormones, since in vitro infection of mammosomatotrophic cell
line diminished GH and PRL secretion, similarly to observed in
the pituitary glands of infected mice (Corrêa-De-Santana et al.,
2009). The modulation of GH and PRL secretion by diminishing
the Pit-1 gene expression, a major transcription factor for both
hormone genes (Corrêa-De-Santana et al., 2009). Moreover, the
downregulation of these hormones during the infection might
be also related to the presence of parasites or their antigens
in the glands, favoring T cell and macrophage infiltration,
vascular stasis along with increased depots of extracellular
matrix proteins (Corrêa-De-Santana et al., 2006b, 2009). The
downmodulation of GH and PRL hormones is also observed
in African trypanosomiasis and may illustrates a common
modulatory mechanism (Radomski et al., 1994, 1996). Moreover,
there is a bulk of evidence indicating that sex steroid hormones
might influence the development and course of diverse parasitic
infections (Romano et al., 2015). Particularly, it has been shown
that T. cruzi parasites have the capacity to metabolize steroid
hormones (Vacchina et al., 2008), suggesting a possible role of
this mechanism in the host-parasite interplay.

TRYPANOSOMA CRUZI INFECTION MAY
INFLUENCE CENTRAL TOLERANCE

Several alterations in the thymic environment occur in infectious
diseases (Watson et al., 1983, 1984; Savino et al., 1986; Leite de
Moraes et al., 1991; Godfraind et al., 1995; Brito et al., 2003;
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Chen et al., 2005; Seixas and Ostler, 2005; Suzuki et al., 2005).
The most evident alteration is the atrophy of the thymus due to
the apoptotic death of differentiating thymocytes (Savino, 2006).
In T. cruzi infected mice present a marked imbalance between
intrathymic and systemic stress-related endocrine circuits, where
the rise of intrathymic levels of GC affect the viability of double
positive CD4+CD8+ (DP) cells, double-negative CD4−CD8−

(DN) and simple positive (SP) thymocytes (Roggero et al., 2006;
Pérez et al., 2007). The induction of GC-driven apoptosis of
DP cells is clearly associated with the activation of caspases
8 and 9 (Farias-de-Oliveira et al., 2013). In mice, the thymic
atrophy is also influenced by the premature export of immature
DP and DN thymocytes to the periphery, exhibiting a pro-
inflammatory profile (Figure 2E; Leite-de-Moraes et al., 1992; De
Meis et al., 2009; Morrot et al., 2011). Interestingly, increased
numbers of circulating undifferentiated DP T lymphocytes was
observed in patients with cardiac forms of chronic Chagas disease
(Lepletier et al., 2014). Studies have identified a potential role
for sphingosine-1-phosphate receptor-1 in this abnormal exit of
undifferentiated thymocytes to the periphery in Chagas disease
(Lepletier et al., 2014).

TheT. cruzi infected thymus undergoing atrophy is still able to
carry out negative selection, remaining important considerations
in the context of host-pathogen interactions (Mendes-da-Cruz
et al., 2003; Morrot et al., 2011). T. cruzi parasites also colonize
the thymus (Savino et al., 1989), so their antigens may be
presented to recirculating parasite-specific memory T cells
migrating from the periphery to the thymic microenvironment.

Alternatively, the parasite colonization of thymus could lead
to the generation of T. cruzi-specific Tregs with high affinity
TCR (Pacholczyk and Kern, 2008), thus promoting the host

tolerance to persistent infection. Interestingly, it has been
observed that chagasic patients in the indeterminate phase shown
high frequencies of circulating Tregs as compared to chronic
cardiac ones (De Araujo et al., 2011), suggesting a beneficial
role of Tregs in suppressing the pathology associated to disease
progression. In contrast, in experimental lethal models of Chagas
disease with highly Th1-polarized inflammatory responses, the
expansion of Tregs is clearly restricted (González et al., 2015).

CONCLUDING REMARKS

Recent studies suggest that the immuno-endocrine host
response may favor T. cruzi chronic persistence. Future studies
attempting to understand how T. cruzi evade host immune
response or the extent by which parasite persistence might be
favored by immune-neuro-endocrine regulation will provide
important clues to better dissect mechanisms underlying the
pathophysiology of Chagas disease.
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