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The intestinal overgrowth of Clostridium difficile, often after disturbance of the gut

microbiota by antibiotic treatment, leads to C. difficile infection (CDI) which manifestation

ranges frommild diarrhea to life-threatening conditions. The increasing CDI incidence, not

only in compromised subjects but also in traditionally considered low-risk populations,

together with the frequent relapses of the disease, has attracted the interest for

prevention/therapeutic options. Among these, probiotics, prebiotics, or synbiotics

constitute a promising approach. In this study we determined the potential of selected

Bifidobacterium strains for the inhibition of C. difficile growth and toxicity in different

carbon sources. We conducted co-cultures of the toxigenic strain C. difficile LMG21717

with four Bifidobacterium strains (Bifidobacterium longum IPLA20022, Bifidobacterium

breve IPLA20006, Bifidobacterium bifidum IPLA20015, and Bifidobacterium animalis

subsp. lactis Bb12) in the presence of various prebiotic substrates (Inulin, Synergy, and

Actilight) or glucose, and compared the results with those obtained for the corresponding

mono-cultures. C. difficile and bifidobacteria levels were quantified by qPCR; the pH and

the production of short chain fatty acids was also determined. Moreover, supernatants

of the cultures were collected to evaluate their toxicity using a recently developed model.

Results showed that co-culture with B. longum IPLA20022 and B. breve IPLA20006 in

the presence of short-chain fructooligosaccharides, but not of Inulin, as carbon source

significantly reduced the growth of the pathogen. With the sole exception of B. animalis

Bb12, whose growth was enhanced, the presence of C. difficile did not show major

effects upon the growth of the bifidobacteria. In accordance with the growth data,

B. longum and B. breve were the strains showing higher reduction in the toxicity of the

co-culture supernatants.
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INTRODUCTION

Clostridium difficile is often present in the intestinal microbiota of both infants and adults, where
it may be found in about 70 and 17% of the subjects, respectively (Ozaki et al., 2004; Jangi
and Lamont, 2010). However, this microorganism is also the main causative agent of antibiotic
associated diarrhea in nosocomial environments (Leffler and Lamont, 2015). The epidemiology of
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C. difficile infection (CDI) is changing, with an increasing
occurrence in populations traditionally considered of low-risk
(Carter et al., 2012), likely due to the appearance of hipervirulent
strains (Rupnik et al., 2009; Yakob et al., 2015). CDI is treated
with antibiotics but a high rate of recurrence is present. In this
context, new therapeutic alternatives for treating or preventing
CDI are being continuously explored, among them the inhibition
of C. difficile growth by the use of probiotics or prebiotics has
been tested (Ambalam et al., 2015; Auclair et al., 2015; Forssten
et al., 2015).

In general, probiotics and prebiotics have been proposed
as biotherapeutic agents to prevent the dysbiosis caused by
antibiotics or infections, and to help the microbiota restoration
after it (Reid et al., 2011). The development of food products
targeting at the inhibition of C. difficile constitutes an interesting
approach in the context of the marketing of products bearing
health claims. Reducing the intestinal levels of specific pathogens,
such as C. difficile, has been considered by the European Food
Safety Authority (EFSA) as a beneficial physiological effect
[(EFSA Panel on Dietetic Products, Nutrition and Allergies
(NDA), 2011)]. Therefore, such an effect would constitute an
opportunity for the development of food products bearing a
health claim in the area of gastrointestinal health.

To date, different probiotic strains and prebiotic substrates
have been reported to increase colonization resistance against
C. difficile (Hopkins and Macfarlane, 2003; Kondepudi et al.,
2014; Auclair et al., 2015; Forssten et al., 2015). In addition
to their microbiota-modulatory properties, probiotics have been
found to protect against infections by other mechanisms, such
as production of antimicrobial compounds or competition by
adhesion sites or nutrients (Servin, 2004). The ability of certain
probiotics, mainly bifidobacteria and lactobacilli, to inhibit in
vitro the adhesion of C. difficile to intestinal epithelial cells or
intestinal mucus is well established (Collado et al., 2005; Banerjee
et al., 2009). Similarly, the ability to produce antimicrobials
inhibiting the growth of C. difficile in vitro has been repeatedly
reported (Lee et al., 2013; Schoster et al., 2013). However, other
potential targets of probiotics and prebiotics on CDI, such as
their impact on toxin production by the pathogen, and/or toxin
activity, have been explored to a lesser extent and have not
attracted attention until recently (Kondepudi et al., 2014; Yun
et al., 2014; Andersen et al., 2015). Ambalam et al. (2015)
recently reported the ability of cell-free supernatants from some
Lactobacillus strains, and a probiotic mix, to inhibit the growth of
C. difficile strains in variable way depending on the carbon source
used. Moreover, the authors observed a reduction of toxin titers
in those C. difficile cultures with inhibitory cell-free supernatants
added. Moreover, we have demonstrated that incubation of
toxigenic C. difficile cell-free culture supernatants with specific
bifidobacterial strains reduces the cytotoxic effect upon human
epithelial intestinal cells (Valdés et al., 2016). However, the
influence of prebiotic substrates upon C. difficile growth and
toxicity when co-cultured with bifidobacteria remains largely
unknown.

In this context the aim of this study was to evaluate
in vitro the potential of four bifidobacterial strains for
inhibiting the growth of C. difficile when co-cultured with

different prebiotics as carbon source. Moreover, the effect of
the strains and prebiotics on the toxicity of the co-culture
supernatants upon human intestinal epithelial cells (HT29) was
also determined.

MATERIALS AND METHODS

Bacterial Strains and Culture Conditions
The widely used probiotic strain Bifidobacterium animalis
subsp. lactis Bb12 and three strains of bifidobacteria from
IPLA culture collection, two of them isolated from infant’s
feces (Bifidobacterium longum IPLA20022 and Bifidobacterium
bifidum IPLA20015) (Solís et al., 2010) and the other one
from breast-milk (Bifidobacterium breve IPLA20006) (Arboleya
et al., 2011), were used. These last three strains were selected
based on the good ability to reduce toxicity of C. difficile
supernatants (Valdés et al., 2016). With regard to C. difficile
we used the strain LMG21717, known to produce TcdA toxin
and also, although at lower quantities, TcdB. This strain belongs
to ribotype 001, which is one of the most common ones
found in Europe (Martin et al., 2016). The Bifidobacterium
strains were routinely grown in MRS (Biokar Diagnostics,
Beauvois, France) supplemented with 0.25% L-cysteine (Sigma-
Chemical Co., St. Louis, MO, USA) in an anaerobic chamber
MG500 (Don Whitley Scientific, Yorkshire, UK) and C. difficile
was grown in Reinforced Clostridial Medium (RCM, Oxoid,
Thermo Fisher Scientific Inc., Waltham, MA) in Hungate
tubes as previously described (Valdés et al., 2016). Overnight
cultures (18 h) of the bifidobacterial strains and 13 h-old
cultures of C. difficile were used to inoculate the batch culture
fermentations.

For the batch mono- and co-culture fermentations a
defined medium with the following composition was used:
proteose peptone (10 g/L) (BD-Difco, New Jersey, EE.UU.), beef
extract (10 g/L) (BD-Difco), yeast extract (5 g/L) (BD-Difco),
polysorbate 80 (1 mL/L) (Sigma), ammonium citrate (2 g/L)
(Sigma), sodium acetate (5 g/mL) (Sigma), magnesium sulfate
(0.2 g/L) (Probus, Barcelona, Spain), manganese sulfate (0.056
g/L) (Panreac, Barcelona, Spain), and dipotassium phosphate
(2 g/L) (Merck, New Jersey, EE.UU). Pairwise combinations of
the C. difficile strain with the different Bifidobacterium strains,
as well as the corresponding monocultures, were performed
in the medium described above with a 2% (w/v) of different
commercial prebiotic substrates added [Synergy 1 (Beneo-Orafti,
Barcelona, Spain), Inulin (Sigma) and Actilight (Beghin Meiji
and Tereos Syral, Marckolsheim, France)], glucose or without
adding any carbon source (used as control). Each media was
distributed into Hungate tubes which were inoculated with
different Bifidobacterium strains at a final level of about 105

CFU/ml in case of B. longum/B. breve and 104 CFU/ml in case
of B. bifidum/B. animalis, with C. difficile strain at final level of
106 CFU/ml or with both of them, in the case of the co-culture.
The bifidobacteria were inoculated at a different level depending
on the strain with the aim of allowing a balanced growth of both
microorganisms (bifidobacteria and clostridia). The appropriate
inoculum size was determined in previous experiments (data not
shown).
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Co-cultures, and the corresponding mono-cultures, in
different carbon sources were carried out in triplicate under
anaerobic conditions at 37◦C for 24 h. Samples were taken at 0
and 24 h for bacterial growth assessment by quantitative PCR
(qPCR), quantification of SCFA by Gas Chromatography (GC),
pH measurements (pH meter Basic 20+, Crison Instruments
S.A., Barcelona, Spain), and toxigenicity determination. One
milliliter of each mono-culture or co-culture was centrifuged
(16,000 × g for 10 min), and pellets and supernatants were
collected. For toxigenic activity upon HT29 cells, the pH of 0.7
ml cell-free supernatant from each batch culture was adjusted to
7.55± 0.05 with 1 and 0.1 N NaOH. All supernatants and pellets
were immediately frozen at−80◦C until use.

Quantification of Bacterial Growth by qPCR
DNA was extracted from pellets of batch cultures using
the GenElute Bacterial Genomic DNA Kit (Sigma) and kept
at −80◦C until analyzed. The levels of C. difficile and
bifidobacteria in the cultures were determined as DNA copies
per ml by qPCR using previously described primers and
conditions (Arboleya et al., 2012). Reactions were performed
on MicroAmp optical plates sealed with MicroAmp optical
caps (Applied Biosystems, Foster City, CA, USA) with a
7500 Fast Real-Time PCR System (Applied Biosystems) using
SYBR Green PCR Master Mix (Applied Biosystems). One
microlitre of template DNA was used in the 25 mL PCR
mixture. Standard curves were made with pure cultures of
B. longum NCIMB8809 and C. difficile LMG 21717. In all
cultures the levels of the microorganisms were above the
corresponding detection limit of the technique (1 × 103

and 3 × 103 for bifidobacteria and C. difficile, respectively).
Samples were analyzed by duplicate in at least two independent
PCR runs.

Determination of the Production of Short
Chain Fatty Acids by GC-MS
Cell-free supernatant (0.1 mL) from each batch culture
was mixed with 1 ml methanol, 0.1 ml internal standard
solution (2-ethylbutyric 1.05 mg/ml), and 0.1 ml 20% formic
acid. This mixture was centrifuged and the supernatant
obtained was used for quantification of SCFA by GC in a
system composed of a 6890NGC injection module (Agilent
Technologies Inc., Palo Alto, Ca, USA) connected to a flame
injection detector (FID) and a mass spectrometry (MS) 5973N
detector (Agilent) as described previously (Salazar et al.,
2011).

Monitoring the Cytotoxic Effect of the
Culture Supernatants upon Intestinal
Epithelial Cells
The intestinal cell line HT29 (ECACC 91072201) was purchased
from the “European Collection of Cell Cultures” (Salisbury,
UK) and stored under liquid N2. McCoy’s Medium (MM)
supplemented with 10% fetal serum bovine, 3 mM L-glutamine
and a mixture of antibiotics (50 µg/ml streptomycin-penicillin,
50 µg/ml gentamicin, and 1.25 µg/ml amphotericin B) was

used for HT29 cultivation. All media and reagents were
purchased from Sigma-Aldrich. Maintenance of the cell line,
between passages 145 and 149, was performed under standard
conditions at 37◦C 5% CO2 atmosphere, in a CO2-Series
Shel-Lab incubator (Sheldon Manufacturing Inc., OR, USA).
The experimental procedures were carried out with the cell
passage 149.

We used an RTCA (real time cell analyser) xCelligence (ACEA
Bioscience Inc., San Diego, CA) system, introduced in a Heracell-
240 Incubator (Thermo Electron LDD GmbH, Langenselbold,
Germany) set at 37◦C with 5% CO2 atmosphere, to monitor
HT29 cells behavior. A method previously described, allowing
the assessment of the damage caused by C. difficile supernatants,
was used (Valdés et al., 2015). This method is based in the real-
timemonitoring of the cell index (CI). This CI is an arbitrary unit
that measures the impedance, in gold-microelectrodes coating
the surface of E-plates, which changes as consequence of the
HT29 cells attachment and growth.

In short, 16-well E-plates were seed with 2 × 105 HT29 cells
(in 100 µl), hold in the RTCA equipment, incubated for 22 h to
ensure the formation of a monolayer (confluent state) and the
CI was monitored (recording signal every 15 min). After this
incubation the medium was removed from the wells and the
methodology followed was slightly different depending on the
experiment. To determine the effect of the carbon source on
the toxicity of C. difficile, 200 µL of MM containing different
concentrations (from 0.63 to 40%, v/v) of cell-free neutralized-
supernatants from C. difficile mono-cultures were added to the
wells. EC50 values (concentration at which half of the maximum
damage was detected) for the cultures, in the different carbon
sources tested, were then calculated as previously described
(Valdés et al., 2015). To determine the effect of bifidobacteria
on the toxigenic capability of C. difficile in the different carbon
sources, 200 µL of MM containing a 5% (v/v) of the neutralized
supernatant from each mono- and co-culture were added to the
wells. Additionally, wells filled with 200µl of MM (non-cytotoxic
control) were included in each experiment. Then, monitoring
continued (recording signal every 10 min) up to 20 h under
standard incubation conditions. The data analyses were carried
out through RTCA software 1.2.1 (ACEA Bioscience). The CI
values were normalized as previously described (Valdés et al.,
2015) by dividing the CI at every point by the CI at time zero
(the time of the supernatant addition, thus making the CI equal
to 1 at this time) and then referred to the normalized CI of the
control sample (MM) (the normalized-CI of the control sample
is then the “0 line” shown in figures).

Toxin A concentration in the supernatant of C. difficilemono-
cultures in different carbon sources was determined by ELISA test
(tgcBIOMICS GmbH, Bingen, Germany).

Statistical Analysis
To asses differences among carbon sources or between
mono- and co-cultures, one-way ANOVAs followed by SNK
(Student-Newman-Keuls, p < 0.05) mean comparison test
were performed. The statistical package IBM SPSS Statistics for
Window Version 22.0 (IBM Corp., Armonk NY) was used to
carry out these analyses.
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RESULTS AND DISCUSSION

Inhibition of C. difficile Growth When
Co-cultured with Bifidobacterium Strains
in Different Carbon Sources
There is a great scientific interest on the development of
interventions for preventing or treating CDI, including vaccines
(Senoh et al., 2015), antimicrobials (Gebhart et al., 2015; Vickers
et al., 2015), anti-toxin antibodies (Yang et al., 2015), or
genetically engineered bacteria producing them (Andersen et al.,
2015), among others. Fecal transplants have demonstrated a high
efficacy to treat recurrent CDI (Lee et al., 2016), underlining
the importance of the gut microbiota in this disease. Probiotics
and prebiotics constitute another interesting option although
differences among strains and substrates seem to exist (Allen
et al., 2013).

In our study the mono-culture of the Bifidobacterium strains
(Figure 1) in different substrates (dark colored bars) showed that
all the strains grew well in glucose. In agreement with previous
reports (Rossi et al., 2005; Kondepudi et al., 2012), the strains
showed the ability to grow in short-chain fructooligosaccharides
(Synergy and Actilight) (scFOS) but they were not able to grow,
or did it poorly, in Inulin (Figure 1). This observation was further
supported by the production of bacterial metabolites (Figure 2,
Supplementary File) and the pH (Supplementary Figure 1), which

in the case of Inulin remained similar to those of the negative
control without carbon source added (WCS). Interestingly, B.
longum IPLA20022 showed a significantly higher growth (p <

0.05) in the prebiotics Synergy and Actilight than in glucose
(Figure 1), whereas no statistically significant differences were
observed for B. breve IPLA20006 or B. bifidum IPLA20015
between glucose and these two prebiotics. The mono-cultures of
B. animalis Bb12 showed a significantly lower (p < 0.05) growth
in all prebiotics than in glucose. This strain exhibited the lowest
growth of all bifidobacteria in glucose, Synergy, and Actilight
(Figure 1), which correlates with the limited drop in pH observed
for this strain after 24 h of incubation (Supplementary Figure 1).
With regard to the pathogen, C. difficile grew well in Synergy,
not differing significantly from glucose, and to a lower extent
in Actilight (Figure 1). Therefore, in spite of generally claimed
high specific fermentation of prebiotic substrates, some intestinal
pathogens may also be able to ferment and grow in some of them.
This underlines the importance of a careful selection of the most
appropriate strains, substrates, and combinations.

When co-cultured with C. difficile in the different carbon
sources, the behavior of the bifidobacteria was, in general, similar
to that observed in the mono-cultures. We observed increases
in bifidobacterial counts in glucose, Synergy, and Actilight and
poor grow in Inulin. Regarding C. difficile, it grew better in
glucose, followed by Synergy, which is in agreement with the

FIGURE 1 | Increments, with respect to time zero, on the levels (Log CFU/mL) of the strains when grown in mono-culture (Bifidobacterium dark-blue

column and C. difficile dark-red) or co-culture (Bifidobacterium light-blue and C. difficile light-red column) in the prebiotics Synergy (Syn), Inulin (Inu),

and Actilight (Act), in glucose (Glc) or without any carbon source added (WCS). Different capital letters above columns denote statistically significant

differences (p < 0.05) among carbon sources in the mono-cultures of the corresponding bacterial strain, whereas different lowercase letters indicate differences in the

co-cultures (either Bifidobacterium in blue letters or C. difficile in red letters). *Indicates statistically significant differences (p < 0.05) for the corresponding bacterial

strain between mono- and co-culture within the same substrate.
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FIGURE 2 | Increments, with respect to time zero, in the concentration of acetate on the bacterial cultures when grown in mono-culture

(Bifidobacterium blue-bars and C. difficile red-bars) or in co-culture (stripped bars) in the prebiotics Synergy (Syn), Inulin (Inu), and Actilight (Act), in

glucose (Glc) or without any carbon source added (WCS). Different letters above columns denote statistically significant differences (p < 0.05) among carbon

sources in the corresponding bacterial cultures, either mono-cultures (capital letter; red color for bifidobacteria and blue color for C. difficile) or co-cultures (lowercase

letters). *Indicates statistically significant differences (p < 0.05) for the corresponding bacterial strain between mono- and co-culture.

mono-culture data, but the growth in Actilight was, in general,
significantly (p < 0.05) worse in co-culture, the contrary being
true for Inulin (Figure 1). This growth behavior of C. difficile
in the different carbon sources was further confirmed by the
metabolites production pattern (Supplementary File), showing
in general a lower production of C. difficile metabolites, such
as propionate or branched-SCFA, in co-culture with Actilight as
carbon source than in the corresponding mono-culture, whilst
the contrary was observed for Inulin.

When co- and mono-cultures were compared within the
same carbon source, the growth of C. difficile was significantly
reduced (p< 0.05) by B. longum IPLA20022, B. breve IPLA20006,
or B. animalis Bb12 in glucose. The first two microorganisms
also reduced C. difficile growth when co-cultured in Actilight
and, in the case of B. longum also when Synergy was used
as carbon source (Figure 1). On the contrary, no statistically
significant differences between mono- and co-cultures were
observed for B. bifidum in any carbon source. These results
showed a good correlation with the pattern of production of
C. difficile metabolites and the drop in pH (Supplementary
File). This suggests the production of organic acids, with the
concomitant reduction of the pH, as an important mechanism
of inhibition (Tejero-Sariñena et al., 2012).

These results point out at B. longum IPLA20022 and B.
breve IPLA20006, and the prebiotics Synergy and Actilight, as
the most promising alternatives for inhibiting the growth of C.
difficile. Moreover, they suggest that the pathogen inhibition is
strain and substrate specific, which is in agreement with previous
reports (Kondepudi et al., 2012; Tejero-Sariñena et al., 2013;
Ambalam et al., 2015). Interestingly, the growth of C. difficile
was significantly increased (p < 0.05) by B. breve in the presence
of Inulin, indicating a potential risk of such combination and
underlining the importance of a careful strain and substrate
specific assessment.

Interestingly, effects of the co-culture with C. difficile on the
growth of the bifidobacterial strains were also observed. Whilst
in glucose the co-culture with the clostridia did not affect the
growth of B. longum, it significantly (p < 0.05) reduced that

of B. breve but increased that of B. animalis. Moreover, the
growth of the latter microorganism was also increased by the
presence of C. difficile in the three prebiotics tested, mainly
Synergy (Figure 1) which was further confirmed by an enhanced
production of acetate in the co-culture than in the corresponding
monoculture (Figure 2) and a higher drop in pH (Supplementary
Figure 1).

The Carbon Source Determines the
Toxicity of C. difficile Supernatants
In addition to bacterial growth, inhibiting the toxicity caused by
C. difficile, for example by reducing toxin production or toxic
activity, represents another target in CDI (Trejo et al., 2010,
2013). The toxicity of C. difficile culture supernatants has been
found to be dependent on the culture media used (Valdés et al.,
2015), suggesting a potential role of the carbon source available.
Therefore, it is important to know whether the availability of
different prebiotics as carbon source may have an impact on
the toxicity of C. difficile. To clarify this point we determined
the toxicity of neutralized cell-free supernatants, obtained from
C. difficile monocultures after 24 h of incubation in the different
carbon sources, upon the human epithelial cell line HT29 by
using a real-time monitoring system (RTCA). To this end the
EC50 values, defined as the concentration of supernatant causing
50% of the maximum cell damage, were calculated (Valdés et al.,
2015). Supernatants obtained from the mono-cultures carried
out without any carbon source or with Actilight added were
significantly (p < 0.05) more toxic than the others (Figure 3).
They showed EC50 values below 2%, which means that a
concentration ofmonoculture supernatant lower than 2% already
produced half of the maximum cell damage. On the contrary, the
supernatant of the mono-culture in glucose resulted significantly
(p < 0.05) less toxic than all the others (EC50 value over 6%),
followed by that on Synergy and the one carried out with Inulin
as carbon source (Figure 3). The method used (Valdés et al.,
2015) allowed us to determine that the C. difficile supernatants’
toxicity was higher when no carbon source was added or when
the available carbon source supported only a limited growth of
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FIGURE 3 | Concentration (% v/v) of supernatants of C. difficile

mono-cultures, in the different carbon sources tested, showing 50% of

the maximum cell damage (EC50). To calculate EC50s the cell indexes

obtained after 12 h of incubation of the HT29 cells with supernatants were

used. Different letters above the columns denote statistically significant

differences (p < 0.05).

the pathogen, such as in the case of Actilight. On the contrary, the
supernatant obtained when the pathogen was grown in glucose,
in spite of the good growth of C. difficile, resulted less toxic. The
availability of rapidly metabolizable sugars has been reported to
inhibit toxin synthesis in C. difficile (Bouillaut et al., 2015). This
inhibition is mediated through repression of treR (also known
as tdcR), an alternative sigma factor responsible for the positive
regulation of toxA and toxB genes (Mani et al., 2002). Our results
seem to confirm the higher production of toxins by C. difficile
under nutrient limitation or stress conditions in which readily
fermentable sugars are not available. Moreover, in C. difficile a
co-induction of metabolic pathways, such as that of butyrate
production, and toxin production has been reported (Karlsson
et al., 2000). In our study the C. difficile monoculture grown
in glucose showed, in general, lowest butyrate production than
those carried out with Synergy, Actilight or WCS added, which
is in good agreement with the lower toxin production in glucose.
However, the culture of the strain in Inulin, in spite of a lower
production of butyrate than that in glucose, showed higher toxin
concentrations, comparable to those found WCS or in the other
prebiotics tested. These results indicate that, at least in some
circumstances, toxin production by C. difficile is uncoupled from
the production of metabolites such as butyrate.

In accordance with the above mentioned toxicity data, the
concentration of C. difficile toxin A showed the lowest value
in the supernatant from the culture in glucose (Figure 4). The
supernatants obtained from cultures grown in Synergy, Actilight
showed the highest toxin concentrations, whilst those from the
growth on C. difficile in Inulin or WCS showed intermediate
levels.

Co-culture with Bifidobacteria in Different
Carbon Sources Reduces C. difficile
Toxicity
The ability of certain bifidobacterial strains, such as B. longum
IPLA20022, to remove toxins from C. difficile cell-free

FIGURE 4 | Toxin A concentration in the different C. difficile

supernatants obtained when the microorganism was growth in the

different carbon sources. Different letters above the columns denote

statistically significant differences (p < 0.05).

supernatants, then diminishing their cytotoxicity, has been
recently reported (Valdés et al., 2016). Now we compared
the toxicity of the Clostridium-Bifidobacterium co-culture
supernatants with that of the pathogen monoculture. In general
we observed a significant reduction on the toxicity of the
supernatants in co-culture. However, differences depending
on the strain and the carbon source used were also observed,
confirming the high specificity of these interactions (Trejo et al.,
2010). The toxicities obtained for the co-cultures in the different
carbon sources were compared by using the normalized cell
index (CI) obtained after 12 h of incubation of HT29 cells with
a 5% of the culture supernatants. As it was the case for the
monocultures, supernatants from co-cultures carried out on the
different carbon sources showed differences among them (p <

0.05) (Table 1). Similarly to the mono-cultures, supernatants
obtained in glucose showed the lowest toxicity whilst those
in Inulin, or without any carbon source added, resulted the
most toxic. When the supernatants of the co-cultures with
the different bifidobacteria were compared with the C. difficile
monoculture no statistically significant differences (p > 0.05)
were obtained in media WCS added. However, in all the
carbon sources tested, either glucose or prebiotics, statistically
significant differences (p < 0.05) were observed depending on
the bifidobacterial strain used (Table 1). Co-culture in Synergy
or Actilight of C. difficile with B. longum IPLA20022 or B. breve
IPLA20006 significantly (p < 0.05) inhibited the toxicity of
the supernatant (i.e., higher normalized CI) when compared
with the mono-culture of C. difficile. However, B. bifidum
IPLA20015 only was able to reduce (p < 0.05) the toxicity of the
pathogen with Actiligh as carbon source whilst B. animalis Bb12
did not produce toxicity inhibition in any prebiotic. The four
bifidobacteria tested were able to reduce (p > 0.05) the toxicity
of the supernatant when co-cultured in glucose, in comparison
to the C. difficilemono-culture, but none of them did it when the
carbon source was Inulin. In the latter case, even, an increase in
the toxicity was observed when the pathogen was co-incubated
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TABLE 1 | Normalized cell index (mean ± sd) obtained after 12 h of incubation of HT29 cells with the supernatants (5%) of the C. difficile mono-culture or

C. difficile-Bifidobacterium co-cultures grown in different prebiotics, glucose or without any carbon source added (WCS).

Culture Normalized cell index

Carbon source

Synergy Inulin Actilight Glucose WCS

C. difficile −0.39±0.03a,1 −0.30±0.03a,2 −0.35±0.04a,1 −0.23±0.01b,1 −0.34±0.04a

C. difficile–B. longum −0.06±0.04b,2 −0.32±0.07a,2 −0.13±0.05b,3 0.01±0.02b,3 −0.43±0.13a

C. difficile–B. breve −0.02±0.02d,2 −0.32±0.03b,2 −0.07±0.01c,4 0.00±0.01d,3 −0.37±0.01a

C. difficile–B. bifidum −0.40±0.08b,1 −0.56±0.02a,1 −0.24±0.01c,2 0.00±0.01d,3 −0.34±0.01b

C. difficile–B. animalis −0.35±0.02a,1 −0.31±0.03a,2 −0.32±0.02a,1 −0.03±0.00b,2 −0.34±0.02a

*Different superscripts letters within the same row indicate statistically significant differences (p < 0.05) among carbon sources, whereas different superscript numbers within the same

column denote differences (p < 0.05) among cultures.

with B. bifidum (Table 1), suggesting a potential risk for such
combination.

Our results show that B. longum IPLA20022 and B. breve
IPLA20006 reduced the toxicity of the co-cultures with sc-FOS
as carbon source. Interestingly these two strains have previously
shown the ability to remove C. difficile toxins from solution
(Valdés et al., 2016). Although the putative mechanism behind
toxin inactivation remains to be elucidated, it has been
demonstrated that certain microorganisms produce compounds
able to degrade C. difficile toxins or to reduce their toxicity
(Castagliuolo et al., 1996; Banerjee et al., 2009; Carasi et al.,
2012; Valdés et al., 2016). These mechanisms may be involved
in the effect observed by us. However, given that in our case
both microorganisms are co-incubated, the direct inhibition
of the growth of the pathogen and/or an modulation of the
expression of the toxin genes in C. difficile by the presence
of bifidobacteria, similarly to that previously reported for
Lactobacillus acidophilus (Yun et al., 2014), may also be involved.
Previous studies pointed out a role of organic acids, such
as lactic acid, in the inhibition of both growth and toxin
production by C. difficile (Kolling et al., 2012; Yun et al.,
2014). Therefore, the ability of bifidobacteria to produce acids,
mainly acetic and lactic acids, and the pH drop caused by
them may partially explain our observations. However, the
role of other interactions cannot be overruled, especially since
behaviors not explained by the acids, such as the increased
toxicity of the co-culture C. difficile-B. bifidum in Inulin, were
also observed.

CONCLUSION

Co-culture with B. longum IPLA20022 or B. breve IPLA20006 in
the presence of scFOS, but not of Inulin, reduces significantly the
growth of C. difficile. Moreover, co-culture with these two strains

in Synergy or Actilight reduced the toxicity of the C. difficile

supernatants. Therefore, B. longum IPLA20022 and B. breve
IPLA20006, in combination with Synergy or Actilight, are the
most promising strains and compounds for the development
of probiotic, prebiotic, or synbiotic products targeting at the
reduction of CDI. However, future in vitro studies aiming at other
clinically relevant C. difficile strains, as well as in vivo evaluation
of the efficacy of the products, would be needed before drawing
firm conclusions.
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