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Extraintestinal pathogenic Escherichia coli (ExPEC) causes a variety of acute infections

in its hosts, and multidrug-resistant strains present significant challenges to public health

and animal husbandry. Therefore, it is necessary to explore new drug targets to control

E. coli epidemics. Previous studies have reported that ppk mutants of Burkholderia

pseudomallei andMycobacterium tuberculosis are more susceptible than the wild types

(WTs) to stress. Therefore, we investigated the stress response to antibiotics mediated

by polyphosphate kinase (PPK) in ExPEC strain PCN033. We observed that planktonic

cells of a ppk knockout strain (1ppk) were more susceptible to antibiotics than was

WT. However, biofilm-grown 1ppk cells showed similar susceptibility to that of the

WT and were more tolerant than the planktonic cells. During the planktonic lifestyle,

the expression of genes involved in antibiotic tolerance (including resistance-conferring

genes, and antibiotic influx, and efflux genes) did not change in the 1ppk mutant without

antibiotic treatment. However, the resistance-conferring gene bla and efflux genes were

upregulated more in the WT than in the 1ppk mutant by treatment with tazobactam.

After treatment with gentamycin, the efflux genes and influx genes were upregulated and

downregulated, respectively, more in the WT than in the 1ppk mutant. The expression

of genes involved in biofilm regulation also changed after treatment with tazobactam or

gentamycin, and which is consistent with the results of the biofilm formation. Together,

these observations indicate that PPK is important for the antibiotic stress response during

the planktonic growth of ExPEC and might be a potential drug target in bacteria.
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INTRODUCTION

Extraintestinal pathogenic Escherichia coli (ExPEC) is a major cause of urinary tract infections
in women, abdominal sepsis, and septicemia in elderly or immunocompromised individuals, and
meningitis in newborns, with highmorbidity andmortality (Gaschignard et al., 2011;Weston et al.,
2011; Mellata, 2013). ExPEC strains commonly colonize domestic animals, such as pigs, chickens,
and cattle, causing significant losses in animal husbandry and threating human health (Girardeau
et al., 2003; Johnson et al., 2005; Bergeron et al., 2012). We previously investigated the prevalence
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of ExPEC in swine across China and detected ExPEC in 10.1%
of porcine samples. The frequency of ExPEC isolated from
pigs increased between 2004 and 2007 from 3.1 to 14.6% (Tan
et al., 2012). The emergence of multidrug-resistant strains has
significantly hindered the prevention and control of ExPEC
epidemics (Sedláková et al., 2014; Sidrach-Cardona et al., 2014).
Therefore, it is urgent that we identify new drug targets to control
these increasing E. coli outbreaks.

Polyphosphate kinase (PPK) is an essential enzyme in
polyphosphate (polyP) synthesis and has been implicated
in many intracellular biological processes. Pseudomonas
aeruginosa in which ppk was deleted showed impairments
in motility, quorum sensing, and virulence (Rashid et al.,
2000), compacted nucleoids, membrane distortion, extracellular
polymer production, and a susceptibility to desiccation (Fraley
et al., 2007). PPK also plays a prominent role in the stress
response, and a Burkholderia pseudomallei ppk mutant was
susceptible to hydrogen peroxide under oxidative stress
conditions (Tunpiboonsak et al., 2010). A ppk1 mutant strain
of Mycobacterium tuberculosis displayed a survival defect
in response to nitrosative stress, and the negligible levels of
polyP were associated with its increased susceptibility to certain
tuberculosis drugs (Singh et al., 2013). PPK is highly conserved in
bacteria, but is absent in higher mammals (Brown and Kornberg,
2004), indicating that PPK has potential utility as an antibacterial
drug target.

As an opportunistic pathogen, E. coli mainly causes acute
infections in immunocompromised individuals (Chaudhuri and
Henderson, 2012; Mellata, 2013); further, acute infections are
associated with its planktonic growth mode (Li et al., 2014).
Therefore, we explored the role of PPK in antibiotic resistance in
the planktonic cells of ExPEC strain PCN033. Biofilm formation
contributes to chronic bacterial infections, such as the recurrent
pyelonephritis caused by uropathogenic E. coli in children
(Tapiainen et al., 2014). Therefore, we also studied the role of PPK
in antibiotic tolerance in biofilm-grown cells.

MATERIALS AND METHODS

Bacterial Strains and Culture Conditions
The wild-type (WT) strain used in this study, PCN033, was
isolated from a diseased swine in Hubei Province, Central China
(Liu et al., 2015). The 1ppk mutant was obtained by in-frame
deletion with the suicide plasmid pRE112 (He et al., 2012).
Details of both these strains and the primers used in this
study are listed in Table S1 (available as Supplementary Data).
The antibiotic susceptibility and biofilm formation assays were
performed inMOPS broth (an inorganic phosphorus [Pi]-limited
medium) at 28◦C (Neidhardt et al., 1974). The antibiotics used
in the biofilm inhibition assay were added below the minimum
inhibitory concentrations (MICs), and had no bactericidal effect
on the planktonic cells.

Growth Characteristics
Fresh colonies of both strains were taken from Luria–Bertani
(LB) agar plates, used to inoculate LB broth, and then cultured
in MOPS in a shaker incubator for 12 h. The growth

characteristics were monitored turbidimetrically at 600 nm on
a spectrophotometer (Eppendorf, Hamburg, Germany) and the
colony-forming units (cfu) were counted at 1 h intervals. The
generation times were calculated with the formula (Penfold and
Norris, 1912):

G =
T

Log
b
a
2

where G is the generation time; T is the length of the logarithmic
phase; a is the initial number of bacteria; and b is the final number
of bacteria.

Susceptibility Assay
Each MIC was determined with a series of two-fold dilutions
of the antibiotic in MOPS broth, according to the Clinical
Laboratory and Standards Institute guidelines. A pre-grown
inoculum of each strain was diluted in MOPS to a final
concentration of 107 cfu/mL, and the concentration of antibiotic
added varied from 0.25 to 512 mg/L. The plates were incubated
for 24 h, and the MICs were determined as the lowest antibiotic
concentrations that produced no visible growth.

The susceptibility assay of the biofilms was performed
as described previously (Benthall et al., 2015), with some
modifications. The MIC on the biofilm was determined by
allowing a biofilm to form in a 96-well-plate for 24 h. The
unattached cells were washed off three times with 0.9% saline.
The biofilm was incubated for 24 h with a range of antibiotic
concentrations from 512 to 0.25 mg/L. The MIC was defined
as the lowest antibiotic concentration at which no bacterial
growth was detected. To determine the effect of the biofilm
on the bacterial susceptibility to antibiotics, the viability of
planktonic and biofilm-grown cells was calculated after the
antibiotic treatments. About 107 cfu were incubated with
antibiotic concentrations of 2 × MIC for 3 h, and the cfu were
then counted.

To quantify the bactericidal activity of these antibiotics on
the biofilm, their activity percentage was assessed according
to a previous report (Sánchez-Gómez et al., 2015), with some
modifications. The ability of these antibiotics to remove the
biofilm attached to the microplate was determined with crystal
violet (CV) staining. For this purpose, the treated biofilm was
stained with CV for 30 min at room temperature. The excess
stain was then rinsed off with saline and the CV remaining on
the biofilm was dissolved in 33% acetic acid. The absorbance
was measured at 595 nm with a Synergy HT microplate reader
(BioTek, USA). The activity percentage was calculated according
to Sánchez-Gómez et al., with the formula:

Activity Percentage =
(C − B)− (T − B)

C − B
x 100

where C is the absorbance of the control well-containing
untreated biofilm; T is the absorbance of the well-containing
treated biofilm; and B is the absorbance of the blank well (i.e.,
no biofilm).
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Biofilm Formation Assay
Static cultures of biofilm grown at 28◦C were analyzed in flat-
bottom 96-well-microtiter plates (Corning, USA) using CV.
Briefly, approximately 107 cfu were inoculated with sub-MIC
antibiotics and cultured for 24 h. The unattached cells were
then washed off as described above, fixed with absolute ethanol
for 30 min, dried, and stained with 0.1% CV solution for 1 h.
The microplates were then washed three times to remove any
unattached CV. The CV in the stained biofilm was then dissolved
in 33% acetic acid solution and the absorbance read at 595
nm. Each experiment was repeated twice with three technical
replicates.

RNA-seq Assay and Quantitative
Real-Time (qRT)–PCR Validation
RNA samples from each strain were prepared for RNA
sequencing. Sequencing was performed on an Illumina
Hiseq 2500 sequencer (Illumine Inc.) by Shanghai Hanyu
Biotechnology Co., Ltd (Shanghai, China). The RNA-seq results
were confirmed with qRT–PCR. Before qRT-PCR, the RNA of
both strains was extracted with RNAiso Plus reagent (Takara,
China). Any genomic DNA contamination was eliminated,
and the RNA was reverse transcribed to cDNA with the
PrimeScriptTMRT reagent Kit with gDNA Eraser (Takara).
Quantitative real-time PCR was performed in triplicate in optical
96-well-reaction plates (Life Technologies, China) using Power
SYBR Green PCR Master Mix (Life Technologies). The primers
are listed in Table S1. The mRNA levels of the target genes
were normalized to the internal 16S rRNA control with the
11Ct method (Kubista et al., 2006). The planktonic cells of the
WT and 1ppk mutant were cultured to an optical density at
a wavelength of 600 nm (OD600) of about 0.5. Tazobactam or
gentamycin was added at a concentration of 2 × MIC and the
cells were incubated for 2 h. The cells were then collected for
RNA extraction and qRT–PCR.

Statistical Analysis
Statistical analysis was performed with the SPSS software (SPSS,
Inc., Chicago, IL, USA) on a Windows XP system. Biofilm
formation, differential expression, and generation times were
compared with one-way analysis of variance (ANOVA). Values
are expressed as means ± SD, and statistically significant
differences are marked with asterisks. To identify the levels
of gene expression, the RNA-seq data were analyzed with an
MA-plot-based method with the random sampling model
(MARS) in the DEGseq software (http://www.bioconductor.
org/packages/release/bioc/html/DESeq.html). Genes showing
two-fold changes in expression, a false discovery rate<0.001, and
reads per kilobase per million >20 in at least one sample were
considered to be differentially expressed under the conditions
used.

RESULTS

Growth Characteristics
In MOPS minimal medium, the density of the 1ppk cultures
was slightly higher than that of the WT at each time point tested

(Figure 1). However, the generation times, calculated from both
the optical density and cfu, for 1ppk (GOD = 56.5 ± 4.73, GCFU

= 42.0 ± 1.88) were not significantly different (P > 0.05) from
those for WT (GOD = 56.3± 3.64, Gcfu = 45.9± 4.35).

Planktonic 1ppkCells are More
Susceptible to Antibiotics than WT Cells
As shown in Table 1, the 17 antibiotics screened in this study
were categorized based on their targets: cell wall biosynthesis
(type A), protein biosynthesis (type B), nucleotide metabolism
(type C), and cell membrane (type D). There were no significant
differences in the MIC values for the 1ppk strain and WT in
LB broth. However, in MOPS broth, 1ppk was more susceptible
to antibiotics than WT. Specifically, 1ppk was much more
susceptible to type B antibiotics than was WT, followed by type
A antibiotics. Because the WT strain can accumulate more polyP
in MOPS broth than in other medi (Ault-Riché et al., 1998), we
performed all further assays in MOPS.

Biofilm-Grown 1ppk and WT Cells Are
Similarly Tolerant and More Tolerant than
Planktonic Cells
To clarify the role of biofilms in antibiotic resistance, an MIC
assay using biofilm-grown cells was performed as described
previously (Benthall et al., 2015). As shown in Table 2, biofilm-
grown 1ppk cells showed almost no difference from WT cells
in their antibiotic susceptibility, and biofilm-grown cells of both
strains were more tolerant than the corresponding planktonic
cells. Consistent with this, there was no significant difference
in the ability of antimicrobial compounds to kill biofilm-grown
cells of the WT and 1ppk strains (Figure S1). However, more
planktonic cells of the 1ppk strain were killed than WT cells
(Figure 2). In a future study, we will investigate the role of PPK
in antibiotic tolerance within the planktonic growth mode.

Expression of Antibiotic-Resistance Genes
without Antibiotic Treatment
RNA-seq data for the 1ppk and WT strains regarding the
expression of genes involved in antibiotic resistance, including
resistance-conferring genes and antibiotic efflux and influx genes,
are presented in Table S2. Of 53 genes known to be involved in
antibiotic resistance or multidrug resistance, the expression of
one resistance-conferring gene (tetB), two efflux genes (mdtE and
mdtG), and one influx gene (ompC) was upregulated, and the
expression of three efflux genes (marA, marB, and mdtA) was
downregulated in the mutant compared with their expression
in WT (Figure 3A). The expression of some of these genes was
confirmed with qRT–PCR (Figure 3B).

Expression of Resistance-Conferring
Genes after Antibiotic Treatment
Five resistance-conferring genes were selected for analysis when
WT was treated with tazobactam, as shown in Figure 4. The
expression of beta-lactamase (bla) was upregulated, as was
that of aminoglycoside 3′N-acetyltransferase III (aac), fused
UDP-L-Ara4N formyltransferase (arnA), and nitroreductase A
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FIGURE 1 | Growth characteristics of E. coli strains PCN033 (wild type) and 1ppk in MOPS broth: (A) optical density, and (B) colony-forming units.

TABLE 1 | Assay of the susceptibility of planktonic cells to antibiotics (mg/L).

Target (type) antibiotic compound MIC in LB MIC change MIC in MOPS MIC fold References

category (fold) (fold)

PCN033 1ppk PCN033 1ppk

Cell wall biosynthesis(A) β-lactams cefotaxime 2 1 2 16 4 4 Bush, 2012

ceftazidime 256 256 1 512 512 1

ampicillin >512 >512 1 >512 >512 1

cefazolin >512 >512 1 >512 >512 1

tazobactam >512 >512 1 >512 256 >2

ticarcillin >512 >512 1 >512 >512 1

Glycopeptide vancomycin >512 >512 1 128 64 2

Protein biosynthesis (B) Aminoglycosides gentamicin >512 >512 1 256 32 8 Davis, 1987

gentamicin sulfate >512 >512 1 256 64 4

amikacin >512 >512 1 >512 64 ≥4

Macrolide Erythromycin 512 512 1 512 128 4 Brisson-Noël et al., 1988

Nucleotide metabolism (C) Quinolones norfloxacin >512 512 >1 512 512 1 Aldred et al., 2014

levofloxacin 128 64 2 64 16 4

Sulfonamides Trimethoprim 128 128 1 256 128 2 Pérez-Trallero and Iglesias, 2003

sulfadiazine >512 >512 >1 >512 >512 1

Nitrofurans macrodantin 512 256 2 128 128 1 Hof, 1988

Membrane (D) Lipopeptde polymyxin B 0.5 ≤0.25 ≥2 2 1 2 Grau-Campistany et al., 2015

(nfsA). The bla, arnA, and sulfate adenylyltransferase (cysN)
genes were also upregulated in the1ppkmutant after tazobactam
treatment, but their expression was higher in WT than in the
1ppk mutant. The expression of resistance-conferring gene was
not significantly altered by gentamycin treatment, except for
cysN.

Expression of Genes Involved in Antibiotic
Transport Was Altered More Strongly in WT
than in the 1ppk Mutant
The expression of six genes involved in antibiotic efflux was
determined, as shown in Figure 5A. The efflux genes were
upregulated in both the WT and 1ppk mutant strains by
tazobactam and gentamycin. However, the expression of acrA,
cusC, andmarA was higher in WT than in the 1ppkmutant after

treatment with tazobactam. After treatment with gentamycin,
the expression of acrA and marA was also higher in WT than
in the 1ppk mutant. The expression of three genes involved
in antibiotic influx was determined, as shown in Figure 5B. All
the genes tested were downregulated by antibiotic treatment.
However, ompF expression decreased more strongly in WT
than in the 1ppk mutant when treated with tazobactam. The
expression of ompF, ompC, and phoE also decreased more
strongly in WT than in the 1ppk mutant after treatment with
gentamycin.

Effects of Tazobactam and Gentamycin in
Biofilm Formation
The RNA-seq data showed that the transcription levels of
some genes associated with biofilm formation were altered
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TABLE 2 | Assay of the susceptibility of biofilm-grown cells to antibiotics (mg/L).

Target (type) antibiotic category compound MIC for biofilm MIC change (fold)

PCN033 1ppk

Cell wall biosynthesis (A) β-lactams cefotaxime 128 256 0.5

ceftazidime 512 512 1

ampicillin >512 >512 1

cefazolin >512 >512 1

tazobactam 512 >512 ≤0.5

ticarcillin >512 >512 1

Protein biosynthesis (B) Aminoglycosides gentamicin 512 512 1

gentamicin sulfate 512 256 2

amikacin 512 512 1

Macrolide erythromycin 512 512 1

Quinolones norfloxacin 512 512 1

levofloxacin 32 32 1

Nucleotide metabolism (C) Sulfonamides Trimethoprim 512 512 1

sulfadiazine >512 >512 1

Nitrofurans macrodantin 512 512 1

Membrane (D) Lipopeptde polymyxin B 4 4 1

FIGURE 2 | Antibiotic killing assay of planktonic and biofilm-grown cells. PCN033-PC indicates planktonic WT cells; PPK-KO-PC indicates planktonic cells of

the 1ppk mutant; PCN033-BC indicates biofilm-grown WT cells; PPK-KO-BC indicates biofilm-grown cells of the 1ppk mutant; blank indicates no antibiotic

treatment. ***p < 0.000, **p < 0.01, *p < 0.05.

in the 1ppk strain (Tables S3, S4), especially those encoding
the flagella cluster, which simultaneously promotes biofilm
generation and impedes biofilmmaturation (Laverty et al., 2014).
The expression of fimbrial and curli genes was also reduced
in the 1ppk mutant. The expression levels of some genes
were confirmed with qRT–PCR (Figure 6A). The expression of
four genes (yddV, mcbR, bolA, and csgD) involved in biofilm
regulation was determined during antibiotic treatment, as shown

in Figure 6B (Laverty et al., 2014; Lord et al., 2014; Dressaire
et al., 2015; Wu et al., 2015). The expression of yddV, mcbR,
and bolA was upregulated in WT but downregulated in the
1ppk mutant when treated with tazobactam, and all four
genes were upregulated in WT but downregulated in the 1ppk
mutant when treated with gentamycin. Biofilm formation was
also evaluated in the presence of tazobactam or gentamycin, as
shown Figure 6C. Biofilm formation increased inWT planktonic
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FIGURE 3 | Expression levels of genes involved in antibiotic resistance, antibiotic efflux, or antibiotic influx. (A) Expression levels determined with RNA-seq;

(B) qRT–PCR confirmation. AR indicates genes that confer resistance, including beta-lactamase bla, aminoglycoside 3′N-acetyltransferase III (aac) etc.; efflux genes

include acrAB–tolC, acrDEF, cusCFBA, emrAB, emrKY, mdtABCEF, etc.; and influx genes include ompC, ompF, and phoE, details are available in Table S2.

FIGURE 4 | Expression levels of genes that confer resistance, during tazobactam and gentamycin treatment. Expression levels were compared with those

of WT (PCN033). 33-TZP/PCN033 indicates the expression levels in PCN033 during tazobactam treatment compared with those in untreated PCN033;

K-TZP/PCN033 indicates expression levels in the 1ppk mutant during tazobactam treatment compared with those in untreated PCN033; 33-GEN/PCN033 indicates

expression levels in PCN033 during gentamycin treatment compared with those in untreated PCN033; K-GEN/PCN033 indicates expression levels in the 1ppk

mutant during gentamycin treatment compared with those in untreated PCN033. ***p < 0.000, **p < 0.01, *p < 0.05.

FIGURE 5 | Expression levels of genes involved in antibiotic efflux and influx during tazobactam and gentamycin treatments. (A) Expression of efflux

genes, (B) expression of influx genes. Expression levels of the genes were compared with those of WT (PCN033). 33-TZP/PCN033 indicates the expression levels in

PCN033 during tazobactam treatment compared with those in untreated PCN033; K-TZP/PCN033 indicates the expression levels in the 1ppk mutant during

untreated PCN033.K-GEN/PCN033 indicates the expression levels in the 1ppk mutant during gentamycin treatment compared with those in untreated PCN033.

***p < 0.000, **p < 0.01, *p < 0.05.
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FIGURE 6 | Biofilm formation assay. (A) Validation of the expression of genes involved in biofilm formation. (B) Expression levels of genes involved in biofilm

regulation during tazobactam and gentamycin treatment. (C) Biofilm formation during tazobactam or gentamycin treatment. Expression levels of genes were

compared with those in WT (PCN033). 33-TZP/PCN033 indicates the expression levels in PCN033 during tazobactam treatment compared with those in untreated

PCN033; K-TZP/PCN033 indicates the expression levels in the 1ppk mutant during tazobactam treatment compared with those in untreated PCN033;

33-GEN/PCN033 indicates the expression levels in PCN033 during gentamycin treatment compared with those in untreated PCN033; K-GEN/PCN033 indicates the

expression levels in the 1ppk mutant during gentamycin treatment compared with those in untreated PCN033. WT indicates PCN033 without antibiotic treatment;

WT treated indicates PCN033 with antibiotic treatment; PPK-KO indicates the 1ppk mutant without antibiotic treatment; PPK-KO treated indicates the 1ppk mutant

with antibiotic treatment. ***p < 0.000, **p < 0.01, *p < 0.05.

cells but decreased in 1ppk planktonic cells when treated with
antibiotics.

DISCUSSION

Multidrug-resistant strains of ExPEC present significant
challenges to public health and animal husbandry (Girardeau
et al., 2003; Johnson et al., 2005; Bergeron et al., 2012). Because
pathogenic E. colimainly causes acute infections in its planktonic
growth mode (Li et al., 2014), we initially investigated the role
of PPK in the antibiotic resistance of ExPEC in the planktonic
growth mode. We investigated in detail its susceptibility to
different types of antibiotics, mediated by PPK, in E. coli. We

found that PPK is very important in aminoglycoside tolerance,
regulating the expression levels of antibiotic efflux and influx
genes in the planktonic growth mode. Our findings indicate
that PPK could have utility as a novel antimicrobial drug
target.

As reported previously, resistance-conferring proteins and
antibiotic efflux and influx porins play important roles in
multidrug-resistance. Efflux proteins contribute to antibiotic
tolerance by transporting compounds to the extracellular
environment, whereas influx proteins have the opposite effect
(Wilson, 2014). The expression levels of these genes were
determined with RNA-seq, and showed that without antibiotic
treatment, they did not differ significantly between WT and
the 1ppk mutant. Because PPK is reported to play prominent
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roles in the stress responses elicited by other stimuli (Alcántara
et al., 2014), we investigated the role of PPK in the antibiotic
stress response. Gentamycin and tazobactam were selected to
treatthe planktonic cells of WT and the 1ppk mutant. With
gentamycin treatment, the expression of the efflux genes acrA
and marA increased more strongly in WT than that in the 1ppk
mutant, and the influx porin genes ompC and ompF decreased
more strongly in WT than in the 1ppk mutant. Gentamycin
binds the 30S ribosomal subunit and interrupts protein synthesis,
thus inhibiting bacterial multiplication (Wargo and Edwards,
2014). According to Gray et al., compounds that interrupt protein
metabolism cause intracellular polyP accumulation (Gray et al.,
2014). Because it is a high-energy phosphate compound, polyP
can be used to phosphorylate the response regulators of two-
component systems to regulate gene expression (Sureka et al.,
2007). As reported previously, the two-component systems CpxR
and BaeR are implicated in antibiotic resistance by regulating
the efflux genes of the acr operon and mar operon (Hu et al.,
2011; Weatherspoon-Griffin et al., 2014; Pletzer et al., 2015).
We speculated that phosphorylation of BaeR or CpxR using
polyP as phosphate donar to modulate expression of acrA and
marA during gentamycin treatment. The expression of porin
genes ompF and ompC is upregulated by cAMP (Dalhoff, 1983),
and the level of cAMP is negatively regulated by polyP, which
potently inhibits the activity of the class III adenylate cyclases
(Guo et al., 2009). Therefore, we speculated that the expression of
ompC and ompF was downregulated by polyP during gentamycin
treatment. Therefore, polyP may influence gentamycin tolerance
by regulating the expression of antibiotic efflux and influx
genes.

With tazobactam treatment, the expression of the resistance
gene bla and efflux genes acrA, cusC, andmarA was upregulated.
Tazobactam binds to the periplasmic β-lactamase, and the
efflux pump is implicated in resistance to beta-lactams and
beta-lactamase inhibitors (Zhanel et al., 2014). However, there
are insufficient data to clarify the role of PPK in regulating
the expression of efflux pump genes induced by β-lactams.
It will be interesting to explore the role of PPK in this
process.

Biofilms contribute to antibiotic tolerance and chronic
infection; thus, we also investigated the role of PPK in the
antibiotic resistance of biofilm-grown cells. We observed that
biofilm formation was impaired in the 1ppk mutant when
treated with antibiotics. The genes involved in biofilm formation
(such as those encoding the fimbriae cluster, flagella cluster,
and biofilm regulators BolA and McbR), were downregulated
in the 1ppk mutant by both antibiotic treatments. PolyP
acts as a “chemical chaperone,” stabilizing cytoplasmic proteins
intracellularly, similarly to heat shock proteins (Gray et al., 2014),
and chaperones are known to be involved in biofilm formation.
For example, the chaperone CsgE directs the intracellular
localization of CsgA, the major subunit of the extracellular
amyloid protein known as curli, which is essential for biofilm

formation (Andersson et al., 2013). The FliS protein acts as a
chaperone for FliC, a flagellar structural protein that promotes
biofilm generation (Xu et al., 2014). The universal heat shock
protein chaperones are also implicated in biofilm formation by
fungi, such as Candida albicans (Robbins et al., 2011; Becherelli
et al., 2013), and by Gram-negative bacteria, such as E. coli
(Grudniak et al., 2013). Ultimately, these different effects reduce
biofilm impairment during antibiotic treatment. Interestingly,
PPK did not affect the antibiotic tolerance of ExPEC in the
biofilm growth mode. Biofilms manifest antibiotic tolerance
through many different mechanisms, including preventing the
passage of antimicrobial compounds into the cytoplasm and
possessing densely adherent growth (Qu et al., 2010). As reported
previously, the planktonic and biofilm modes of growth are
two distinct bacterial “lifestyles” (Chua et al., 2014), so it will
be interesting to explore the roles of PPK in these distinct
contexts.
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