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Stable isotope probing (SIP) is a valuable tool for gaining insights into ecophysiology

and biogeochemical cycling of environmental microbial communities by tracking

isotopically labeled compounds into cellular macromolecules as well as into byproducts

of respiration. SIP, in conjunction with nanoscale secondary ion mass spectrometry

(NanoSIMS), allows for the visualization of isotope incorporation at the single cell level.

In this manner, both active cells within a diverse population as well as heterogeneity in

metabolism within a homogeneous population can be observed. The ecophysiological

implications of these single cell stable isotope measurements are often limited to the

taxonomic resolution of paired fluorescence in situ hybridization (FISH) microscopy. Here

we introduce a taxonomy-independent method using multi-isotope SIP and NanoSIMS

for identifying and grouping phenotypically similar microbial cells by their chemical and

isotopic fingerprint. This method was applied to SIP experiments in a sulfur-cycling biofilm

collected from sulfidic intertidal vents amended with 13C-acetate, 15N-ammonium, and
33S-sulfate. Using a cluster analysis technique based on fuzzy c-means to group

cells according to their isotope (13C/12C, 15N/14N, and 33S/32S) and elemental ratio

(C/CN and S/CN) profiles, our analysis partitioned ∼2200 cellular regions of interest

(ROIs) into five distinct groups. These isotope phenotype groupings are reflective of

the variation in labeled substrate uptake by cells in a multispecies metabolic network

dominated by Gamma- and Deltaproteobacteria. Populations independently grouped by

isotope phenotype were subsequently compared with paired FISH data, demonstrating a

single coherent deltaproteobacterial cluster and multiple gammaproteobacterial groups,

highlighting the distinct ecophysiologies of spatially-associated microbes within the

sulfur-cycling biofilm from White Point Beach, CA.
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INTRODUCTION

The application of stable isotope probing (SIP) to environmental
microbial communities provides links between ecophysiology
and phylogenetic identity without the need for pure or
enrichment cultures (Radajewski et al., 2000; Dumont and
Murrell, 2005). In SIP experiments, a substrate that is enriched
in a particular stable isotope (e.g., D, 13C, 15N, 34S) is added
to an environmental sample incubation and the uptake of
that substrate by members of the microbial community is
tracked by the incorporation of the enriched isotope into
cellular components. SIP, in combination with fluorescence in
situ hybridization coupled to secondary ion mass spectrometry
(FISH-SIMS or FISH-NanoSIMS; Orphan et al., 2001), can
resolve substrate uptake and metabolic activity at the single-cell
level within complex communities (Orphan et al., 2009; Wagner,
2009; Musat et al., 2012; Pett-Ridge and Weber, 2012).

SIP combined with FISH-NanoSIMS analysis offers a direct
method for assessing the metabolic potential of microorganisms
in the environment, where microbial communities are often
supported through complex interspecies interactions on the
micrometer scale and frequently consist of uncultured and poorly
characterized microorganisms. Prior FISH-NanoSIMS studies
have focused on single-cell measurements of anabolic activity,
metabolic potential, and microbial metabolic interactions
particularly with respect to the assimilation of 13C-, 15N-labeled
substrates e.g., (Popa et al., 2007;Musat et al., 2008; Green-Saxena
et al., 2014) and recently deuterated water (Berry et al., 2015;
Kopf et al., 2015). Very few ecological studies have conducted
cell specific SIP experiments with sulfur, despite the fact that
sulfur is one of the abundant elements in biomolecules and plays
a central role in redox biogeochemistry in many environments.
NanoSIMS analyses have previously been applied to measure
naturally occurring micron-scale variations in δ34S of sulfide
resulting from microbial sulfur metabolism in environmental
samples (Fike et al., 2008, 2009), and 34S-enriched sulfate SIP
experiments combined with NanoSIMS have demonstrated the
assimilation of 34S into cell biomass (Milucka et al., 2012;
Wilbanks et al., 2014). These studies focused on the variation in
the ratio of 34S/32S. However, the existence of four stable isotopes
of sulfur (32S, 33S, 34S, and 36S) and the ability of the CAMECA
NanoSIMS 50L instrument to measure seven masses in parallel
offers the potential for concurrent SIP NanoSIMS experiments
with multiple sulfur species and isotope labels, as well as the
potential to conductmixed substrate incubation experiments that
expand beyond 13C- and 15N-labeled substrate amendment to
include multiple isotopes of sulfur.

Inter- and intra-species variation in labeled substrate
metabolism associated with differences in growth rates, as well
as the transfer of enriched isotope through microbial metabolic
networks via cross-feeding of labeled metabolites results in
heterogeneity of the isotope ratios measured for different
populations (Pelz et al., 1999; Orphan et al., 2001; DeRito
et al., 2005; Musat et al., 2008; House et al., 2009; Abraham,
2014; Kopf et al., 2015; Zimmermann et al., 2015). While
cross-feeding during SIP incubations is generally considered to
be a complicating factor in these experiments (Neufeld et al.,

2007; Chen and Murrell, 2010), exploiting the resulting isotopic
heterogeneity can move the interpretation of SIP experiments
beyond the binary of enriched or not enriched. Using gradients
in anabolic activity associated with multiple labeled substrates in
combination with cluster analysis has the potential to distinguish
metabolic niches, interspecies substrate transfer, and variation
due to spatial distribution of microorganisms (DeRito et al.,
2005; Chen and Murrell, 2010).

For complex environmental samples, distilling large datasets
into manageable groups through clustering techniques supports
the generation of hypotheses based on average group properties.
Cluster analysis is an exploratory technique that utilizes
discontinuities and gradients in multivariate datasets to identify
and visualize relationships between subgroups of samples. These
groupings can proceed by hierarchical clustering, agglomerating,
or dividing samples into clusters and sub-clusters, or partitional
methods, where an initial partitioning of the samples is
optimized for intra-cluster homogeneity. Both hierarchical and
partitional clustering has been applied extensively for identifying
relationships within ecological datasets (McCune et al., 2002a,b;
Legendre and Legendre, 2012). These techniques have a long
history of development and application in macro and meiofaunal
community ecology (Green, 1980; James and McCulloch, 1990;
Legendre et al., 2005), and have become increasingly common in
microbial ecology as applied to DNA or RNA-based diversity data
(Ramette, 2007), with an effort toward identifying underlying
trends in diversity and links between diversity and function
in microbial communities (Fuhrman, 2009). A primary goal
of both multivariate and SIP analysis in microbial ecology is
identifying connections between identity and functional roles in
biogeochemical cycles.

Here we expand upon the use of cluster analysis as a method
to deconvolve multi-isotope NanoSIMS datasets (Figure 1) for
microorganisms in environmental samples and describe a case
study from a intertidal sulfur cycling, microbial biofilm at
White Point Beach, CA after SIP time course incubation with
13C, 15N, and 33S-labeled substrates. Using the high lateral
spatial resolution of the NanoSIMS and cluster analysis of
13C, 15N, and 33S enrichment in single cells, we resolved
distinct microbial isotopic phenotypes occurring at close spatial
scales within a microbial biofilm. Independently, these isotopic
phenotypes were found to correlate with distinct delta- and
gammaproteobacterial cell types identified by FISH and suggest
a microbial, metabolic network for the cycling of carbon
and sulfur in chemoautrophic microbial mats associated with
sulfidic hydrothermal vents at White Point Beach in San Pedro,
CA. The combination of NanoSIMS and cluster analysis in
multiple isotope SIP experiments has the potential to provide
insights into ecophysiology and element cycling in spatially
proximal microorganisms in environmental and laboratory
settings.

MATERIALS AND METHODS

Case Study Site Description
Chemoautrophic microbial mats form in shallow intertidal
pools adjacent to sulfidic hydrothermal vents at White Point
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FIGURE 1 | Illustration of the workflow from multiple-isotope SIP

incubations through to the identification of stable isotope phenotypes

and their properties via cluster analysis of NanoSIMS data. After

colonization with microbial biomass, NanoSIMS compatible Si-wafers were

incubated with multiple stable isotope labeled substrates. Microscopy, using

FISH probes, identified regions that were mapped for subsequent NanoSIMS

analysis of up to seven parallel masses. NanoSIMS data was processed using

Look@NanoSIMS to define single cell regions of interest (ROIs) and extract

associated isotope and elemental composition ratios. Several cluster analysis

algorithms were evaluated to determine the best method, which was then

applied to partition the NanoSIMS ratio data. The properties of the stable

isotope phenotype clusters were examined and compared to independent

FISH images to investigate label uptake in a multispecies metabolic network.

Beach in San Pedro, CA (33.7159◦N, 118.319◦W; Stein, 1984;
Figure 2). Sulfide is primarily geologically derived from the
interaction of hydrothermal fluids with the sulfur containing
Altamira shale unit of the Monterrey Formation (Woodring
et al., 1946). The location of active venting was identified by
enhanced localized colonization of white, filamentous microbial
mats on the surface of rocks, sediments, and invertebrates.
Illumina tag sequencing of rocks visibly colonized by microbial
mat was performed as described previously in Case et al. (2015).
Sequencing confirmed prior descriptions of Thiothrix spp. as
the dominant sulfur-oxidizing bacteria in the microbial mats

(Stein, 1984; Jacq et al., 1989; Kalanetra et al., 2004). Additional
gammaproteobacterial groups belonging to the Thiotrichaceae
and Oceanospirillaceae families accounted for 95% of the
Gammaproteobacteria (35.8 and 4.1% relative abundance,
respectively). Sequencing additionally identified putative
sulfur- and sulfate-reducing deltaproteobacterial lineages
belonging to the Desulfuromonadaceae, Desulfobacteraceae,
and Desulfobulbaceae families (1.75, 0.51, and 0.22% relative
abundance, respectively). The raw sequences from the in
situ White Point mats were generated on an Illumina MiSeq
platform at Laragen, Inc (Los Angeles, CA, USA) and have
been deposited in the Sequence Read Archive (accession #
PRJNA304767).

Triple Isotope Probing Experiments
Microbial mat biomass for the SIP experiments was collected
by in situ colonization of NanoSIMS compatible contact slides.
Specifically, 7 × 7mm conductive Si-wafers (P-type/boron
doped, 0.028 � cm−1, 725 µm thick, Active Business Company
Gmbh, Munich, Germany) were secured to a slide holder and
incubated for 1 week in the intertidal pool adjacent to locations
of active sulfide venting (Figure 2). The microbial mat colonized
wafers were then transferred into 10 ml serum bottles containing
5 ml of filter-sterilized, N2-sparged, sulfate-free artificial sea
water that contained (g l−1): 24 g NaCl; 5 g MgCl.26H2O;
1.31 g CaCl.22H2O; 0.67 g KCl; 0.2 g NaHCO3; 0.1 g KBr;
0.027 g H3BO3; 0.027 g SrCl.26H2O; 0.003 g NaF. Incubations

were then amended with 13C-acetate, 15NH+

4 ,
33SO2−

4 , 20%
air/80% N2 headspace, with each treatment consisting of three
parallel bottles with two replicate Si-wafers per bottle. After
2, 7, and 10 days one bottle per treatment was sacrificed
and sampled for geochemistry, microscopy, and NanoSIMS
analyses.

Additional incubations included an unlabeled control
(NL) and a formaldehyde killed control (K), which were
supplemented as follows: NL—acetate, NH+

4 , SO2−
4 , 20%

air/80% N2 headspace; K—
13C-acetate, 15NH+

4 ,
15NO−

3 ,
33SO2−

4 ,
10% w/v formaldehyde, 20% air/80% N2 headspace. Final
concentrations and atom percent (at.%) enrichment for the
supplements added to all additional incubations were as follows:
sodium acetate—100 µM, 2-13C, 99 at.% 13C (Cambridge
Isotope Laboratories, Tewksbury, MA, USA); NH4Cl—100 µM,
∼10 at.% 15N (Cambridge Isotope Laboratories, Tewksbury,
MA, USA); NaNO3—100 µM, 98% 15N (Cambridge Isotope
Laboratories, Tewksbury, MA, USA); Na2SO4—28 mM,
∼15 at.% 33S (see below for synthesis details). The at.%
15N and 33S added to incubations was calculated by isotope
mass balance as follows: nFfinal = [(nFunlabeled× munlabeled)
+ (nFlabeled× mlabeled)]/mfinal, where mass (m) was the
amount of NH4Cl or NaSO4 added to the mixture and at.% =

100× nF.

Synthesis of 33S-Sulfate from
33S-Elemental Sulfur
Na2SO4 enriched in 33S was prepared in house by the oxidation
of 33S0 (99.8%, Trace Sciences International Inc., Wilmington,
DE, USA). The oxidation reaction was conducted in a custom

Frontiers in Microbiology | www.frontiersin.org 3 May 2016 | Volume 7 | Article 774

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Dawson et al. Stable Isotope Phenotypes of Sulfur-Cycling Microbes

FIGURE 2 | White Point is located south of Los Angeles, CA on the Palos Verdes Peninsula (A). Conspicuous white, filamentous microbial mats form in

intertidal pools adjacent to sulfidic hydrothermal vents (B,C). Si-wafers (7 × 7 mm) were colonized in situ for 1 week before laboratory incubations with 13C-acetate,
15NH+

4 , and 34SO2−
4 (D).

apparatus constructed from 6mm glass tubing (Figure S-1). 33S0

powder (170mg) was placed into the glass tube and brieflymelted
to adhere to the glass with a bunsen burner. A gentle stream
of pure O2 (Air Liquide, USA) was passed through the glass
tube (ca. 20 ml min−1) and the other side was immersed into
a 0.4 M NaOH solution (10ml). After passing several volumes
of O2 through the apparatus, the sulfur was ignited in the tube
by heating the outside with an ethanol-flame. The liquid sulfur
burned with a blue flame and the resulting SO2 was quantitatively
absorbed in the NaOH solution. Glass wool had been placed
behind the burning sulfur to prevent S0 vapors from reaching the
NaOH solution. Once reacted the solution of Na332 SO3 (10ml)
was oxidized with an excess of 10 MH2O2 (500µl) and vortexed.
This reaction occurred within 5 min and complete oxidation
was assumed by the presence of residual H2O2 using MQuant
peroxide-test strips (EMD Millipore, Temecula, CA, USA). The
excess H2O2 was decomposed by incubating the solution at 90◦C
for 20 h. Decomposition of all H2O2 was again confirmed with
peroxide-test strips. The pH of the solution was adjusted to 4.0 by
titration with 6 M HCl in 100µl increments. The acidic solution
was then filtered through a 0.22µm filter, and neutralized with
1 M NaOH. Conversion to SO2−

4 was verified and quantified
by ion chromatography using a Dionex ICS-2000 system with
an IonPac AS18 anion exchange column (Dionex, Sunnyvale,
CA, USA). Yields were typically >90% and SO2−

3 was not
detected.

Fluorescence in situ Hybridization
At 2, 7, and 10 days the microbially colonized Si-wafers
from one bottle of each experimental condition were gently
washed with 3X phosphate buffered saline (PBS; g l−1: 24 g

NaCl, 0.6 g KH2PO4, 0.6 g KCl, 4.32 g Na2HPO4) to remove
residual labeled media and fixed for microscopy by adding
4% fresh paraformaldehyde and 3x PBS in a 3:1 ratio and
incubating at 4◦C for 12 h. Fixed samples were subsequently
washed with 3x PBS and stored in 3x PBS at 4◦C. Ethanol
was avoided to prevent the dissolution of internal sulfur
granules.

Prior to FISH, the Si-wafers were etched with a series
of grid lines using a LMD7000 laser microdissection system
(Leica, Wetzlar, Germany) to provide a map for identifying
sample locations on the NanoSIMS. FISH was performed as
described previously (Glöckner et al., 1996), using fluorescently
labeled oligonucleotide probes targeting Gammaproteobacteria
(Gam42a; Manz et al., 1992) and Deltaproteobacteria (Delta495a
+ cDelta495a; Loy et al., 2002; Macalady et al., 2006).
Oligonucleotide probes were labeled at the 5′ end with either a
FAM or CY3 dye (IDT, Coralville, IA USA) and used at a final
concentration of 5 ng µl−1 in hybridization buffer containing
45% formamide. Following the FISH hybridization, the cells were
counterstained with 4′,6-diamidino-2-phenylindole (DAPI) at a
final concentration of 2.5 ng µl−1 and coverslips were mounted
with the anti-fade reagent, Vectashield (Vector Laboratories,
USA). Regions positively hybridized with the FISH probes near
the etched grid lines were mapped and imaged on a BX51
epifluorescence microscope (Olympus, Shinjuku, Japan) using
20x (UPlanFL N) dry, 60x (PlanApo N) and 100x (UPlanFL N)
oil immersion objectives. After FISH analysis, coverslips were
gently removed from the Si-wafers to minimize dislodging the
cells and the water-soluble Vectashield was washed away with
MQ water in a petri dish as described in Dekas and Orphan
(2011).
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13C, 15N, and 33S Analysis of Single Cells
Using FISH-NanoSIMS
Carbon, nitrogen, and sulfur isotopic compositions of microbial
cells from mapped regions were measured using a NanoSIMS
50L (CAMECA, Gennevilliers, France) housed in the Center for
Microanalysis in the Division of Geological and Planetary
Sciences at the California Institute of Technology. All
measurements included in this study were made in one
continuous 10-day session on the instrument. Cells were
analyzed on Si-wafers using a ∼4 pA primary Cs+ beam
current and were pre-sputtered with a ∼16 pA primary Cs+

beam current for 10–15 min. Seven masses were collected in
parallel (12C−, 13C−, 14N12C−, 15N12C−, 32S−, 33S−, and 34S−).
Secondary ion images were collected for 30× 30 µm raster areas
at 512× 512 pixel resolution with a dwell time of 15 ms/pixel for
20–40 cycles. Clostridia spores of a known isotopic composition
(measured by EA-IRMS, δ13C = −21.86‰; 13R = 0.01099
and δ15N = 7.94‰; 15R = 0.00371) were analyzed daily to
correct for instrumental isotope fractionation in the 13C/12C
and 15N/14N ratios and to assess any instrument drift over
the course of the run (Dekas and Orphan, 2011). No drift was
detected over the 10-day period. To determine the instrumental
isotope fractionation by the NanoSIMS instrument, the average
NanoSIMS acquired 13C/12C and 15N/14N ratios were compared
with the EA-IRMS acquired values for the Clostridia spores. A
correction for 33S/32S was not possible due to the low sulfur
content in the spores. However, it is unlikely that this relatively
minor correction (permil) would alter the results of this analysis
given the large atom percent enrichments observed in the cells
after incubation with the labeled substrates. Raw data from all
secondary ion images were processed using Look@NanoSIMS in
MATLAB (Polerecky et al., 2012). Ion images were corrected for
dead time, planes were accumulated and aligned, and discrete
regions of interest (ROIs, n = 3115) were drawn by hand using
the 14N12C− ion image to identify and outline individual cells.

Cluster Analysis
Accumulated secondary ion counts, exported from
Look@NanoSIMS, were used to calculate isotopic ratios for
13C/12C, 15N/14N (15N12C/14N12C), 33S/32S, and 34S/32S.
Additionally, ratios of C/CN and S/CN were calculated from the
sum of accumulated secondary ion counts for C (12C + 13C),
CN (14N12C + 15N12C), and S (32S + 33S + 34S). The isotope
and element composition ratios were compiled for individual
raster areas as well as all raster areas corresponding to a given
incubation time point. Cluster analysis was performed in the
R environment (RStudio v.0.99.451, R v.3.2.1; R Core Team,
2015; R Studio Team, 2015) using clustering algorithms from
the “cluster” package (Maechler et al., 2015), cluster method and
number validation from the “clusterSim” (Walesiak et al., 2008)
and “clusterCrit” (Desgraupes, 2015) packages, respectively,
and graphical output from the “ggplot2” package (Wickham,
2009). Using “clusterSim” and “clusterCrit,” 10 cluster analysis
methods [single-linkage, median-linkage, average-linkage,
complete-linkage, centroid-linkage, Ward’s method, McQuitty’s
method, partitioning around medoids (pam), k-means and fuzzy

c-means] were compared using the Calinski-Harabasz (CH)
validity index (Caliński and Harabasz, 1974) for solutions where
the number of clusters ranged between 2 and 10. Scripts written
for processing data associated with this project can be found at
https://github.com/katdawson/NanoSIMS-cluster-analysis.

The two main cluster analysis methods used to interpret the
NanoSIMS isotope and elemental ratio datasets were k-means
and fuzzy c-means. K-means cluster analysis starts with a fixed
number of clusters (k) and starting configuration of cluster
centers. The analysis proceeds by assigning objects, in this
case ROIs, to clusters and iteratively optimizing the object
memberships such that the sum of square distance is minimized
between objects and the cluster center (Lance and Williams,
1967; MacQueen, 1967). Fuzzy c-means cluster analysis similarly
requires an initial number of clusters to which objects are
assigned, but allows objects to belong to more than one cluster.
Fuzzy c-means iteratively optimizes both the cluster center and
memberships (Bezdek et al., 1984; Equihua, 1990).

RESULTS

Fish-NanoSIMS Analysis of Cellular C, N,
and S
FISH analyses of Si-wafers for the labeled incubation time series
(2, 7, and 10 days) as well as unlabeled (7 day) and killed (10 day)
control incubations were carried out using oligonucleotide
probes targeting Gammaproteobacteria (Gam42a) and
Deltaproteobacteria (Delta495a + cDelta495a; Figure 3).
The relative abundance of Deltaproteobacteria increased over
the course of the experiment: 2 days—3.0%; 7 days—6.8%; 10
days—44.7%. Deltaproteobacteria represented 3.6% of imaged
cells in the unlabeled control and 11.9% of imaged cells in
the killed control. These differences highlight the inherent
heterogeneity of microbial assemblage composition during the
in situ colonization in the intertidal vents at White Point.

A total of 21 FISH mapped regions (30 × 30 µm) on
five incubated Si-wafers were examined by NanoSIMS and
subsequently processed using Look@NanoSIMS resulting in 3115
cellular ROIs (Table 1, Figure S-4). These mapped areas included
three regions from the 2-day labeled incubation (665 ROIs),
four regions from the 7-day labeled incubation (777 ROIs),
six regions from the 7-day labeled incubation (760 ROIs),
three regions from the unlabeled control (645 ROIs), and three
regions from the killed control (268 ROIs). Isotope ratios for
ROIs from the different time points of the 13C, 15N, and 33S-
labeled substrate incubations had a broad distribution, with the
standard deviations of similar magnitude to the mean ratios
(Table 1). Over the 10-day incubation period with 15NH+

4 , the
mean 15N/14N for ROIs identified as Deltaproteobacteria by
FISH increased from 0.0447 ± 0.0169 at day 2 to 0.0628 ±

0.0203 by day 10 (ROIs in unlabeled control = 0.00347 ±

0.00019). In incubations amended with 33SO2−
4 , the mean 33S/32S

for deltaproteobacterial cells increased from 0.0187 ± 0.0065
(day 2) to 0.1292 ± 0.1224 (day 7), followed by a decrease
to 0.0578 ± 0.0430 at day 10. Gammaproteobacterial ROIs in
those same incubations had an average 15N/14N ratio of 0.0354

Frontiers in Microbiology | www.frontiersin.org 5 May 2016 | Volume 7 | Article 774

https://github.com/katdawson/NanoSIMS-cluster-analysis
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Dawson et al. Stable Isotope Phenotypes of Sulfur-Cycling Microbes

FIGURE 3 | Spatial (x,y) projections of isotope phenotype clusters

determined from NanoSIMS data and corresponding FISH images.

Independent analysis of these two data sets showed consistent

correspondence between the isotope phenotypes (clusters a–e) and the

morphologies and phylogenetic affiliation of cells determined in the FISH

experiments. For example, cluster “e” primarily corresponds with putative

sulfate-reducing bacteria hybridized with a deltaproteobacterial probe (purple).

FISH (left panels) was performed with probe Delta495a targeting

Deltaproteobacteria (purple) and Gam42a targeting Gammaproteobacteria

(green). Representative cells for isotope phenotype clusters a–e, determined

from fuzzy c-means cluster analysis of NanoSIMS data, are indicated with

arrows in the FISH images. Clusters “a,” “b,” and “c” are primarily affiliated with

filamentous Gammaproteobacteria. Cluster “d” is primarily affiliated with

clusters of coccoidal Gammaproteobacteria, andcluster “e” is primarily

affiliated with Deltaproteobacteria. FISH images were rotated to match the

NanoSIMS image orientation, which resulted in the cropping of some images.

± 0.0125 which did not change appreciably during the 10
day incubation. However, FISH-identified gammaproteobacterial
cells did show an increase in 33S/32S from 0.0138 ± 0.0106

at day 2 to 0.0302 ± 0.0270 by day 10. Amendments with
13C-acetate produced similar trends in 13C/12C for both
delta- and gammaproteobacterial cells with the peak in 13C
enrichment observed early in the incubation series at day 2
(0.1432 ± 0.0915) followed by a decrease to 0.0984 ± 0.0335
at day 7, with cells in the final incubation bottle (day 10)
showing slightly a slightly higher 13C/12C ratio (0.1040± 0.0649).
Cells recovered from the unlabeled control incubation did not
show any isotope enrichment (13C/12C—0.0109 ± 0.00051;
15N/14N—0.00347 ± 0.00019; 33S/32S—0.00720 ± 0.00076)
and only minor enrichment was detected for 13C/12C and
15N/14N in cells from the killed control amended with the same
suite of isotopically enriched substrates (13C/12C—0.0123 ±

0.0032; 15N/14N—0.0045± 0.00066; 33S/32S—0.00568± 0.0011).
Previous SIMS studies have reported similar levels of isotopic
enrichment in cells above natural abundance from killed control
experiments amended with isotopically labeled substrates (e.g.,
15NH+

4 ; Orphan et al., 2009; Kopf et al., 2015).

Cluster Method and Number Validation
A comparison of hierarchical (single-linkage, median-linkage,
average-linkage, complete-linkage, centroid-linkage, Ward’s
method, and McQuitty’s method) and partitional (pam, k-
means and fuzzy c-means) cluster analysis methods using the
CH validity index revealed that partitional algorithms better
optimized groups of ROIs by isotope phenotype. These methods
rely on cluster ellipsoids drawn to minimize the variance between
the member ROIs and the mean cluster value, resulting in the
best representation of normal distributions anticipated from
biological activity (Figure 4; Legendre and Legendre, 2012).
Higher CH index values represent better intra-cluster cohesion
and inter-cluster separation (Caliński and Harabasz, 1974). With
the exception of the single-linkage method, five to eight clusters
maximized the CH index. The highest CH index values were
determined for the following partitional methods, fuzzy c-means
(5 clusters, CH = 509.2), k-means (5 clusters, CH = 509.4), pam
(6 clusters, CH = 502.8), and Ward’s method (5 clusters, CH =

457.3; Figure 4).
Based on these findings (Figure 4), k-means and fuzzy

c-means clustering with five clusters appear to be equally valid
methods for clustering NanoSIMS isotope ratio data and were
used for all subsequent data analysis. Further comparison of
k-means and fuzzy c-means, showed less visual overlap in the
fuzzy c-means clusters projected into vector space (Figure 5B).
Greater cluster differentiation with fuzzy c-means was confirmed
by increased average and overall cluster silhouette width
(Figure 5D). Silhouette plots provide a graphical assessment of
cluster solutions, by combining the inter-cluster separation and
the intra-cluster cohesion into a width for each object that
increases with improvement in both parameters (Rousseeuw,
1987). The average silhouette widths indicated that clustering by
fuzzy c-means improved partitioning of the data compared to
the k-means method. However, there was still substantial overlap
in the clusters defined by fuzzy c-means, particularly between
clusters 1, 2, and 4. This overlap (Figure 5) was visible in both the
projection of the clusters in bivariate plots and by the presence of
negative silhouette widths.
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TABLE 1 | Average isotope and elemental ratio properties for all cellular ROIs, the FISH-identified Delta- and Gammaproteobacteria, and the five cluster,

fuzzy c-means solutions for all incubation and control experiments.

All Delta Gamma a b c d e

2 DAYS:13C-ACETATE +
15NH+

4
+

33SO2−

4

Number of ROIs 665 20 645 253 107 257 30 18

13C/12C 0.1432 0.1817 0.1421 0.0625 0.2284 0.1889 0.1086 0.1757

sd 0.0915 0.1098 0.0915 0.0363 0.1024 0.0580 0.0486 0.0974

12C15N/12C14N 0.0394 0.0447 0.0393 0.0187 0.0569 0.0508 0.0370 0.0704

sd 0.0216 0.0169 0.0216 0.0112 0.0158 0.0123 0.0167 0.0259

33S/32S 0.0139 0.0187 0.0138 0.0094 0.0164 0.0141 0.0122 0.0622

sd 0.0106 0.0065 0.0106 0.0028 0.0070 0.0056 0.0051 0.0245

C/CN 0.4080 0.4286 0.4073 0.4239 0.5943 0.3383 0.2667 0.3066

sd 0.1405 0.1219 0.1405 0.1159 0.1267 0.0830 0.0842 0.1191

S/CN 0.1187 0.1032 0.1192 0.1084 0.1415 0.1028 0.2554 0.1281

sd 0.0452 0.0222 0.0452 0.0219 0.0213 0.0206 0.1106 0.0268

7 DAYS:13C-ACETATE +
15NH+

4
+

33SO2−

4

Number of ROIs 777 53 724 443 136 106 32 60

13C/12C 0.0984 0.0727 0.0760 0.0304 0.0499 0.2687 0.0694 0.1323

sd 0.0335 0.0506 0.1009 0.0298 0.0385 0.1112 0.0397 0.0850

12C15N/12C14N 0.0283 0.0688 0.0214 0.0105 0.0157 0.0532 0.0217 0.1001

sd 0.0309 0.0471 0.0235 0.0105 0.0100 0.0125 0.0103 0.0162

33S/32S 0.0620 0.1292 0.0259 0.0151 0.0150 0.0306 0.0078 0.2229

sd 0.4579 0.1224 0.0481 0.0109 0.0102 0.0249 0.0016 0.0899

C/CN 0.2067 0.2726 0.4715 0.3736 0.7612 0.5187 0.4769 0.2759

sd 0.1113 0.1608 0.2032 0.1042 0.1953 0.1529 0.2435 0.1203

S/CN 0.0564 0.0880 0.1130 0.0886 0.1509 0.1188 0.3125 0.0690

sd 0.0593 0.0873 0.0531 0.0193 0.0326 0.0275 0.0815 0.0193

10 DAYS:13C-ACETATE +
15NH+

4
+

33SO2−

4

Number of ROIs 760 340 420 306 0 158 66 230

13C/12C 0.1040 0.0938 0.1123 0.0655 n.d. 0.1943 0.0910 0.0968

sd 0.0649 0.0487 0.0746 0.0385 n.d 0.0638 0.0452 0.0307

12C15N/12C14N 0.0531 0.0628 0.0454 0.0379 n.d. 0.0561 0.0448 0.0739

sd 0.0222 0.0203 0.0207 0.0207 n.d 0.0104 0.0196 0.0106

33S/32S 0.0425 0.0578 0.0302 0.0146 n.d. 0.0285 0.0446 0.0887

sd 0.0377 0.0430 0.0270 0.0169 n.d. 0.0233 0.0283 0.0199

C/CN 0.4303 0.3493 0.4960 0.3113 n.d. 0.5350 0.8700 0.3907

sd 0.2528 0.1787 0.2832 0.1853 n.d. 0.1987 0.3895 0.1100

S/CN 0.0792 0.0804 0.0783 0.0648 n.d. 0.0650 0.1660 0.0833

sd 0.0436 0.0370 0.0482 0.0243 n.d. 0.0134 0.0905 0.0213

UNLABELED CONTROL (7 DAYS): ACETATE + NH+

4
+ SO2−

4

Number of ROIs 645 23 622 155 133 39 193 125

13C/12C 0.0109 0.0109 0.0109 0.0109 0.0105 0.0106 0.0109 0.0112

sd 0.0005 0.0004 0.0005 0.0003 0.0003 0.0004 0.0003 0.0003

12C15N/12C14N 0.0035 0.0035 0.0035 0.0036 0.0034 0.0034 0.0034 0.0034

sd 0.0002 0.0001 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001

33S/32S 0.0072 0.0074 0.0072 0.0074 0.0074 0.0092 0.0068 0.0067

sd 0.0008 0.0005 0.0008 0.0004 0.0004 0.0009 0.0003 0.0002

C/CN 0.3362 0.4385 0.3324 0.3687 0.4739 0.4149 0.1868 0.3557

sd 0.1507 0.1484 0.1507 0.0891 0.1442 0.1209 0.0701 0.1202

S/CN 0.1101 0.1167 0.1099 0.0656 0.0697 0.0652 0.1103 0.2220

sd 0.0691 0.0847 0.0691 0.0168 0.0274 0.0213 0.0387 0.0607

(Continued)
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TABLE 1 | Continued

All Delta Gamma a b c d e

KILLED CONTROL (10 DAYS): 13C-ACETATE +
15NH+

4
+

15NO−

3
+

33SO2−

4

Number of ROIs 268 32 236 110 79 55 13 11

13C/12C 0.0123 0.0143 0.0120 0.0115 0.0123 0.0116 0.0120 0.0241

sd 0.0032 0.0027 0.0032 0.0015 0.0015 0.0010 0.0009 0.0060

12C15N/12C14N 0.0045 0.0046 0.0045 0.0046 0.0041 0.0044 0.0064 0.0048

sd 0.0007 0.0004 0.0007 0.0004 0.0003 0.0003 0.0008 0.0005

33S/32S 0.0057 0.0056 0.0057 0.0049 0.0063 0.0061 0.0066 0.0061

sd 0.0011 0.0011 0.0011 0.0009 0.0007 0.0008 0.0015 0.0003

C/CN 0.3114 0.3128 0.3112 0.3165 0.1999 0.4473 0.2845 0.4123

sd 0.1325 0.0370 0.1325 0.0729 0.0935 0.1433 0.0504 0.0903

S/CN 0.0917 0.0800 0.0933 0.0738 0.0855 0.1433 0.0684 0.0841

sd 0.0429 0.0373 0.0429 0.0137 0.0255 0.0618 0.0287 0.0225

Gamma, Gammaproteobacteria; Delta, Deltaproteobacteria; sd, standard deviation; n.d., not detected.

FIGURE 4 | A comparison of the 10 clustering algorithms with the

Calinski-Harabasz validity index (CH index) for solutions containing

between 2 and 10 clusters, where higher index values indicated better

intra-cluster cohesion and inter-cluster separation. Of these clustering

methods, the partitional methods fuzzy c-means (dashed green) and k-means

(solid orange) with five clusters were found to be the optimal algorithms for the

isotope and elemental ratio NanoSIMS data.

Test of Isotope Phenotyping with 1, 2, or 3
Isotope Ratios
In order to determine the benefit of additional ratio data
for determining isotope phenotypes, we compared the five
cluster fuzzy c-means assignments resulting from isotope
and elemental ratio data derived from one (15N/14N), two
(15N/14N, 13C/12C, C/CN), or three (15N/14N, 13C/12C,
33S/32S, C/CN, S/CN) labeled substrates. These assignments
were examined by projecting ROIs into x,y coordinate space
alongside the corresponding FISH image (Figure 4, Table 2).
In this comparative analysis, some ROI assignments remained
consistent across all cluster analysis solutions (n = 171,

22.0%), and the addition of the 13C/12C and 33S/32S ratios
improved the differentiation of non-filamentous cell types.
The incorporation of all three isotope ratios (15N/14N,13C/12C,
and 33S/32S) resulted in the best correspondence between the
NanoSIMS acquired cellular data and FISH image, revealing
potential discrepancies in phylogenetic assignment of some
ROIs identified by FISH. For these cells, the FISH-based
assignment tended to be less clear, compromised by inherent
autofluorescence in the sample, variability in fluorescence
intensity between the larger filamentous microorganisms
and co-occurring single cells, or weak hybridization
possibly due to poor specificity of the oligonucleotide
probe.

Cluster Assignment Consistency and
Properties
Projection of the ROI x,y coordinate data for various
raster areas and incubation time points (Figure 3) showed
consistency between the cluster assignment and the
independent taxon identification by FISH microscopy.
Filamentous Gammaproteobacteria (putative Thiothrix
spp.) were primarily associated with clusters “a,” “b,” and
“c”; 86, 98, and 92% of the ROIs were FISH identified
as Gammaproteobacteria, respectively. Cluster “d” was
associated with non-filamentous cells consisting of both
FISH-identified Gammaproteobacteria (85% of ROIs),
as well as cells stained by DAPI with an undetermined
phylogenetic affiliation (15% of ROIs). Deltaproteobacteria
were primarily associated with cluster “e,” with 68% of ROIs
hybridizing with the deltaproteobacterial specific FISH probe,
Delta495a.

Cross-plots of the ROI isotope and elemental ratios (Figure 5)
demonstrated that clusters are associated with specific properties
(Table 1). For example, cluster “a” ROIs had the lowest
ratios of 13C/12C, 15N/14N, and 33S/32S, while the cluster “b”
ROIs were also characterized by low 13C/12C, 15N/14N, and
33S/32S, but had higher elemental C/CN and S/CN ratios
compared to other groups. ROIs in cluster “c” had the
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FIGURE 5 | A comparison of partitioning by (A) k-means and (B) fuzzy c-means for ROIs from the t = 7 day NanoSIMS isotope and elemental ratio data

showed that fuzzy c-means resulted in better cluster resolution. The fuzzy c-means clustering solution minimized overlap (A,B) and resulted in higher average

silhouette width (avg cjSj), a measure of intra-cluster cohesion and inter-cluster separation, for ROIs (nj) distributed into the five clusters (j; C,D).

highest 13C/12C, with moderate 15N/14N, and low 33S/32S.
Cluster “d” ROIs were similar to cluster “a” and “b” in terms
of low isotopic ratios, but had the greatest (S/CN)/(C/CN)
ratio. ROIs in cluster “e” were characterized by the highest
15N/14N and 33S/32S, with low to moderate 13C/12C and
low C/CN.

Natural variation in the stable isotope and elemental ratios
recorded for cells in the unlabeled and killed control samples
did not contain large enough gradients for the cluster algorithm
to differentiate different cell types, despite the inherent variation
in elemental ratios observed for some cell populations (Figures
S-2, S-3). Cross-plots of isotope ratios showed minimal uptake
of the 13C and 15N label in the killed control and a
distribution of ROIs within one standard deviation of the
calculated natural abundance value for all ratios in the unlabeled
control. In both killed and unlabeled control samples, cross-
plots of elemental ratios identified a subset of cell ROIs
with higher S/CN consistent with the elevated ratios observed
from a subset of the ROIs in the SIP experiments (Figure 5,
cluster “d”).

DISCUSSION

Since the development of FISH-SIMS and FISH-NanoSIMS

for directly measuring the metabolic activity of taxonomically

identified single microbial cells in environmental samples

(Orphan et al., 2001; Wagner, 2009) this methodological

approach has gained widespread use in the field of microbial

ecology, illuminating within and between population differences

in anabolic activity and ecophysiology of environmental
microorganisms (House et al., 2009; Musat et al., 2012; Green-
Saxena et al., 2014; Zimmermann et al., 2015). To extend the
utility of this approach, we developed a taxonomy independent
method that combines cluster analysis with multi-isotope SIP
and NanoSIMS for identifying and grouping microbial cells with
phenotypically similar isotopic ratios and chemical compositions
reflective of distinct ecophysiologies (Figure 1). Cluster analysis
utilizes discontinuities and gradients in multivariate datasets
to identify and visualize relationships between groupings,
here represented by combinations of isotopic enrichment or
elemental ratios for environmental microorganisms after SIP.
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TABLE 2 | Cluster assignments for a subset of ROIs (n = 777) using isotope and elemental ratios resulting from 1, 2, or 3 stable isotope labeled substrates.

Ratios used FISH identification Distribution of ROIs per cluster

a b c d e

13C/12C Gamma 416 142 77 52 38

Delta 13 27 12 1 0

15N/14N Gamma 385 125 96 120 32

Delta 13 2 6 5 27

33S/32S Gamma 579 81 24 33 7

Delta 18 5 1 17 12

13C/12C, 15N/14N, C/CN Gamma 309 77 207 82 51

Delta 16 1 4 0 32

13C/12C, 33S/32S, C/S Gamma 483 100 29 84 29

Delta 10 21 2 1 19

15N/14N, 33S/32S, S/CN Gamma 428 226 35 27 8

Delta 14 8 2 16 13

13C/12C, 15N/14N, 33S/32S, C/CN, C/SN Gamma 427 134 101 30 32

Delta 16 2 5 2 28

Gamma, Gammaproteobacteria; Delta, Deltaproteobacteria.

The distillation of complex datasets into defined groupings
facilitates data interpretation and new hypothesis development
based on average group properties and composition. Similar
clustering approaches, including the fuzzy–c-means algorithm,
have been applied in the field of environmental metagenomics,
enabling the binning of sequence reads within complex data sets
(e.g., Nasser et al., 2008; Liu et al., 2015; Lu et al., 2016).

Here we show that clustering algorithms can be applied
to NanoSIMS-acquired isotopic and elemental ratio data sets
of single cells recovered from SIP experiments, enabling the
identification of ecophysiological characteristics and trends
for co-existing microorganisms and microbial populations in
environmental samples. There are a number of different
clustering algorithms available for characterizing multivariate
datasets. Comparison of 10 different clustering algorithms,
generally divided into either partitional or hierarchical-based
clustering methods, revealed that partitional methods yielded
more robust cluster solutions for our NanoSIMS isotope and
element ratio data set, identifying five clusters (Figure 4). The
success of partitional methods here is likely related to the
underlying structure of our data, which consisted of gradients in
isotopic enrichment resulting from anabolic activity and cross-
feeding within the microbial community.

This methodological approach was then tested in a low
complexity, sulfur cycling microbial mat community recovered
from a hydrothermally influenced intertidal area at White Point
beach, CA. NanoSIMS analysis of multi-isotope SIP experiments
yielded ∼2200 single cell measurements of 13C/12C, 15N/14N,
and 33S/32S, as well as the associated cellular elemental ratios
C/CN and S/CN. Fuzzy c-means cluster analysis partitioned data
into five isotope phenotypes that were reflective of differences in
the anabolism of acetate, sulfate, and ammonium. Comparison
of these isotope phenotypes, which were determined solely
by multivariate analysis of quantitative isotope and elemental

ratio data, to corresponding FISH images supported the efficacy
of cluster assignments to particular phylogenetic groups, and
demonstrated the variability in general anabolic activity and the
metabolism of carbon and sulfur within taxonomically related
cells.

While many SIP and isotope tracer experiments utilize one
or two isotope labels (Radajewski et al., 2000; Dumont and
Murrell, 2005; Wegener et al., 2012), the Cameca NanoSIMS
50L instrument has the capability of measuring seven masses
in parallel, providing a means for tracing the flow of three
or four independently labeled substrates in an experiment.
The incubations reported here used 15NH+

4 ,
13C-acetate, and

33SO2−
4 to investigate N, C, and S cycling. The benefit of

multiple stable isotope amendments for identifying metabolic
niches in incubation samples was explored by applying the
different clustering algorithms with data from one, two, or three
different isotope labels (Figure 6). In all cases, clusters of cells
were identified on the basis of trends in isotope ratios derived
from metabolism of the labeled substrates. The use of a single
ratio, in this case 15N/14N, served as a general activity-based
proxy, providing one dimension of information related to 15NH+

4
assimilation and protein synthesis (e.g., Orphan et al., 2009;
McGlynn et al., 2015). The addition of 13C/12C from 13C-acetate
and the elemental ratio C/CN added additional dimensions to the
cluster analysis, potentially related to differences in intracellular
carbon storage and the metabolism of 13C-labeled acetate or
13C-labeled dissolved inorganic carbon derived from acetate
catabolism. A third dimension for discrimination of phenotypic
cell types was gained through the addition of 33S/32S and S/CN.
The sulfur isotope and elemental ratios partitioned cells based
on 33S-sulfate reduction, subsequent oxidation of 33S-sulfide, and
intracellular sulfur storage. Gradients in the 13C/12C, 15N/14N,
and 33S/32S ratios emphasized variation in carbon, nitrogen, and
sulfur metabolism within the mat microbial community and
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FIGURE 6 | Isotope and elemental ratio properties of the five clusters from the full SIP dataset (t = 2, 7, and 10 days), containing a total of 2202 cellular

ROIs, which were used to determine isotope phenotypes from the sulfur cycling White Point microbial assemblage. Clusters “a,” “b,” and “c” are primarily

affiliated with filamentous Gammaproteobacteria (“γ”). Cluster “d” is primarily affiliated with clusters of coccoid Gammaproteobacteria. Cluster “e” is primarily affiliated

with Deltaproteobacteria (“δ”).

resulted in better resolution of different phenotypic cell types
(Figures 3, 7; Figure S-4).

Cluster analysis partitioned ∼2200 ROIs from a total of
13 raster areas, distributed across three independent Si-wafers
representing different SIP incubation time points (2, 7, and 10
days). Cluster assignment and cell type determined by FISH
for the corresponding epifluorescence images was consistent for
multiple mapped regions on the same Si-wafer and for mapped
regions on independent Si-wafers at all-time points (Figures 3A,
7; Figure S-4). The observed correlation between cluster and
cell type across these different samples suggest that the isotope
and element ratios of ROIs are coherent and likely reflective
of distinct ecophysiologies or metabolic niches in this system.
Filamentous, sulfide-oxidizing Gammaproteobacteria (“a,” “b,”
and “c”) and sulfate-reducing Deltaproteobacteria (“e”), which
represented the metabolic endmembers of sulfur cycling in this
system, stood out for their robustness. Additionally, two clusters
(“a” and “e”), showed the lowest intra-cluster variance and
greatest inter-cluster separation (Figure 5) indicating that the
combined isotope and elemental ratios better differentiated these
ROIs (Figure 6).

The defining features of the five microbial phenotypes were
captured in a series of isotope and element ratio biplots
(Figure 6). Three of these phenotypes emerged as particularly

distinct both in their isotope and elemental ratios (“c,” “d,” and
“e”). Cluster “c” consisted of the primary acetate metabolizers
(highest 13C/12C) and included a subset of cells that may
be the principal sulfide oxidizers (second highest 33S/32S).
These phenotypic properties were consistent with FISH analysis,
which indicated that cluster “c” was primarily composed
of filamentous, sulfide-oxidizing Gammaproteobacteria. These
Gammaproteobacteria are likely Thiothrix spp., identified by
iTAG sequencing and previously reported to incorporate acetate
(Nielsen et al., 2000). Based on comparison to FISH images,
clusters “a,” “b,” and “c” weremorphologically similar filamentous
Gammaproteobacteria, which likely reflected a gradient of low
(“a” and “b”) to high (“c”) anabolic activity (15N/14N) and
acetate utilization. An activity gradient is further supported by
a predominance of filaments with the less active “a” and “b”
phenotypes in earlier time points (2 and 7 days), while later
time point filaments showed an increase in the more active
“c” phenotype and the absence of the “b” phenotype in the
10-day incubation (Figures 3, 6). Cluster “b” is differentiated
further by high ratios of C/CN, which may indicate the presence
of carbon storage granules (Larkin and Strohl, 1983; Rossetti
et al., 2003). In cultured Thiothrix relatives, intracellular carbon
storage compounds were found to increase during acetate
metabolism (Rossetti et al., 2003). However, none of these groups
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FIGURE 7 | (A) NanoSIMS ion counts from 14N12C− as a proxy for biomass, (B) cell outlines (ROIs), and (C) the corresponding FISH image. Comparison of isotope

and elemental ratio data resulting from SIP experiments using 15NH+

4 + 13C-acetate + 33SO2−
4 where fuzzy c-means cluster determination was based on (D) one

ratio, (E) three ratios, or (F) five ratios. Here, the use of five ratios provided the best differentiation of cell types as compared with the independent FISH data. In panels

D–F, ROI colors were determined by cluster assignment (a–e). Phylogenetic assignments to “δ” (Deltaproteobacteria) or “γ” (Gammaproteobacteria) were determined

by overlaying ROI positions in the NanoSIMS and FISH images prior to cluster analysis. FISH experiments (C) were performed with probes for Deltaproteobacteria

(purple), Gammaproteobacteria (blue-green), and counter-stained with DAPI (blue).

displayed high S/CN ratios, suggesting an absence of sulfur
storage globules in the incubated cells despite their observation
in samples analyzed immediately after field collection. The lack
of sulfur storage granules in the cells analyzed from the SIP time
course experiments may be attributed to the low concentrations
of sulfide, thiosulfate, and nitrate measured in incubations
(data not shown), as well as the transition from aerobic to
anaerobic conditions by the end of the incubation period. These
conditions may have prompted these bacteria to oxidize sulfur
stores generated during non-limiting conditions associated with
colonization in the White Point intertidal pools (Nielsen et al.,
2000; Okabe et al., 2005; Dahl and Prange, 2006).

Similar to cluster “a,” the ROIs of cluster “d” showed
lower 15NH+

4 incorporation and 13C-acetate derived carbon
assimilation when compared to cluster “c.” In contrast
to the FISH-identified filamentous Gammaproteobacteria
associated with clusters “a,” “b,” and “c,” the non-filamentous
Gammaproteobacteria associated with cluster “d” exclusively
included ROIs with high amounts of sulfur to biomass (high
S/CN ratio), possibly indicative of the presence of sulfur storage

globules (Figure 6). A portion of the cluster “d” phenotype
also showed high amounts of carbon to biomass (high C/CN),
which may additionally indicate carbon storage granules.
Comparison to FISH images showed that cluster “d” was
associated with aggregates of coccoid Gammaproteobacteria,
as well as other gammaproteobacterial cells and unidentified
(DAPI-stained) single rods (Figure 3). Given the elevated S/CN
ratio for this cluster, it is possible that these cells may also be
sulfur-metabolizing microorganisms not targeted by our FISH
probes (e.g., sulfur-oxidizing, Epsilonproteobacteria affiliated
with Sulfurovum recovered in the White Point iTAG sequencing
data).

Cluster “e” ROIs contained the primary sulfate reducers
(highest 33S/32S), which were also the most anabolically active
cells (highest 15N/14N; Figure 6). While 68% of cells within
cluster “e” were FISH-identified as Deltaproteobacteria, an
additional 32% of cells were only stained by DAPI and were
not hybridized by either the Delta495a or GAM42a FISH probes
(Figure 3, Figure S-4). The latter group may represent another
sulfate-reducing bacterial group not targeted by the Delta495a
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probe, or perhaps are due to suboptimal FISH hybridization.
The unidentified members of cluster “e” showed greater
acetate-derived carbon assimilation (high 13C/12C), but lower
15NH+

4 uptake than their FISH-hybridized, deltaproteobacterial
counterparts. Neither subset of cluster “e” displayed high ratios
of S/CN or C/CN, which indicated that these cells did not
contain sulfur or carbon storage granules. The co-occurrence
of more than one group of sulfate- or sulfur-reducing bacteria
within cluster “e” is further supported by the presence of
multiple families of Deltaproteobacteria (Desulfuromonadaceae,
Desulfobacteraceae, and Desulfobulbaceae), as well as a putative
thiosulfate- and sulfur-reducing Fusibacter spp. also identified
in the iTAG data. These findings correspond with a companion
study that reported low, but detectable rates of sulfate-
reduction and identified members of the sulfur-reducing genus
Desulfuromusa in the White Point mats (Miranda et al., in
review).

Resolution of different cell types in these experiments relied
on the combined metabolism of C, N, and S stable isotope labeled
substrates to emphasize interspecies variation in three different
element cycling pathways. Using the seven different collectors on
the NanoSIMS 50L instrument additionally enables expansion
of this method to include up to three distinct isotopically
labeled sulfur substrates, including 33S, 34S, and/or 36S. The
ability to label independently both oxidized and reduced sulfur
pools in the same incubation may offer additional insights
into the sulfur cycling processes occurring within the White
Point microbial mat community, as well as in other sulfur-
based ecosystems. Alternatively, triple isotope SIP experiments
utilizing H18

2 O or D2O as tracers for cellular growth and activity
(Schwartz, 2007; Berry et al., 2015; Kopf et al., 2015) may
also be directly combined with various 13C and 15N labeled
substrates to expand the scope of the methods demonstrated
here with sulfur metabolizing systems to ones where carbon
and nitrogen metabolism drive the ecological dynamics. In this
sulfur-cycling case study, we identified fuzzy c-means as the
optimal clustering algorithm. While fuzzy c-means is likely to
work well in other biological systems, testing and comparison of
multiple clustering techniques is recommended as this technique
is expanded to other environments and differentmultiple-isotope
SIP combinations.

The major benefits of the triple isotope SIP experiments
coupled to cluster analysis method described here are the
microscopy-independent classification of microbial cells

based on their phenotypic properties. Variability in the
signal intensity of FISH probes, competing background
autofluorescence, and taxonomic specificity are inherent
problems for epifluorescence microscopy investigations of
microorganisms in complex environmental systems, often
complicating data interpretation and limiting the identification
of subpopulations. This method offers a unique approach
to quantitatively identify subpopulations of cells based on
multivariate analysis of gradients in the assimilation of
multiple isotopically labeled substrates and, if applicable,
differences in elemental stoichiometry. These gradients in
labeled substrate metabolism and anabolic activity may reflect
ecophysiological niches, and thus the isotope phenotype

groupings provide a taxonomically independent means of
assessing metabolic networks within environmental microbial
communities.
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