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In this paper the resistance of bacterial foodborne pathogens to manosonication (MS),
pulsed electric fields (PEFs), high hydrostatic pressure (HHP), and UV-light (UV) is
reviewed and compared. The influence of different factors on the resistance of bacterial
foodborne pathogens to these technologies is also compared and discussed. Only
results obtained under harmonized experimental conditions have been considered. This
has allowed us to establish meaningful comparisons and draw significant conclusions.
Among the six microorganisms here considered, Staphyloccocus aureus is the most
resistant foodborne pathogen to MS and HHP and Listeria monocytogenes to UV.
The target microorganism of PEF would change depending on the treatment medium
pH. Thus, L. monocytogenes is the most PEF resistant microorganism at neutral
pH but Gram-negatives (Escherichia coli, Salmonella spp., Cronobacter sakazakii,
Campylobacter jejuni) would display a similar or even higher resistance at acidic pH. It
should be noted that, in acidic products, the baroresistance of some E. coli strains would
be comparable to that of S. aureus. The factors affecting the resistance of bacterial
foodborne pathogens, as well as the magnitude of the effect, varied depending on the
technology considered. Inter- and intra-specific differences in microbial resistance to
PEF and HHP are much greater than to MS and UV. Similarly, both the pH and aw of the
treatment medium highly condition microbial resistance to PEF and HHP but no to MS
or UV. Growth phase also drastically affected bacterial HHP resistance. Regarding UV,
the optical properties of the medium are, by far, the most influential factor affecting its
lethal efficacy. Finally, increasing treatment temperature leads to a significant increase
in lethality of the four technologies, what opens the possibility of the development
of combined processes including heat. The appearance of sublethally damaged cells
following PEF and HHP treatments could also be exploited in order to design combined
processes. Further work would be required in order to fully elucidate the mechanisms
of action of these technologies and to exhaustively characterize the influence of all the
factors acting before, during, and after treatment. This would be very useful in the areas
of process optimization and combined process design.

Keywords: non-thermal technologies, food preservation, ultrasound, manosonication, pulsed electric fields, high
hydrostatic pressure, UV, foodbone pathogens
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INTRODUCTION

The food industry is showing growing interest in developing
alternative microbial inactivation methods capable of avoiding
the undesirable effects that traditional technologies such as
heating or acidification cause on foods (Mañas and Pagán, 2005).
Thus, a number of different methods including pulsed electric
fields (PEFs), high hydrostatic pressure (HHP), ultrasound (US),
and UV light (UV) have been proposed as possible alternatives to
traditional technologies.

A wide amount of data on the resistance of different microbial
species of relevance for food safety and stability to each of the four
technologies that are to be reviewed in this paper (US, PEF, UV,
and HHP) is available. However, different types of equipment,
matrices, and experimental conditions applied in a number of
studies and/or laboratories (for example the microorganisms’
physiological state, differing treatment parameters and recovery
conditions) make it difficult to classify the relative resistance
of different microbial species to each of these technologies and
almost impossible to establish meaningful comparisons among
the latter. Unfortunately, if we want to find an application
for a new food preservation technology, we initially need
such comparisons to help us identify which products could be
processed by it, or, generally speaking, which is the most suitable
technology for a specific product.

The aim of this paper is to review and compare the
resistance of bacterial foodborne pathogens to four non-thermal
technologies for food preservation: US, PEF, HHP, and UV.
The influence of different factors on the resistance of bacterial
foodborne pathogens to these technologies will be also compared
and discussed. For comparative purposes, in some cases we will
also include microbial heat resistance data. As pointed out above,
a basic pre-requisite for establishing meaningful comparisons
and drawing significant conclusions is the harmonization of the
experimental conditions that reigned in all studies under review.
In this regard, great advantage and interest can be found in the
comparison of results obtained by a single research group using
the same strains as well as the same protocols for obtaining
suspensions and for recovering treated cells -all evaluated by the
same matrices and using identical equipment-. For this reason,
the present review will focus on the data obtained by the New
Technologies for Food Preservation group (DGA-A20) at the
University of Zaragoza along the last 25 years, since all its results
were obtained following standardized protocols: thus, they are
directly comparable with one another.

NON-THERMAL TECHNOLOGIES FOR
MICROBIAL INACTIVATION IN FOOD

In this review, four of the most promising non-thermal food
preservation technologies will be considered: US, PEF, HHP, and
UV.

Ultrasound-Manosonication
Ultrasound consists in the use of sonic waves with frequencies
exceeding 16–18 kHz, which lie above the threshold of human

hearing. It is one of the new microbial inactivation technologies
suggested as an alternative to current heat treatments (Condón
et al., 2011). Nevertheless, one should note that the bactericidal
effect of ultrasound has been known since the early 20th century
(Harvey and Loomis, 1929).

It is generally acknowledged that the lethality of high
power ultrasound (20–40 kHz) on microbial cells is due
to a phenomenon called transient cavitation (Kinsloe et al.,
1954; Davies, 1959; Raso et al., 1998d; Condón et al., 2005).
As a consequence of the implosion of bubbles generated
during transient cavitation, molecules violently collide, thereby
producing shock waves which, in turn, lead to spots of extremely
high temperature (5000◦C) and pressure (100 MPa; Suslick,
1988). The high temperatures and pressures produced in the
bubbles’ implosion spots can also provoke the dissociation
of water molecules into OH radicals and H atoms (Suslick,
1990). Although, it was initially hypothesized that the “hot
spots” and reactive species generated from water sonolysis might
contribute to ultrasound’s lethal effect, most authors now agree
that the shock waves produced during transient cavitation are
probably the main or sole mechanism responsible for microbial
inactivation (Davies, 1959; Raso, 1995; Pagán, 1997; Valero et al.,
2007; Condón et al., 2011). Furthermore, various studies have
shown that ultrasound destroys cellular envelopes (Guerrero
et al., 2001; Condón et al., 2011).

According to most data reported, the germ-killing efficacy of
ultrasound is still relatively low in room conditions and could
only become an actual alternative to current heat treatments
under special circumstances (Alzamora et al., 2011). Therefore,
most investigators have tried to improve the procedure’s
efficacy either by increasing cavitation intensity, or by designing
combined processes that would enhance the effect of ultrasound
(Ordóñez et al., 1984, 1986; Sala et al., 1992; Raso et al.,
1998d,e; Arce-García et al., 2002; Lee et al., 2003; Guerrero et al.,
2005; López-Malo et al., 2005). In this review we will focus
on manosonication (MS), a process designed and patented by
our group (MTS, Spanish Patent No 9200686); MS probably
represents the most promising approach to non-thermal food
pasteurization involving ultrasound.

Pulsed Electric Fields
One of the most promising new technologies for microbial
inactivation is PEF, consisting in the application of short duration
(1–100 μs) high electric field pulses (10–50 kV/cm) to food
placed between two electrodes (Heinz et al., 2001), PEF is capable
of inactivating microorganisms while causing little changes in the
sensory and nutritional quality of foodstuffs (Raso and Barbosa-
Cánovas, 2003).

Similarly to ultrasound, PEF’s main targets are cellular
envelopes (Mañas and Pagán, 2005), since PEFs are capable of
temporarily or permanently permeabilizing cell membranes
-a phenomenon known as “electropermeabilization” or
“electroporation.” The complex phenomenon of membrane
electroporation has been widely investigated, and several theories
have been proposed to explain it (Zimmermann, 1986; Tsong,
1991; Kinosita et al., 1992; Ho and Mittal, 1996; Weaver and
Chizmadzhev, 1996; Barbosa-Cánovas et al., 1999; Pavlin et al.,
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2007). No clear evidence has yet been found, however, of the
underlying mechanism of membrane permeabilization on a
molecular level (Pagán and Mañas, 2006).

High Hydrostatic Pressure
High hydrostatic pressure technology consists in the application
of pressures ranging from 100 to 15,000 MPa to food products
(Ledward, 1995). Similarly to ultrasound and PEF, its objective
is to inactivate pathogenic and spoilage microorganisms without
affecting food quality (Smelt, 1998; Mañas and Pagán, 2005;
Patterson, 2005). The first studies on the lethal effect of HHP
were conducted at the end of the 19th century, but only in
recent years have commercial applications of this procedure
started seeing the light of day. As opposed to the other new
technologies reviewed in this paper, HHP is already being applied
commercially for the preservation of a wide range of food
products.

Most authors agree that microbial HHP inactivation is a
multi-target process (Mañas and Pagán, 2005). As in MS and
PEF, the membrane would be a key target; however, in some
cases, additional damaging events also seem to be necessary in
order to kill bacteria -events such as extensive solute loss during
pressurization, protein coagulation, key enzyme inactivation and
ribosome conformational changes, along with impaired recovery
mechanisms (Mañas and Pagán, 2005)-. In this sense, it has
also been hypothesized that HHP might affect cytoplasmic or
membrane enzymes, thereby disturbing cellular metabolism and
inducing the generation of endogenous reactive oxygen species
(ROS). This would lead to an accumulation of oxidative damage
and cell death (Aertsen et al., 2005).

Ultraviolet Light
Although ultraviolet (UV) light irradiation has been used
traditionally for air, surface, and water decontamination, only
recently has the food industry developed an interest in its possible
application to the hygienization of liquid foods and the surfaces
of solid foods (Gayán et al., 2014a).

Corresponding to the portion of the electromagnetic spectrum
ranging from 200 to 400 nm, UV light is divided into three
regions: short-wave ultraviolet (UV-C) from 200 to 280 nm;
medium-wave UV (UV-B) from 280 to 320 nm; and long-wave
UV (UV-A) from 320 to 400 nm. UV-C is the most germicidal
region, and the peak of maximum effectiveness can be found
at wavelengths of ca. 260–265 nm, corresponding to the peak
of maximum DNA absorption (Kowalski, 2009). Thus, although
other cellular components such as proteins can also undergo
damage, the effects of UV light on genetic material are the main
factor responsible for this technology’s capacity for microbial
inactivation (Gayán et al., 2014a).

Microbial Inactivation by MS, PEF, HHP,
and UV: Potential Applications and
Inactivation Kinetics
Microorganisms vary widely in their resistance to the four non-
thermal technologies for food preservation here reviewed. Yeast
and vegetative mold are considerably more MS-, PEF-, and

HHP- sensitive than prokaryotic cells (Raso et al., 1994, Raso
et al., 1998b; Somolinos et al., 2008b; Puértolas et al., 2009)
but they are usually more resistant than vegetative bacteria to
UV (Gayán, 2014; Gayán et al., 2014a). On the other hand,
bacterial spores are, as a general rule, the most resistant micro-
organisms to physical stresses (Mañas and Pagán, 2005). This
holds true for the four technologies reviewed herein, as well as
for heat. Published data demonstrate that PEF does not affect
the viability of spores (Pagán et al., 1998; Raso et al., 1998a,b;
Mañas and Pagán, 2005; Álvarez et al., 2006a) and that they
are also extremely resistant to HHP: they possess the capacity
to withstand up to 1000 MPa for extended treatment intervals,
unless they are in a state of germination (Cheftel, 1995; Raso et al.,
1998c; Ramos, 2016). Conversely, MS and UV treatments could
both be used as food sterilization methods, since they are capable
of inactivating spores. Although, spores are more resistant to MS
and UV than vegetative cells it should be noted that the difference
in resistance between spores and vegetative cells to MS (10-fold)
and UV (3- to 50-fold) is negligible when compared with the
107 times difference in resistance to heat (Setlow, 2001; Condón
et al., 2011; Gayán et al., 2013a). Finally, data in the bibliography
indicate that virus would be even more resistant than spores to
UV (Gayán et al., 2014a) and that their HHP resistance would
be quite heterogeneous; but for some of them (such as human
rotavirus and hepatitis-A virus) it would be comparable to that
of vegetative bacteria (Smelt, 1998; Khadre and Yousef, 2002;
Kingsley et al., 2002). On the other hand, viruses would display
a high resistance to PEF (Khadre and Yousef, 2002). To the best
of our knowledge, no data are available regarding the resistance
of viruses to ultrasound.

Since, as pointed out above, not all the technologies reviewed
herein are useful for sterilization purposes, this review will
focus only on those species which are of relevance in food
pasteurization processes. According to EFSA data (EFSA, 2014)
the most frequent bacteria responsible for cases of human
illness and/or foodborne outbreaks are Campylobacter spp. and
Salmonella spp. On the other hand, Staphylococcus aureus is
the foremost cause of foodborne intoxications. Many other
species are capable of causing foodborne illness in humans, but
Listeria monocytogenes and certain Escherichia coli strains stand
out among the other due to their high mortality rates. Finally,
Cronobacter sakazakii is an emergent pathogen that has recently
attracted a great deal of interest after having caused several
outbreaks and cases of neonatal infection (Arroyo et al., 2009).
Thus, where possible, comparisons presented in this work will
be based on resistance data obtained for these species, although
in some cases data for Campylobacter is not available, and
corresponding comments will be included only in the text.

Regarding the kinetics of microbial inactivation by these
technologies it can be concluded that MS survival curves tend to
display a linear profile (Condón et al., 2011); PEF survival curves
usually feature tails (Álvarez et al., 2000, 2002, 2003a,c,d,e; Raso
et al., 2000; Gómez et al., 2005; Cebrián et al., 2007, 2009; Arroyo
et al., 2010a; Sagarzazu et al., 2010b; Saldaña et al., 2010a,b,c)
but occurrence of shoulders in PEF survival curves is much more
unusual -in our research group, shoulders have only been found
in PEF survival curves of C. sakazakii cells treated in media

Frontiers in Microbiology | www.frontiersin.org 3 May 2016 | Volume 7 | Article 734

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Cebrián et al. Microbial Inactivation by Non-thermal Technologies

with reduced aw (Arroyo et al., 2010a)-, and UV curves usually
feature shoulders (Gayán et al., 2011, 2012a,b,c, 2014b, 2015;
Arroyo et al., 2012b). The profile of HHP survival curves varies
widely depending on the strain, on the treatment and on medium
conditions: it can be linear, concave, convex or even sigmoid
(Mañas and Pagán, 2005; Somolinos et al., 2008b; Cebrián et al.,
2009, 2010a; Arroyo et al., 2011a; Ramos, 2016).

Deviations from linearity in survival curves have very relevant
practical implications. On the one hand, new mathematical
models are required to describe the observed kinetics. Indeed,
many models and equations have been developed and applied
for this purpose, but a detailed review there of would be
beyond the scope of this paper. On the other hand, this wide
variety of models makes it very difficult to establish meaningful
comparisons. To address this hindrance, we will use the time or
dose required to inactivate 4 log cycles (4D value) as a parameter
to compare the resistance of bacterial foodborne pathogens to the
different technologies reviewed herein.

COMPARATIVE RESISTANCE OF
FOODBORNE PATHOGENS TO MS, PEF,
HHP, AND UV

The relative resistance of bacterial foodborne pathogens to MS
(B), PEF (C,D), HHP (E), and UV (F) when treated in Mc-
Ilvaine buffer of pH 7.0 (except for figure D, where the data
comes from cells treated at pH 4.0) is depicted in Figure 1.
Relative resistance to heat is also included for comparative
purposes (A). In the figure, floating bars indicate the 4D values
for the most resistant (maximum) and least resistant (minimum)
strain of each species. Thus, bar length reflects the intra-specific
differences in resistance. The line inside the bar corresponds to
the average 4D value for each species.

As can be observed S. aureus is the most MS-resistant
pathogen and Salmonella enterica and C. sakazakii the most
sensitive ones (Pagán et al., 1999a,c; Mañas et al., 2000a;
Álvarez et al., 2003b, 2006b; Rodríguez-Calleja et al., 2006;
Arroyo et al., 2010b). Both inter- and intra-specific differences
in resistance to MS were very small. Thus, inter-specific 4DMS
resistance values varied less than 3.5-fold and intra-specific less
than 4.5-fold (Figure 1B). Inter-specific differences in resistance
were even lower for UV treatments (less than 1.5-fold). In
this case, L. monocytogenes appeared as the most resistant
species and S. enterica again as the most sensitive one. Intra-
specific differences in resistance to UV were also very low,
especially when compared with intra-specific resistance to other
technologies; nevertheless, those differences are of a similar or
even greater magnitude than the inter-specific differences in
resistance to UV (Gayán et al., 2011, 2012a,b,c, 2014b, 2015;
Arroyo et al., 2012b).

Again, S. aureus appears as the most baro-resistant
microorganism and Salmonella and C. sakazakii as the least
baro-resistant. It should be highlighted that some particular
E. coli strains are very HHP-resistant (Somolinos et al., 2008b;
Cebrián et al., 2009, 2010a; Sagarzazu et al., 2010a; Arroyo
et al., 2011a; Espina et al., 2013; Ramos, 2016). Although not

included in the figure, Campylobacter is the least HHP-resistant
microorganism among those studied (Sagarzazu et al., 2010a). It
should be remarked that, conversely to MS and UV, resistance
of foodborne pathogens to HHP varies widely. Thus, both inter-
and intra-specific differences in resistance to HHP (4D values)
are greater than 30-fold (Figure 1E).

Regarding PEF, it should be noted that, certain treatment
conditions not only modify bacterial PEF resistance, but do so
in different directions (see Treatment Medium pH). Because of
this, Figure 1 includes the 4DPEF values at both pH 7.0 (1C)
and 4.0. (1D). The most resistant species to PEF at pH 7.0
would be L. monocytogenes. Conversely, E. coli, C. sakazakii,
and Salmonella would be the most resistant at pH 4.0 (Table 1).
Nevertheless, it should be noted that from the data of Saldaña
et al. (2010a,b) it can be deduced that the PEF resistance of
some L. monocytogenes strains would be comparable to that
of Gram-negatives. Regarding Campylobacter, data obtained by
Sagarzazu et al. (2010b) demonstrate that whereasCampylobacter
jejuni is the least HHP and heat resistant microorganism, its
PEF resistance would be comparable to that of the other three
Gram-negatives evaluated. Although some exceptions have been
published, Rodríguez-Calleja et al. (2006) demonstrated that
intra-specific differences in PEF resistance are also very low.
Conversely, inter-specific differences are much larger (García
et al., 2005a,b, 2007; Cebrián et al., 2007; Arroyo et al., 2010a;
Somolinos et al., 2010b). Thus, from the figure it can be
concluded that pathogen resistance may vary up to 12-fold at pH
7.0 and more than 18-fold at 4.0.

In any case, inter- and intra-specific differences in resistance to
heat exceed those to other technologies, in general (Figure 1A).
Large intra-specific differences in resistance to heat are especially
evident for S. aureus, C. sakazakii, and Salmonella (Mañas
et al., 2001b, 2003; Rodríguez-Calleja et al., 2006; Cebrián
et al., 2007; Arroyo et al., 2009). Nevertheless, it should
be noted that for Salmonella these differences are smaller if
S. senftenberg 775W is excluded from the analysis. This particular
strain displays a heat resistance 10–100 times greater than any
other of its genera. Regarding the most and least resistant
pathogens to heat, S. senftenberg 775W, L. monocytogenes and
some strains of S. aureus would be the most heat resistant,
whereasCampylobacter would be even the least heat-resistant one
(Sagarzazu et al., 2010b).

From the data presented herein, one can conclude that the
most resistant microorganism to MS and HHP in terms of
average species resistance would be S. aureus. L. monocytogenes
would be the most resistant to UV, to PEF at pH 7.0 and to heat
-along with S. senftenberg 775W-. Finally, Salmonella, E. coli, and
C. sakazakii would be the most PEF-resistant microorganisms
when treatment pH is lowered to 4.0 (Table 1). As will be
discussed later, a multitude of factors affect microbial resistance;
thus, these conclusions should be viewed with care. They are
based on the comparison of resistance of stationary growth phase
cells grown in Tryptic Soy Broth (TSB) at 37◦C, treated in
McIlvaine buffer of pH 7.0 and recovered in Tryptic Soy Agar
(TSA), also at 37◦C. However, if growth, treatment or recovery
conditions are modified, the most resistant species/strain to a
particular technology can change. Thus, in the review presented
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FIGURE 1 | Inter- and intra-specific differences in resistance of different foodborne pathogens to (A) heat (58◦C; McIlvaine buffer pH 7.0); (B) MS
(117 µm; 200 KPa; McIlvaine buffer pH 7.0); (C) PEF (26 kV/cm; ≈4 µs exponential waveform pulses; McIlvaine buffer pH 7.0 and 2 mS cm−1); (D) PEF
(26 kV/cm; ≈4 µs exponential waveform pulses; McIlvaine buffer pH 4.0 and 2 mS cm−1); (E) HHP (450 MPa; McIlvaine buffer pH 7.0) and (F) UV
(McIlvaine buffer pH 7.0 and an absorption coefficient of 11.0 cm−1). In the figure, floating bars indicate the 4D values for the most resistant (maximum) and
less resistant (minimum) strain of each species. The line inside the bar corresponds to the average 4D value for each species. See text for references.
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TABLE 1 | Most resistant foodborne pathogen/s to heat, manosonication (MS), pulsed electric fields (PEFs), high hydrostatic pressure (HHP), and
UV-light (UV) when treated at different treatment medium pH and aw.

Heat MS PEF HHP UV

pH 7.0 aw>0.99 S. senftemberg 775 W S. aureus L. monocytogenes S. aureus L. monocytogenes∗

pH 4.0 aw>0.99 S. aureus∗∗ S. senftemberg 775 W S. aureus Gram-negatives∗∗∗ S. aureus∗∗∗∗ E. coli L. monocytogenes∗

pH 7.0 aw=0.96 L. monocytogenes S. aureus L. monocytogenes S. aureus L. monocytogenes∗

See text for references. ∗ Intra-specific differences in resistance to UV usually surpass inter-specific ones. ∗∗Hassani et al. (2006); Cebrián (2009). ∗∗∗Resistance to PEF at
pH 4.0 of E. coli, S. typhimurium, C. sakazakii, and C. jejuni is comparable. Some authors indicate that the PEF resistance of some strains of L. monocytogenes at pH
4.0 would be comparable to that of Gram-negatives (Saldaña et al., 2010a,b). ∗∗∗∗See text (see Treatment Medium pH).

in the next section about factors affecting microbial resistance to
MS, PEF, HHP and UV, it will be also indicated if the modification
of any experimental condition would lead to changes in the
classification that we have presented (Table 1). From these data
it can also be deduced Gram-positive pathogens -S. aureus and
L. monocytogenes- are the ones displaying the highest resistance
to MS, PEF, HHP, and UV in most scenarios. The greater rigidity
of Gram-positive envelopes is regarded as the main reason for
their increased resistance to ultrasound and HHP (Mañas and
Pagán, 2005), since the mode of action of both technologies
involves physical damages in the envelopes. Additionally, the size
and shape of S. aureus might explain its increased resistance to
MS and HHP -as compared to L. monocytogenes- (Mañas and
Pagán, 2005; Condón et al., 2011). However, the high resistance
of some strains of E. coli -higher than that of L. monocytogenes
cells- indicate that factors other than envelope structure probably
also play a very relevant role in HHP resistance (Somolinos et al.,
2008b; Espina et al., 2013; Ramos, 2016). Similarly, although it has
often been reported that Gram-positive bacteria generally display
greater UV and PEF resistance than Gram-negatives -and the
high resistance of L. monocytogenes to these technologies seem
to support this assumption- there are plenty of exceptions to this
rule. Thus, microbial resistance to PEF would be determined by
many factors, including size and shape, envelopes structure and
some others that still have not been elucidated (Qin et al., 1991,
1998; Kehez et al., 1996; Álvarez et al., 2006a; Somolinos et al.,
2010b). Increased bacterial resistance to UV would probably be
due to a series of factors which -apart from cell wall thickness-
might also include cell size, pigmentation, composition, size and
conformation of the genetic material, and DNA repair efficiency
(Gayán et al., 2014a). Furthermore, as discussed above, the
variability in UV resistance among species and strains is larger
than the divergences among genera, which makes it impossible to
draw general conclusions (Gayán et al., 2014a).

Other interesting conclusions can be drawn from these results.
On the one hand, as previously pointed out by Rodríguez-Calleja
et al. (2006) and Cebrián et al. (2007), these results show that
microorganisms which are the most resistant to a given stress are
not necessarily more resistant to other types of stresses. Thus, for
instance, whereas S. aureuswas the most resistant microorganism
to HHP and MS, it was among the less resistant to UV and
PEF. Similarly, it is worth mentioning that, whereas the heat
resistance of S. senftenberg 775 W is 10–100 times greater than
that of all other species, its resistance to MS, PEF or UV and
even HHP lies approximately in mid-range (Mañas et al., 2000b,
2001b, Álvarez et al., 2003a, 2006b; Gayán, 2014; Ramos, 2016).

This finding can be easily explained by the varied modes of
action of the four different technologies under review in this
paper. On the other hand, and summarizing (parece necesario
porque esto esta ya dicho arriba) they indicate that intra and
inter-specific differences in resistance are very low for MS and,
especially, for UV; they are medium-large for HHP and PEF,
and very large for heat (Table 2). Furthermore, the fact that
intra-specific differences in resistance to some agents (such as
heat or UV) might be greater than inter-specific differences
implies that, as recommended by the Environmental Protection
Agency Scientific Advisory Panel for UV Water Disinfection
(Oteiza et al., 2010), strains, and not species, should be used as
an indicator to establish process criteria for these technologies.
Alternatively, a cocktail of strains of each pathogen should be
used.

FACTORS AFFECTING THE RESISTANCE
OF BACTERIAL FOODBORNE
PATHOGENS TO MS, PEF, HHP AND UV

Factors Acting Prior to Treatment
Influence of the Physiological State of the Microbial
Cells
The influence of the type of microorganism, the species, and
the strain under investigation on microbial resistance to novel
food processing technologies has been well-documented.
Nevertheless, growing evidence suggests that the cell’s
physiological state might be just as important: it conditions
the expression of resistance and repair mechanisms and thereby
determines the degree of resistance that a cell will display.
In other words, each strain possesses a gene pool coding for
different resistance systems, but the cells’ physiological state
decisively determines which of those resistance systems will be
expressed, as well as their degree of expression.

Among all determinant factors, the physiological state of the
bacterial cell growth phase is probably the one which has attracted
the most attention. Exponential growth phase cells have proven
to be less resistant to the four technologies studied herein than
stationary growth phase ones (Cebrián et al., 2007, 2009, 2010a;
Somolinos et al., 2008a; Arroyo et al., 2010a,b, 2011a, 2012b;
Gayán et al., 2011, 2012c, 2014b, 2015). This has also been
demonstrated for heat (Cebrián et al., 2007, 2009; Arroyo et al.,
2009), and for both Gram-positive and Gram-negative species
(Figure 2A). However, whereas entry into stationary growth
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TABLE 2 | Factors affecting the resistance of bacterial foodborne pathogens to heat, MS, PEFs, HHP, and UV and degree of influence.

Heat MS PEF HHP UV

Intrinsic factors Inter-species variation Very large Low Large-very large Large Very low

Intra-species variation Large-very large Low Low-medium Medium-large Very low

Process factors Specific Treatment time Amplitude
Pressure

Specific energy
Treatment time

Electric field
Strength

Pulse size/shape
Specific energy

Treatment time

Pressure Treatment
time

Dose (J/ml)

Temperature Very large Low-medium Large Large Low-medium

Pre-treatment factors Growth phase Very large Low Medium-large Large Very low

Growth temperature Medium-large Very low Very low-low Medium Very low

Prior stresses Large Very low Low Very low-low Very low

Product parameters pH Large Very low Large Large Very low

aw Large Low Medium Large Very low

Composition and others Very large Low Medium-large Large Large

Recovery conditions Sublethal injury? Yes No Yes Yes No

Very large: >100-fold variation. Large: 10–100-fold variation. Medium: 5–10-fold variation. Low: 2–5-fold variation. Very low: <2-fold variation.

phase did not lead to an increase in MS, UV, or PEF resistance
(4D values) higher than 2.3-fold for any of the microorganisms
investigated, it supposed an increase in HHP resistance of up
to 31 times for C. sakazakii (Arroyo et al., 2011a). It should
be noted that the magnitude of the change in baro-resistance
brought about by a change in growth phase is greater than the
intra- and even inter-specific differences in resistance. Thus, for
instance, E. coli stationary growth phase cells would be more
HHP resistant than S. aureus exponential growth phase ones,
thereby implying that, in a product containing these two types of
cells, E. coli cells would be regarded as the target microorganism.
Although this certainly applies theoretically, one should point out
that it is very unlikely that such a scenario would occur in real
food products.

On the other hand, data accumulated seem to indicate
that the influence of growth temperature and pre-exposure
to environmental stresses on microbial survival to novel food
preservation technologies would be much lower than that of
growth phase and also lower than to heat (Figures 2B,C).
Thus, for instance, whereas up to a 10-fold increase in thermo-
resistance, approximately, has been found for E. coli after
increasing growth temperature from 10 to 42◦C (Cebrián et al.,
2008) increasing growth temperature from 10 to 37◦C resulted in
a fivefold change in 4DHHP values for C. sakazakii (Arroyo et al.,
2011a). Varying growth temperature has even a less pronounced
influence on microbial resistance to MS, PEF and UV. Thus, a
maximum of threefold change in the 4DPEF value was found by
Cebrián et al. (2008) for E. coli cells but no significant differences
were found in PEF resistance for S. aureus (Cebrián, 2009) or
for L. monocytogenes (Álvarez et al., 2002), in MS resistance
for L. monocytogenes or S. typhimurium (Pagán et al., 1999a;
Condón et al., 2011) or in UV resistance for C. sakazakii (Arroyo
et al., 2012b) or E. coli (Gayán, 2014), regardless of the growth
temperature. From the limited information available concerning
the development of resistance responses that could increase
bacterial survival to non-thermal technologies such as MS, PEF,
HHP, and UV (Cebrián et al., 2012) it can be concluded that

the exposure of bacterial cells to sublethal stressing conditions
capable of triggering homologous resistance responses (acid and
alkaline pH, hydrogen peroxide, osmotic heat, and cold shocks)
has an effect on microbial resistance to novel technologies much
lower than that reported for heat treatments (Somolinos et al.,
2008a; Cebrián et al., 2010b, 2012; Arroyo, 2011; Arroyo et al.,
2012a; Gayán, 2014; Figure 2C).

A discussion of possible explanations for these results would
lie beyond the scope of this article. However, it is worthwhile
to mention that in many bacterial species the increased stress
resistance of stationary growth phase cells as compared to
exponential growth phase cells has been partly attributed to
the induction of alternative general stress sigma factors (Abee
and Wouters, 1999). General stress sigma factors include sigma
S, also known as rpoS, in Gram-negative bacteria, and sigma
B in Gram-positive bacteria, which are considered by many
researchers as functionally homologous (Gertz et al., 2000;
Hengge-Aronis, 2000). According to our data (Somolinos et al.,
2008a, 2010a; Cebrián et al., 2009; Gayán et al., 2014b), the
deletion of sigma factors resulted in a significant decrease
in resistance to all the technologies here reviewed, but the
differences between parental and isogenic �sigB or �rpoS
mutants were much smaller for PEF, MS, and UV than for
heat and HHP. These results strongly suggest that growth
phase would have a higher impact on microbial survival to
those technologies for which general stress response plays a
more relevant role. Similarly, since the development of cross-
resistance responses is also generally linked to the induction
of these general stress responses, it is reasonable to think that
development of cross-resistances to these technologies would be
less generalized among bacteria and would probably have a lower
impact. Nevertheless, it should be noted that certain relevant
exceptions have been documented, such as the development of
PEF resistance in S. aureus after heat and alkaline shocks (Cebrián
et al., 2012), or the increased resistance of heat-shocked E. coli
cells to HHP (Aertsen et al., 2004). On the other hand, only
for HHP a relationship between the expression of heat shock
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FIGURE 2 | Influence of different factors on microbial resistance to heat, MS, PEF, HHP, and UV. (A) Growth phase (exponential vs. stationary); 4Dref :
stationary growth phase cells. (B) Growth temperature; 4Dref :cells grown at 37◦C. (C) Exposure to sublethal shocks; 4Dref: non-stressed stationary growth phase
cells. (D) Treatment medium pH (7.0 vs. 4.0); 4Dref: cells treated at pH 7.0. (E) Treatment medium aw (>0.99 vs. 0.96); 4Dref: cells treated in media of aw = >0.99.
(F) Treatment medium composition; 4Dref: cells treated in buffer. Bars indicate the maximum difference in 4D values reported. In figure F the gray bar indicates the
increase in microbial resistance to UV caused by an increase in the absorptivity of the medium (see text). See text for references.

proteins and microbial resistance has been observed (Aertsen
et al., 2004) and the role of membrane fluidity on bacterial
resistance to MS, PEF, HHP, and UV is still a matter of debate.
These findings might explain the different influence that growth
temperature has on microbial resistance to the four technologies
here reviewed.

There is a very limited amount of information regarding
the effect of other factors acting prior to the treatment,

such as growth medium pH or atmosphere, on microbial
resistance to these technologies and further research on this
topic would be required and very useful. In any case, what
these results clearly point out is that, when one is determining
the target microorganism for a particular technology, one
should certainly consider the possible influence of growth
conditions and of exposure to stressing agents on microbial
resistance.
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Factors Acting During Treatment
Factors acting during treatment can be classified in two groups:
(1) medium properties and (2) processing factors.

Medium Properties
As highlighted above, microbial resistance to any inactivation
agent depends on the cell’s physiological state. However, it is also
influenced by a multitude of environmental factors that come
into play in the course of treatment. Among the environmental
factors affecting microbial resistance, the most investigated are
pH, water activity, and chemical composition of the medium.

Treatment medium pH
pH is one of the environmental factors with the greatest influence
on microbial resistance to heat (Tomlins and Ordal, 1976; Jay,
1992; Mañas et al., 2003; Arroyo et al., 2009), HHP (Mackey
et al., 1995; Stewart et al., 1997; Alpas et al., 2000; Koseki
and Yamamoto, 2006; Arroyo et al., 2009) and PEFs (Álvarez
et al., 2000, 2002; Aronsson and Ronner, 2001; Geveke and
Kozempel, 2003; García et al., 2005a,b, 2007; Saldaña et al.,
2010a,b). Acidification is easily modifiable in foodstuffs and is
frequently applied in the food industry. Treatment medium pH
hardly affects microbial resistance to MS and UV, as opposed to
other technologies. As Figure 2D shows, a reduction of pH from
7.0 to 4.0, which can lead to a 22-fold reduction of the 4D values
to heat and 12-fold to HHP (Arroyo et al., 2009, 2011a), only
reduces the 4DMS values by 1.6 times and does not result in a
significant change of 4DUV values.

The influence of treatment medium pH on microbial
resistance to PEF has attracted the interest of the scientific
community for many years, since it differs widely from the way it
affects microbial resistance to other technologies. Thus, in general
terms, reducing treatment medium pH results in a decrease in the
PEF resistance of Gram-positive cells (García et al., 2005a,b, 2007;
Saldaña et al., 2010a). Conversely, decreasing treatment medium
pH to a value of 5.0–5.5 also results in a decrease in PEF resistance
for Gram-negative cells but further decreases (to pH 3.5–4.0)
have the opposite effect (an increase in PEF resistance; García
et al., 2005a,b, 2007; Saldaña et al., 2010b, 2012; Somolinos et al.,
2010b). The latter increase is only observed if organic acids are
added or present; thus, the type of acid is of essential importance
(Somolinos et al., 2010b). This finding is of the highest relevance,
since it implies that PEF pasteurization of low-pH food products
-such as juices- should target Gram-negative pathogens.

It should also be noted that, according to our data (and
also to that of some other authors, cf. Alpas et al., 2000), the
baroresistance at acid pH of E. coli strains would be comparable to
that of S. aureus, as previously pointed out for neutral pH. Given
the higher acid tolerance of E. coli and the inability of S. aureus
to synthesize enterotoxins at pH below 4.5 (ICMSF, 1996), E. coli
should be considered the target microorganism for HHP in these
types of products.

At present, the mechanism of Gram-positive bacterial
sensitization to HHP and PEF (in this case only regarding
Gram-positive bacteria) when treated at low pHs is not
accurately known. It has been suggested that loss of membrane
continuity would impair pH homeostasis, which could modify

the intracellular pH affecting main components of the cell
(DNA, RNA, enzymes, etc.; Vega-Mercado et al., 1996; Pagán
et al., 2001). On the other hand, in spite of the difficulty
of envisioning what kind of interaction between organic acid
molecules and cell structures would have the capability of
protecting Gram-negative cells against the action of PEF, the
data obtained suggest that such an interaction would probably
have something to do with the outer membrane. According
to Somolinos et al. (2010b), the repair mechanisms of Gram-
negative cells in the presence of organic acids at pH 4.0 are
either are more efficient, or the membrane injuries caused by
PEF are less severe and more easy to repair under favorable
conditions. Finally, if treatment medium pH is a factor having
little or no influence on microbial resistance to MS and UV, this
can be explained by those two technologies’ specific mechanisms
of inactivation.

Treatment medium water activity (aw)
Conversely to treatment medium’s pH, a reduction of its water
activity usually results in an increase in microbial resistance to
most food preservation technologies. Furthermore, according to
published data, water activity is the parameter that exerts the
greatest influence on microbial resistance to heat, PEF and HHP
(Figure 2E). Thus, for instance, it has been demonstrated that
reducing the water activity in the treatment medium can lead to
a several 100-fold increase in bacterial resistance to heat (Kwast
and Verrips, 1982; Sumner et al., 1991). According to our data,
reducing water activity from >0.99 to 0.96 can increase the 4D-
values of heat by more than 30 times (Álvarez et al., 2003b, 2006b;
Arroyo et al., 2009). The same change in water activity also led
to increases greater than 10-fold in the PEF and HHP 4D-values
for C. sakazakii (Arroyo et al., 2010a, 2011a) but only to a less
than threefold increase in the 4DMS values of S. enterica and
C. sakazakii (Álvarez et al., 2003b, 2006b; Arroyo et al., 2010b);
this change in water activity does not influence the 4DUV values
of any of the species investigated by Gayán et al. (2011, 2012b,
2012b, 2015) and Arroyo et al. (2012b).

The molecular mechanisms involved in the acquisition of
heat resistance by bacteria treated in low aw media are not
yet clear, although the following factors have been suggested:
a dehydration of the cytoplasm followed by cell shrinkage, a
reduction in pore size and a decreased loss of intracellular
compounds (Gibson, 1973), or a stabilization of proteins and
enzymes resulting from the formation of intramolecular links
(Hansen and Riemann, 1963). It has also been proposed that
the interaction of trehalose with membrane phospholipids could
stabilize the membrane (Crowe et al., 1984). Similarly, overall
cell volume reduction might also explain the increase in PEF
resistance, since the electroporation threshold is dependent on
cell size (Álvarez et al., 2006a). Cell shrinkage could likewise
probably lead to a thickening of the cell membrane, followed
by a reduction of membrane permeability and fluidity: both of
these phenomena are supposed to increase microbial resistance
to PEF (Neidhardt et al., 1990). Similar mechanisms have been
proposed to explain the increase in microbial resistance to HHP.
It has been demonstrated that the increased heat resistance
observed in media of low water activity is partly due to a
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stabilization of cell structures against heat, and partly due to a
higher capacity to repair the damages inflicted by heat (Álvarez
et al., 2003b). By contrast, increased microbial resistance to PEF
and HHP does not seem to be related to an increase in the
ability to repair sublethal damages (Arroyo et al., 2010a, 2011a).
Since microbial inactivation by MS at low water activities is
an “all or nothing” event, this might partly explain the factor’s
comparatively low influence on resistance to MS. Finally, as
pointed out previously for pH, is seems logical that reducing
the water activity of the media would not have an influence on
microbial UV resistance, given the specific mode of action of this
agent on DNA.

The protective effect of low aw media onmicrobial inactivation
by HHP and PEF has been proven to depend on the solute added.
Thus, at the same level of water activity, microbial cells tend to
be more pressure-sensitive in glycerol than in monosaccharides
and disaccharides (Patterson, 2005). Similarly, salt is generally
less protective against HHP than carbohydrates (Smelt, 1998).
Regarding PEF, it has been reported that microorganisms are
more sensitive to PEF when glycerol is added to the treatment
medium than when the solute added is sucrose (Álvarez et al.,
2006a).

Treatment medium composition
It is well-known that microbial resistance to most technologies
changes with the composition of the treatment medium (Tomlins
and Ordal, 1976; Hülsheger et al., 1981; Patterson et al., 1995;
Grahl and Märkl, 1996; Simpson and Gilmour, 1997; Hauben
et al., 1998; Mañas et al., 2001a,b; Gayán et al., 2014a). Although,
it has been suggested that these changes in resistance could be
due to pH and/or to water activity differences, many authors
have demonstrated that microorganisms can display a differing
degree of heat, PEF and HHP resistance in several types of media
featuring the same pH and/or aw (Baird-Parker et al., 1970; Corry,
1974; Hülsheger et al., 1981; Condón and Sala, 1992; Patterson
et al., 1995; Grahl and Märkl, 1996; Simpson and Gilmour, 1997;
Hauben et al., 1998; Mañas et al., 2001b). One could therefore
conclude that certain chemical components, regardless of pH
and water activity, might protect bacterial cells against different
food preservation technologies. In some occasions, however, the
opposite effect has also been observed (Arroyo et al., 2011a;
Gayán, 2014; Serrano, 2016).

Figure 2F depicts the maximum influence of medium
composition on microbial resistance to heat, MS, PEF, HHP, and
UV. In order to elaborate this figure, we compared the 4D values
obtained for different microorganisms suspended in different
food products and exposed to the four technologies in buffer of
similar (if not equal) pH and aw. Thus, the changes in microbial
resistance here reported would be due to the food product’s
specific composition and cannot be attributed to its pH or aw.

According to our data, the influence of medium composition
on microbial resistance to MS, PEF and HHP is much lower
than to heat. Thus, MS resistance barely changes in laboratory
media and liquid foods such as milk, juices, vegetable soups
and liquid whole egg (Mañas et al., 2000b; Arroyo et al.,
2010b, 2011b,c; Condón et al., 2011). Similarly, microbial HHP
resistance hardly increases threefold (Arroyo et al., 2010a);

among all products studied (including milk, juices, and liquid
whole egg), and only milk induced in a remarkable increase in
the 4D PEF values -estimated as more than fourfold (García
et al., 2005c; Monfort et al., 2010; Arroyo, 2011)-. It should
be noted that other authors have reported greater differences
in HHP resistance due to changes in medium composition
(Patterson, 2005). By contrast up to a 14-fold increase in heat
resistance has been reported for C. sakazakii when treated
in apple juice as compared to a buffer of the same pH and
aw (Arroyo et al., 2009). Protective effects against heat of
different food products such as liquid egg, milk, juices and
vegetable soups have been also documented (Mañas et al., 2000b,
2001b; Arroyo et al., 2009; Serrano, 2016). In should be noted
that, the opposite effect -a decrease in heat resistance when
treated in food- has also been sporadically observed (Serrano,
2016).

The case of UV is quite particular. Factors other than the
optical properties of the medium have a very low influence on
microbial resistance (Gayán et al., 2014a). Conversely, as pointed
out by Koutchma et al. (2009), the most influential product
characteristics related to the lethal efficacy of UV technologies are
optical properties, mainly the UV absorbance and the turbidity
of the medium. Thus, color components, soluble compounds,
and suspended solids can absorb, reflect, and scatter incidental
light, thereby reducing the number of photons available for killing
microorganisms (Koutchma et al., 2009). According to Gayán
et al. (2011) an increase in medium’s absorptivity of 15.92 cm−1

leads to a 10-fold increase in the 4D values for E. coli. Similar
results were obtained for other microorganisms (Gayán et al.,
2012c, 2014b, 2015).

At present, the mechanisms involved in these increases and/or
decreases in microbial resistance are not accurately known. Milk
is one of the few products for which the underlying mechanism
leading to the change in resistance has been studied in depth.
Thus, it has been proposed that the increasedmicrobial resistance
to PEF and HHP when treated in milk would be probably due
to the stabilization effect of divalent cations on cell membranes
(Hauben et al., 1998; Álvarez et al., 2006a).

Processing Factors
Since most processing factors (listed in Table 2) are specific to
each technology, they cannot be compared across the board.
Therefore, the only factor in this group which we will discuss is
treatment temperature.

Although all the novel technologies reviewed herein are
regarded as non-thermal, various authors have proposed to
combine them with sublethal or even lethal temperatures in
order to increase the process’s overall lethality (Sala et al.,
1992; Patterson and Kilpatrick, 1998; Raso et al., 1998d,e; Heinz
et al., 2003; Raso and Barbosa-Cánovas, 2003; Leadley, 2005;
Patterson, 2005; Álvarez et al., 2006a; López-Pedemonte et al.,
2006; Saldaña et al., 2010c, 2012; Gayán et al., 2011, 2012a,b,c,
2014b, 2015). A combination with sublethal temperatures has
proven to enhance the lethal effect of MS (Sala et al., 1992; Raso
et al., 1998d,e; Pagán et al., 1999a,b,c; Arroyo et al., 2011b,c),
PEF (Álvarez et al., 2006a; Cebrián, 2009; Saldaña et al., 2010c,
2012) and of UV-C (Gayán et al., 2011, 2012a,b,c, 2014b, 2015;
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Arroyo et al., 2012b). On the other hand, treatment temperature
can also have a significant effect on microbial resistance to
HHP. Thus, over a particular temperature threshold, increasing
treatment temperature also leads to an increase in HHP lethality
(Patterson, 2005; Ramos, 2016). Thus, the combined application
of these novel technologies with moderate temperatures appears
to be one of the most interesting alternatives for developing
combined processes since, as can be observed in the figure, an
increase in treatment temperature from ambient temperature
to 55◦C leads to significant decreases in 4D-values in the case
of all four technologies, including >10-fold decrease for PEF
and HHP (Figure 3). It should be noted that most of the data
reported seem to indicate that the magnitude of the increase
in lethality by increasing treatment temperature seems to be
greater for PEF and HHP than for MS and UV. These results
are in concordance with a further finding: whereas increases
in temperature within the physiological range (e.g., from 25 to
40◦C) have proven to increase the lethality of PEF andHHP,more
elevated temperatures (close to 50◦C or even higher) are required
to induce a significant decrease in microbial resistance to MS and
to UV (Raso et al., 1998d,e; Pagán et al., 1999a,b,c; Tassou et al.,
2008; Cebrián, 2009; Saldaña et al., 2010c; Arroyo et al., 2011b,c;
Gayán et al., 2011, 2012a,b,c, 2014b, 2015).

According to most authors, the increased sensitivity of
bacterial cells to MS, PEF, and HHP when treated at sublethal
temperatures would probably be due to certain temperature-
induced changes within the cell envelopes which might make
them more vulnerable to mechanical stress (Sonoike et al.,
1992; Pagán et al., 1999b; Álvarez et al., 2006a). Thus, it
has been hypothesized that membrane fluidization of bacterial
membranes would make them more sensitive to these three
technologies (Stanley, 1991; Casadei et al., 2002; Condón et al.,
2005). However, a number of researchers have pointed out
that fluidization alone cannot adequately explain all the results
reported, and that further factors must play a role in the
temperature-dependent sensitization of bacterial cells to MS,
HHP, and PEF (Casadei et al., 2002; Condón et al., 2005; Cebrián,
2009). Regarding UV, Gayán et al. (2013b) suggested that the
synergistic lethal effect of UV-H treatments would be due to
the inhibition of DNA excision repair resulting from membrane
fluidification caused by simultaneous heating (Gayán et al.,
2013b).

Factors Acting After Treatment
Recovery conditions are generally acknowledged as one of the
pivotal factors in microbial survival following exposure to a lethal
agent (Mañas and Pagán, 2005). As Mackey (2000) has described,
micro-organisms surviving the lethal action of preservation
agents may be sublethally injured. This means that they might be
able to repair the damage and outgrow, but only if environmental
conditions are suitable. Thus, the final number of viable microbial
cells after a particular treatment would be highly conditioned by
recovery conditions, at least for those technologies that produce
sublethal injuries in cells.

As pointed out by Mañas and Pagán (2005), the occurrence
of sublethal injury has two main consequences. First, since
injured cells might not be detected when selective conditions are

used to enumerate survivors, an inadequate choice of recovery
conditions can lead to an overestimation of the treatment’s
lethality. Secondly, if repair is adequately prevented, the cell
might not be able to outgrow damage, and the inactivation
level attained might thus be more elevated. This opens up
the possibility of developing new combined processes based on
the use of these technologies in conjunction with additional
preservation agents (hurdles) capable of interfering with cellular
homeostasis maintenance.

All the technologies here reviewed -with the exception of MS-
can lead to the appearance of sublethally injured cells (Pagán
et al., 1999b; García et al., 2005a,b, 2007; Somolinos et al., 2008a,b,
2010a; Cebrián et al., 2009, 2010a; Arroyo et al., 2010a,b, 2011a,b;
Saldaña et al., 2010a,b,c; Gayán et al., 2013b). However, given that
these technologies’ mechanisms of action differ quite radically,
the types of inflicted damage vary widely. Furthermore, the
factors reviewed above -including the type of microorganism, its
physiological state and the treatment conditions- also determine
the types and severity of injuries caused. Consequently, the
proportion of sublethally injured cells following treatment also
varies widely depending on the agent, the microorganism and
treatment conditions.

Sublethal damages to the cytoplasmic membrane have been
observed following microbial exposure to PEF and HHP (García
et al., 2005a,b, 2007; Somolinos et al., 2008a,b, 2010a; Cebrián
et al., 2009, 2010a; Arroyo et al., 2010a, 2011a; Saldaña et al.,
2010a,b,c). Likewise, sublethal damages to the outer membrane
have been documented after having exposed microbial cells
to HHP and, occasionally, to PEF (Somolinos et al., 2008b;
Arroyo et al., 2010a, 2011a). Conversely, sublethal oxidative
damages have been detected after HHP treatments (Aertsen
et al., 2004; Cebrián et al., 2010a) but not after PEF. Further
work would be required in order to fully characterize how the
type of microorganism, its physiological state and the treatment
conditions determine the proportion of sublethally injured cells
after a treatment; still, at this point we can already rule out
certain general trends. For instance, the proportion of sublethally
damaged cells following PEF as well as HHP treatments seems to
be higher for stationary growth phase cells than for exponential
ones (Somolinos et al., 2008a,b; Cebrián et al., 2009, 2010a).
Regarding PEF, the proportion of sublethally damaged cells has
proven to be larger when treated at pH 7.0 than at pH 4.0 for
Gram-positive cells and the opposite applies to Gram-negative
cells (García et al., 2005a,b, 2007; Arroyo et al., 2010a; Saldaña
et al., 2010a,b). Finally, increased microbial resistance to PEF
brought about by decreasing the aw of the medium does not
seem to have any connection with a variance in the proportion
of sublethally damaged cells (Arroyo et al., 2010a).

On the other hand, contradictory results have been obtained
regarding the proportion of sublethally injured cells following
HHP treatments at different pH levels: Condón et al. (2011)
reported that the proportion of sublethally injured S. aureus cells
was lower at acid pH than at neutral pH, but no difference in
such proportions was found by Arroyo et al. (2011a). Although
data are very scarce, increased microbial resistance to HHP
caused by decreasing the aw of the medium, as in PEF, does not
seem to be related to a change in the proportion of sublethally
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FIGURE 3 | Influence of an up-shift in treatment temperature (from ambient temperature to 55◦C -for HHP from ambient to 50◦C-) on the 4D values
calculated for the different technologies reviewed. See text for references.

damaged cells (Arroyo et al., 2011a). Among all these scenarios,
the most relevant ones are those in which increased microbial
resistance is associated with the appearance of an increased
proportion of sublethally injured cells (e.g., the inactivation of
Gram-negatives by PEF in acidic media), since they open up
the possibility of developing combined processes capable of
inactivating microorganisms under circumstances that could not
be produced by the technology alone.

Many combinations of HHP and PEF with different agents
such as lysozime, nisin, pediocin AcH, lacticin, lactoferrin,
lactoferricin, EDTA, triethil citrate, essential oils, citral, carvacrol
or limonene, all leading to increased microbial inactivation, have
been described (Kalchayanand et al., 1994; Hauben et al., 1998;
Somolinos et al., 2008a; Arroyo et al., 2010c; Monfort et al.,
2012; Saldaña et al., 2012; Espina et al., 2013, 2014). It is also
worth mentioning that another procedure has been proposed
to achieve the inactivation of sublethally injured cells caused by
HHP and PEF: namely, cells’ subsequent storage in acid media
at refrigeration temperatures (García et al., 2005c; Somolinos
et al., 2008a). This procedure is of special interest in the field
of pasteurized juice processing, since it would not require the
addition of any additional step or agent following HHP or PEF
treatment.

Developing a combined procedure with UV based on the same
principle seems more complex at first, since such a procedure
should be based on the prevention of either light-dependent or
light-independent DNA repair mechanisms (Gayán et al., 2013a).
In this regard, preventing the exposure of treated cells to visible
light might represent an alternative. However, the efficacy thereof
seems to vary widely depending on the type of microorganisms
(Gayán, 2014). On the other hand, as explained above, Gayán
et al. (2013b) demonstrated that the increased lethality of UV
treatments when applied at sublethal temperatures is due to the
reduced ability of microbial cells to repair DNA caused by the
fluidification of the membranes. Thus, this combined process
once more illustrates how the prevention of microbial damage
repair could increase the efficacy of treatments involving new
preservation technologies.

CONCLUDING REMARKS

Among the six bacterial foodborne pathogens here considered,
S. aureus is the most resistant foodborne pathogen to MS and
HHP and L. monocytogenes to UV. The target microorganism
of PEF would change depending on the treatment medium pH.
Thus, L. monocytogenes is the most PEF resistant microorganism
at neutral pH but Gram-negatives (E. coli, Salmonella spp.,
C. sakazakii, C. jejuni) would display a similar or even higher
resistance at acidic pH. It should be noted that, in acidic products,
the baroresistance of some E. coli strains would be comparable to
that of S. aureus.

Microbial resistance to MS, PEF, HHP, and UV depends
on many factors including the type of microorganism, its
physiological state, and treatment and recovery conditions.
However, the influence of these factors on microbial resistance
to each technology varies widely. In general the factors
reviewed have a greater impact on bacterial resistance to
HHP and PEF than to MS and UV. Thus, inter- and
intra-specific differences in microbial resistance to PEF and
HHP are much greater than differences in resistance to
MS and, especially, to UV. It should be remarked that,
in some cases, intra-specific differences in resistance exceed
inter-specific ones (e.g., for UV). This is highly relevant
when one is determining the target microorganism, for
instance.

Among all factors acting prior to treatment, the one with
the greatest impact on microbial resistance is the growth
phase, particularly in relation with treatments with HHP.
However, the role played by other factors, such as the
development of cross-resistance responses, should not be
overlooked. Both the pH and aw of the treatment medium
highly condition microbial resistance to PEF and HHP but
not to MS and UV. The magnitude of this change in
microbial resistance is even greater than the inter-specific
differences in resistance. This fact leads to a change on
the target microorganism of PEF depending on the pH
of the treatment medium. On the other hand, the optical
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properties of the medium are, by far, the most influential product
characteristics in terms of the lethal efficacy of UV technologies.

An increase in treatment temperature is regarded as one of
the most promising methods to increase the lethality of MS,
PEF, HHP and UV treatments, and to facilitate their industrial
implementation. As described above, an increase in treatment
temperature leads to a significant increase in lethality of the
four technologies here reviewed. The appearance of sublethally
damaged cells following PEF and HHP treatments could also be
exploited in order to design combined processes. Further work
needs to be carried out if we want to fully characterize microbial
resistance to these combined processes, since the procedures
themselves might cause changes in the target species or strains.

Regarding the use of these technologies as alternatives to
heat for pasteurization purposes the practical implications of
the conclusions presented above is evident. Both MS and UV
light share in common that its lethality hardly changes with the
species and the environmental factors -but for optical properties
and UV-. Thus, both would be especially interesting as an
alternative to heat for preservation of thermal-sensitive liquid
foods, especially when raw material is contaminated with very
heat-resistant bacterial species, or when food components protect
microorganisms to heat. Furthermore, its combination with
mild temperatures appears as a very attractive alternative for
improving its lethal effect. On the other hand, both HHP and PEF
inactivation is affected by many factors -and in some cases very
drastically-. This might turn out to be an advantage in some cases,

such as the pasteurization of acidic products by HHP. In any case,
the development of combined processes (including heat or other
preservation methods) appears as the most feasible approach for
the design of pasteurization processes based on HHP or PEF.

If we want to exploit these technologies’ full potential, further
research needs to be carried out in order to gain a more specific
understanding of their mechanisms of action -especially those of
PEF and HHP- and to exhaustively characterize the influence of
all the factors acting before and during treatment. This would
also prove thoroughly useful in the area of process optimization,
and in the design of combined procedures with a sound scientific
basis.
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