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Endophytic fungi or endophytes exist widely inside the healthy tissues of living plants,

and are important components of plant micro-ecosystems. Over the long period of

evolution, some co-existing endophytes and their host plants have established a special

relationship with one and another, which can significantly influence the formation of

metabolic products in plants, then affect quality and quantity of crude drugs derived

from medicinal plants. This paper will focus on the increasing knowledge of relationships

between endophytic fungi and medicinal plants through reviewing of published research

data obtained from the last 30 years. The analytical results indicate that the distribution

and population structure of endophytes can be considerably affected by factors, such as

the genetic background, age, and environmental conditions of their hosts. On the other

hand, the endophytic fungi can also confer profound impacts on their host plants by

enhancing their growth, increasing their fitness, strengthening their tolerances to abiotic

and biotic stresses, and promoting their accumulation of secondary metabolites. All the

changes are very important for the production of bioactive components in their hosts.

Hence, it is essential to understand such relationships between endophytic fungi and

their host medicinal plants. Such knowledge can be well exploited and applied for the

production of better and more drugs from medicinal plants.

Keywords: endophytic fungi, medicinal plant, population structure, plant-microbe interaction, secondary

metabolite

INTRODUCTION

It is widely considered in a conventional view that the quality and quantity of crude drugs
originated from medicinal plants are largely affected by such factors as the genetic background of
the concerned plants, ecological habitats where the plants live, and soil nutrients (Dai et al., 2003;
Sherameti et al., 2005). However, in the recent years, it is gradually recognized that endophytic
fungi or endophytes have played a very important role in affecting the quality and quantity of
the crude drugs through a particular fungus-host interaction, indicating that more understanding
on the particular relationships between endophytic fungi and medicinal plants is required for
promoting crude drug production (Faeth and Fagan, 2002). Although endophytic fungi are one
of the most important elements in plant micro-ecosystems that should have significant influences
on the growth and development of host plants, our knowledge about the exact relationships
between endophytic fungi and their host plants is still very limited. Understanding and exploiting
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such relationships will facilitate the ideal production of better
drugs by manipulating the growth conditions of medicinal plants
by, for example, adding a particular group of endophytic fungi
to the plants to improve the drug quality and quantity (Firáková
et al., 2007). Ideally, an alternative method can be developed
to directly produce desired drugs through bioengineering of
the selected medicinal plants and endophytic fungi under a
certain cultural condition, if the fungus-host relationships and
their metabolic mechanisms under cultural conditions are well
understood (Kumaran et al., 2008, 2009). Such an industry style
of manufacture may replace the traditional way to produce drugs,
which essentially depends on natural medicinal plants.

Endophytic fungi belong to mitosporic and meiosporic
ascomycetes that “asymptomatically reside in the internal tissues
of plants beneath the epidermal cell layer, where they colonize
healthy and living tissue via quiescent infections” (Bacon and
White, 2000). There is a great biological diversity of endophytic
fungi, occurring naturally in the temperate regions and tropical
rainforests, where about 300,000 terrestrial host-plant species are
distributed. Each plant species hosts one or more endophytic
fungus species. Endophytic fungi are diverse polyphyletic groups
of microorganisms, and can thrive asymptomatically in different
healthy tissues of living plants above and/or under the ground,
including stems, leaves, and/or roots. It is estimated that over
one million endophytic fungal species occurring in the nature
(Faeth and Fagan, 2002). Schultz classified the fungal endophytic
fungi into three main ecological groups: (a) mycorrizal; (b)
balansicaeous or pasture endophytic fungi; and (c) non pasture
endophytic fungi (Faeth and Fagan, 2002). The bioactive
compounds produced by endophytic fungi, exclusive of those to
their host plants, are very important to increase the adaptability
of both endophytic fungi and their host plants, such as the
tolerances to biotic and abiotic stresses. In addition, these
compounds can induce the production of a plethora of known
and novel biologically active secondary metabolites (Zhang et al.,
2006; Firáková et al., 2007; Rodriguez et al., 2009) that can
be exploited and applied by human as important medicinal
resources.

It is known that the colonization of endophytic fungi is
not an incidental opportunity because of the chemotaxis that
is specific chemicals produced by the host plants. At the
same time, different types of secondary metabolites, such as
saponin and essential oils from medicinal plants, are produced
through long-term co-evolution as a resistance mechanism to the
pathogens, most possibly including endophytic fungi. Therefore,
the secondary metabolites became obstacles for the colonization
of endophytic fungi. To overcome this, endophytic fungi must
secrete the matching detoxification enzymes, such as cellulases,
lactase, xylanase, and protease, to decompose these secondary
metabolites before they penetrate through the defense systems
of the resided host-plants. Once inside the tissues of a host-
plant, the endophytic fungi assumed a quiescent (latent) state,
either for the whole lifetime of the host plant (neutralism) or
for an extended period of time (mutualism or antagonism) until
environmental conditions are favorable for endophytic fungi or
the ontogenetic state of the host changes to the advantage of the
fungi (Sieber, 2007).

During the long period of co-existence and evolutionary
processes, different relationships have been established between
endophytic fungi and their host plants through a particular
fungus-host interaction recognized as: (i) a continuum of
mutualism, (ii) antagonism, and (iii) neutralism. The genetic
background, nutrient level, and ecological habitats of the
medicinal host plants are considered as the pressure-choice
factors on the population structure of the endophytic fungi
that, in turn, confer some kinds of benefits, such as the
induced growth, increased resistance to disease, and/or herbivore
(Rodriguez et al., 2009), as well as accumulated bioactive
components (Firáková et al., 2007), some of which can
be used by human as beneficial medicines. Therefore, the
mutual interrelation between endophytic fungi and their host
plants can impose certain effects on the formulation of
some types of bioactive compounds that can be used by
human.

In this paper, we reviewed the studies of endophytic fungi
and medicinal plants for the last 30 years, with a particular
emphasis on the factors that possibly influence the population
structure and distribution of endophytic fungi and benefits to
their host plants from the existence of endophytic fungi. We
hope that this review will provide readers useful information
for understanding the environmental and host-plant factors
affecting endophytic fungi as well as the friendly relationships
between endophytic fungi and medicinal plants, which may
help researchers make better use of the beneficial symbiosis and
expand the way for obtaining high-quality resources of certain
medicinal plants. Ideally, a system mimicking the mutualistic or
antagonistic symbiosis conditions of endophytic fungi and their
host plants may be established to effectively produce the desired
drug compounds through bioengineering, if the relationships
and conditions that promote the production of the compounds
are clearly understood. This review will also discuss the existing
problems in research and potential applications of endophytic
fungi for drug production.

ENVIRONMENTAL AND HOST-PLANT
FACTORS AFFECTING ENDOPHYTIC
FUNGI

Results of the analyses also indicated that the population
structure or distribution pattern of endophytic fungi was
significantly associated with the variation in environments, as
well as the classification and genetic background of host plants
(Table 1, Figure 1A). Data from the reference analysis suggested
that some environmental conditions, such as temperature,
humidity, illumination, geographic location, and vegetation
significantly affected the distribution pattern of endophytic
fungi (Suryanarayanan et al., 2005; Song et al., 2007). For
example, particular conditions determined the distribution
ranges of host plants that in return determine the species
of endophytic fungi and their spore germination, growth,
reproduction, and metabolism during the entire life cycle.
Similarly, results from the analyses suggested that the distribution
of certain endophytic fungal populations was only restricted to
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TABLE 1 | Influences of host medicinal plants on the population structure of endophytic fungi.

Family of host plants

(represent species)

Isolation part Habitat Factor affecting the

population structure

References

Cactaceae (Cactus sp.) Stem Desert of tropical savanna Environment: moisturea and

temperatureb
Suryanarayanan et al., 2005

Rosaceae (Malus

domestica)

Leaf, flower, fruit Tropical rainy region Environment: cultivation stylec Camatti-Sartori et al., 2005

Leguminosae (Glycyrrhiza

inflat)

Root Salinized sandy land in warm

temperate region

Environment: moisturea and

temperatureb
Song et al., 2007

Eucommiaceae (Eucommia

ulmoides)

Leaf, branch, bark Subtropical mountain and warm

temperate semi-humid region

Environment: latitudee and

temperatureb
Sun J. et al., 2008

Tissued

Orchidaceae (Gastrodia

elata)

Tuber, flower Hillside forests, wetland in

temperate plateau

Enviroment: latitudee Mo et al., 2008

Tissued

Euphorbiaceae (Sapium

sebiferum)

Leaf, twig Mountain in subtropics Genetic backgroundf Dai et al., 2003

Tissued

Smilacaceae (Heterosmilax

japonica)

Stem Subtropical monsoon region Seasong Gao et al., 2006

Pinaceae (Pinus

tabulaeformis)

Bark, needle, xylem Forests in warm temperate

semi-humid monsoon region

Seasong Guo et al., 2008

Tissue ageh

Teaceae (Camellia japonica) Leaf Temperate secondary forest Seasong Osono, 2008

Tissue ageh

Umbelliferae (Apium

graveolens, Cichorium

intybus, Foeniculum

vulgare, Lactuca sativa)

Leaf, root, seed Mediterranean region Taxonomy of plantsf D’Amico et al., 2008

Zingiberaceae (Amomum

siamense)

Leaf, pseudostem, rhizome Tropical monsoon forest Tissued Bussaban et al., 2001

Compositae (Atractylodes

lancea)

Rhizome Mountain in subtropics Tissued and age of tissueh Wang Y. et al., 2009

Asclepiadaceae (Calotropis

procera)

Leaf Garden bed Tissued Nascimento et al., 2015

aThe endophyte colonization was positively correlated with humidity.
bThe lower species diversity of the endophyte in temperate plants than that in tropical forests trees.
cThe highest endophytes number under organic cultivation.
dThe colonization rates of endophytic fungi from high to low in different tissues were bark>needle>xylem.
eDifferent dominant endophytic fungi.
fSpecific host–endophyte combinations.
gThe colonization rates of endophytic fungi from high to low were spring>winter>autumn>summer.
hThe species richness of endophytic fungi increased as tissue aged, especially leaves.

particular host plant species (or families) and particular genetic
background (genotypes) of a species (Dai et al., 2003; D’Amico
et al., 2008). This finding is particularly important because the
non-random distribution of endophytic fungi will determine
the production of diverse secondary metabolites promoted by
endophytic fungi that can be used by human as drugs. In
addition, the secondary metabolites may confer different benefits
to the host plants, such as enhancing the growth and resistance
to biotic and abiotic stresses, which provides opportunities for
us to understand the relationships between endophytic fungi
and medicinal plants. Below, we would present the influences
of ecological environments and genetic background/tissues of
host plants on the population structure of endophytic fungi,
respectively.

Influences of Ecological Environments on
Population Structure of Endophytic Fungi
We found that ecological or environmental conditions, such
as temperature, humidity, and levels of soil nutrition were
important factors to determine the types and amount of
secondary metabolites of the host plants, which would indirectly
affect the population structure of the endophytic fungi. For
example, under the conditions of low mean annual sunshine
hour and the high mean annual humidity, the host medicinal
plants would produce more nutrients that were suitable for the
colonization, reproduction, and dissemination of the endophytic
fungi (Wu et al., 2013). In contrast, under the cold climatic
conditions and inappropriate rates of respiration, oxygen
concentration, and pH value, only certain types of host species
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FIGURE 1 | The host-plant and environmental factors affecting the population structure and distribution of endophytic fungi (A). The beneficial

relationships established by the endophytic fungi to their host medicinal plants including enhancing the growth and resistance of their host plants, as well as

promoting the accumulation of secondary metabolites (B). Taxonomy of the total of 96 medicinal plant species involved in the reference survey and analysis for last 30

years (x axis: species numbers of the family; y axis: the type of the family) (C).

could successfully grown. As a consequence, only a limited
number of particular endophytic fungi could colonize in the
corresponding host plants, resulting a certain degree of regional
specificity on population structure of endophytic fungi (Jiang
et al., 2010).

We also found that population structure of endophytic fungi
normally represented a certain degree of regional specificity. The
distribution of endophytic fungi from the same regions presented
a high degree of similarity in terms of species taxonomy
(D’Amico et al., 2008). Conversely, species and their population
structure of endophytic fungi even in the same host plant species
from different regions normally presented very low degree of
similarity (Jiang et al., 2010).

Influences of Genetic Background of Host
Medicinal Plants on Population Structure
of Endophytic Fungi
The analysis of relationships between the host genotypes and
symbiotic lifestyle expression further revealed that individual
isolates of some endophytic fungal species could express either

parasitic or mutualistic lifestyles, depending on the colonized
host genotype (Redman et al., 2001; Unterseher and Schnittler,
2010). Accordingly, the fungus-host plant relationships should
be regarded as flexible interaction, whose directionality was
determined by slight differences in fungal gene expression in
response to the host reaction, or conversely, by host recognition
and response to the fungi. Hence, slight genetic differences in
the genomes of both partners controlled the outcome (positive,
negative, or neutral) of the symbiosis (Moricca and Ragazzi,
2008). Thus, population structure of endophytic fungi was
considerably affected by the genetic background of host plants.
Based on the facts indicated by the analyzed references that the
fitness of the endophytic fungi largely depended on the fitness of
the host medicinal plants, suggesting that the host plants largely
determined the colonization and distribution of endophytic fungi
in the host plants (Saikkonen et al., 2004).

Furthermore, phase disposition (age) of host plants and tissues
may likewise influence species composition of the endophytic
community (Sieber, 2007). For example, different endophyte
species were found in different tissues such as parenquima,
vascular ducts, and dermis of a host plant with different ages

Frontiers in Microbiology | www.frontiersin.org 4 June 2016 | Volume 7 | Article 906

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Jia et al. Host-Endophyte Relationships

(Rodrigues, 1994). Such a specific distribution of endophytic
species might be related to their ability to utilize specific
substrates (Rodrigues, 1994). In addition, differential substrates
utilized by different endophytic species demonstrated their
resource distribution strategy when lived in the same organ of
a host (Carroll and Petrini, 1983), reducing the competition
between the endosymbionts. This indicated that the colonization
of endophytic fungi was significantly determined by different
plant tissues producing differential substrates.

BENEFICIAL RELATIONSHIPS
CONFERRED BY ENDOPHYTIC FUNGI TO
HOST PLANTS

Our analysis based on the selected references further indicated
the benefits conferred by some endophytic fungi to their host
plants after colonization. Such a beneficial interaction could be
presented from three different aspects (Figure 1B). First, some
endophytic fungi could produce different plant hormones to
enhance the growth of their host plants (Waqas et al., 2012). For
example, the growth of wheat (Triticum aestivum L.) could be
enhanced by Azospirillum sp. under drought stresses (Dingle and
McGee, 2003). Second, some endophytic fungi would produce
different bioactive compounds, such as alkaloids, diterpenes,
flavonoids, and isoflavonoids, to increase the resistance to biotic
and abiotic stresses of their host plants (Firáková et al., 2007;
Rodriguez et al., 2009). Third, some endophytic fungi could
promote the accumulation of secondary metabolites (including
important medicinal components or drugs) originally produced
by plants. These metabolites may be produced by both of the
host plants or/and endophytic fungi according to the references
surveyed (Shwab and Keller, 2008). Owning to the importance
of the three aspects, we would present the three types of possible
beneficial endophytic fungus-host relationships accordingly.

Classification of Host Medicinal Plants
Interacting with Endophytic Fungi
The reference survey and analysis showed that a total
of 96 medicinal plant species were mutualisms, meaning
mutual benefits, in terms of the fungus-host relationships
(Tables 1–4). These species were distributed among 46 families
(Figure 1C), including Apocynaceae (1 taxon), Araucariaceae
(1 taxon), Asclepiadaceae (1 taxon), Berberidaceae (2 taxa),
Boraginaceae (1 taxon), Cactaceae (1 taxon), Celastraceae
(2 taxa), Combretaceae (1 taxon), Compositae (5 taxa),
Cucurbitaceae (2 taxa), Cupressaceae (4 taxa), Eucommiaceae
(2 taxa), Euphorbiaceae (1 taxon), Ginkgoaceae (3 taxa),
Gramineae (4 taxa), Guttiferae (1 taxon), Huperziaceae (3 taxa),
Icacinaceae (2 taxa), Iridaceae (1 taxon), Labiatae (2 taxa),
Lauraceae (1 taxon), Leguminosae (5 taxa), Liliaceae (3 taxa),
Lycopodiaceae (1 taxon), Malvaceae (1 taxon), Meliaceae
(1 taxon), Nyssaceae (1 taxon), Orchidaceae (8 taxa), Palmae
(1 taxon), Pinaceae (2 taxa), Piperaceae (1 taxon), Podocarpaceae
(1 taxon), Pontederiaceae (1 taxon), Pteridaceae (1 taxon),
Rosaceae (1 taxon), Rubiaceae (1 taxon), Rutaceae (2 taxa),
Sapindaceae (1 taxon), Scrophulariaceae (2 taxa), Smilacaceae

(1 taxon), Solanaceae (3 taxa), Taxaceae (11 taxa), Taxodiaceae
(1 taxon), Teaceae (1 taxon), Umbelliferae (2 taxa), and
Zingiberaceae (2 taxa). The included plant species are commonly
used as medicine either by direct consumption or for extracting
bioactive components.

Obviously, these medicinal plant species from different
families have their distribution in particular ecological habitats.
Among these species, 16 species, such as Glycyrrhiza uralensis,
Phellodendron amurense, and Rehmannia glutinosa etc. were
mainly distributed in temperate regions, and 20 species, such
as Amomum siamense, Cinchona ledgeriana, and Cinnamomum
camphora chvar. Borneol etc. were only found in tropical regions.
Forty species, such as Atractylodes lancea, Dysosma veitchii, and
Salvia miltiorrhiza etc. were mainly distributed in subtropical
regions. Four species, such as Apium graveolens and Foeniculum
vulgare etc. were mainly distributed in Mediterranean region.
Interestingly, some species were only found in extreme
conditions, such as Cactus sp. in savanna deserts, Saussurea
involucrata, Sinopodophyllum hexandrum, and Pedicularis sp. in
high elevation.

The data obtained from the taxonomy of the total medicinal
plants involved in the reference survey and analysis for last
30 years (Figure 1C) showed that the species associated with
Taxaceae and Orchidaceae are higher than that of other family
and accounted for 11 and 8, respectively.

Among the plants of family Taxaceae, all are related with
endophytes which can produce taxol with antitumor activity. In
1993, an endophytic fungus, Taxomyces andreanae, was isolated
from the bark ofTaxus brevifolia and was shown to produce Taxol
under in vitro axenic culture conditions (Stierle et al., 1993).
Numerous reports are available on the pronounced variability in
Taxol production from various endophytic fungal isolates across
different batch cultures (Gangadevi and Muthumary, 2009).
Paclitaxel (taxol) is a kind of diterpenoids American scientists
isolated from the Pacific yew extract as a natural secondary
metabolites in 1960s. It has significant anti-tumor activity,
particularly ovarian cancer, uterine cancer, breast cancer with
high incidence. So these important discoveries are worth further
studying. Followed by the family Taxaceae, papers reporting
Orchidaceae accounted of eight for the second highest reports
and it has the potential to be developed further. Most of them
are related with the endophytes which can promote on the
growth of the host plants (Zhang J. et al., 1999; Guo and
Wang, 2001). In nature, almost all orchid endophytic fungi
invariably belong to the genus Rhizoctonia and are believed to
be essential symbionts for both the germination of seeds and
the development of the young heterotrophic plantlets. In most
orchids the plant eventually becomes photosynthetic, while some
species are known to remain heterotrophic throughout their life
for providing nutrition to survive. The endophyte found in the
adult plant is generally assumed to be the true symbiont of seeds
and protocorms, and from the behavior of endophytes isolated
from roots in culture with the host seeds various views have been
put forward about specificity of the relationship between hosts
and endophytes. Thus, it is of great importance to study the
relationship between orchids and their endophytic fungi, as well
as the plants of these two families.
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Promotion of Fitness and Growth of Host
Plants
Results indicated that some endophytic fungi could increase the
fitness and growth of host plants by increasing hormones, such
as indole-3-acetic acid, indole-3-acetonitrile, and cytokinins.
Endophytic fungi could also promote the growth of their host
plants by obtaining nutritional elements such as nitrogen and
phosphorus useful for plants (Zhang et al., 2006; Hartley and
Gange, 2009). For example, Mycena dendrobii could promote
the seed germination and growth of the host plant Gastrodia
elata by secreting indoleacetic acid (Guo and Wang, 2001). In
addition, Metarhizium robertsii translocated nitrogen directly
from insects to its host plants through hyphae (Behie et al.,
2012). Interestingly, results showed that most hormones
were produced by endophytic fungi isolated from the roots
of host plants. A few references also reported that some
endophytic fungi could promote the growth and fitness of the
host plants by activating the expression of a certain enzymes
and genes (Chen et al., 2005). For example, Piriformospora
indica increased the growth of tobacco roots by stimulating
the expression of nitrate reductase and the starch-degrading
enzyme (glucan-water dikinase) (Sherameti et al., 2005)
(Table 2).

Increase of Resistance to Stresses for
Host Plants
The references showed that certain endophytic fungi could
enhance the resistance of host plants to biotic and abiotic stresses

by producing bioactive compounds (chemicals) (Nejad and
Johnson, 2000; Cavaglieri et al., 2004) (Table 3). In symbiotically
conferred stress tolerance, the endophytic fungi were considered
to act as a type of biological trigger that activated the defense
systems of a host (Rodriguez and Redman, 2008). For example,
endophytic fungi that were inoculated to crop plants improved
the resistance and yield of the crops (Kozyrovska et al., 1996), and
such a endophytic-mediated plant resistance to pathogens was
more likely the result of direct competition between host plants
and pathogens.

Interestingly, in many cases, the tolerance to biotic stresses
was correlated with the bioactive compounds produced by
endophytic fungi (Saikkonen et al., 1998; Tan and Zou, 2001;
Zhang et al., 2006) that had antimicrobial activity against
pathogens (Gunatilaka, 2006). Moreover, chemicals produced by
endophytic fungi were toxic or distasteful to insects (Hartley
and Gange, 2009), protecting the host plants from the attacks
of insects. For example, alkaloids produced by endophytic fungi
in the genus Neotyphodium could confer deterrence to their host
plants, increasing their survival from the attacks by insects. With
the increased stress tolerance, host plants infected by endophytic
fungi could outcompete native plants without fungal infection,
and consequently became invasive (Tofern et al., 1999; Clement
et al., 2005).

In addition, endophytic fungi could produce a vast variety
of antioxidant compounds (Table 3) that could protect their
hosts by enhancing tolerance to abiotic stresses (Herrera-
Carrillo et al., 2009; Torres et al., 2009). In supporting of
this, several studies had demonstrated increased production

TABLE 2 | Host medicinal plants with enhanced growth conferred by endophytic fungi.

Host plant Endophytic fungi Mechanism References

Atracty lancea Sclerotium sp. Increase cell protection from desiccationin and leaf

metabolic capability of host

Chen et al., 2008

Cucumis sativus Phoma glomerata, Penicillium sp. Secret phytohormones viz. Gibberellins and Indoleacetic

acid

Waqas et al., 2012

Anoectochillus formosanus Epulorhiza sp. Enhance four enzyme activities enzyme activities of

chitinase, β-1, 3-glucase, phenylalanine ammonia- lyase,

and polyphenoloxidase

Tang et al., 2008

Anoectochilus roxburghii Epulorhiza sp., Mycena anoectochila Enhance enzyme activities Yu and Guo, 2000;

Chen et al., 2005

Cymbidium sinense Mycena orchdicola Secret the plant hormones Zhang J. et al., 1999

Dendrobium candidum Mycena dendrobii Secret the plant hormones Zhang J. et al., 1999

Dendrobium nobile, D. chrysanthum Epulorhiza sp., Mycena sp., Tulasnellales,

Sebacinales, Cantharellales

Enhance the absorption of nutrient in plants promoting

the seed germination of host

Chen and Guo, 2005

Gastrodia elata Mycena dendrobii, M. osmundicola, Mycena

orchidicola, M. anoectochili

Secret the plant hormones promoting the seed

germination of host

Guo and Wang, 2001

Pecteilis susannae Epulorhiza sp., Fusarium sp. Enhance the absorption of N, P, and K elements in plants

promoting the seed germination of host

Chutima et al., 2011

Monochoria vaginalis Penicillium sp., Aspergillus sp. Secret gibberellin Ahmad et al., 2010

Pedicularis sp. Dark septate endophytic fungi (DSEF) Increase their nutrient utilization efficiency Li and Guan, 2007

Rehmannia glutinosa Ceratobasidium sp. Secret indoleacetic acid Chen B. et al., 2011

Nicotiana attenuata Sebacina vermifera Enhance the absorption of nutrient and promote the

growth and fitness of by inhibiting ethylene signaling

Barazani et al., 2007

Sesbania sesban Funneliformis mosseae, Rhizophagus

intraradicesand Claroideoglomus etunicatum

Secret the plant hormones Abd_Allah et al., 2015
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TABLE 3 | Host medicinal plants with enhanced defense responses conferred by endophytic fungi.

Host plant Endophytic fungi Type of stresses Mechanism References

Chrysanthemum

morifolium

Chaetomium globosum, Botrytis

sp.

Salt stress Increase POD activity and soluble protein

content

Liu et al., 2011

Glycyrrhiza

uralensis

Arbuseular mycorrhiza,

Penicillium griseofulvum

Drought and salt stress Reduce injury of water stress by increase

pretective enzymes’ activity and osmotica

contents

Wang L. et al., 2009

Salvia miltiorrhiza Arbuseular mycorrhiza Drought stress Increase the absorption of nutrient and

alter metabolic activities in host

Meng and He, 2011

Cordia alliodora Leucocoprinus gongylophorus Insect Produce some chemicals antagonistic to

ants’ fungal symbiont

Bittleston et al., 2011

Phoenix dactylifera Beauveria bassiana,

Lecanicillium dimorphum, L. cf.

psalliotae

Insect: date palm pests Modulate the expression of cell

division-related proteins in host

Gómez-Vidal S.,

mez-Vidal et al., 2009

Cirsium arvense Chaetomium cochliodes,

Cladosporium cladosporioides,

Trichoderma viride

Insect: foliar feeding insects Produce some chemicals toxic to

pathogens

Gange et al., 2012

Cucumis sativus Chaetomium Ch1001 Insect: root-knot nematode

Meloidogyne incognita

Produced abscisic acid affecting motility of

the second stage juveniles of insects

Yan et al., 2011

Picea rubens 150 foliar fungal endophytes Insects: Choristoneura

fumiferana

Produce some chemicals toxic to insects Sumarah et al., 2010

Atractylodes

lancea

Gilmaniella sp. AL12. Pathogenic fungi Produce jasmonic acid inducing defense

responses

Ren and Dai, 2012

Curcuma wenyujin Chaetomium globosum L18 Pathogenic fungi Produce some chemicals toxic to

pathogens

Wang et al., 2012

Maytenus hookeri Trichothecium roseum Pathogenic fungi Produce trichothecin toxic to pathogens Zhang et al., 2010

Phragmites

australis

Choiromyces aboriginum,

Stachybotrys elegans,

Cylindrocarpon sp.

Pathogenic fungi Produce cell wall-degrading enzymes to

kill pathogenic fungi

Cao et al., 2009

Cassia spectabilis Phomopsis cassiae Pathogenic fungi: Cadosporium

sphaerospermum, and

C. cladosporioides

Produce cadinane sesquiterpenoids toxic

to pathogens

Silva et al., 2006

Angelica sinensis Bacillus subtilis, Myxormia sp. Pathogenic fungi: Fusarium

oxysporum and F. Solani

Produce some chemicals toxic to

pathogens

Yang et al., 2012

Hordeum vulgare

var. disticum

Acremonium blochii,

A. furcatum, Aspergillus

fumigatus, Cylindrocarpon sp.,

C. destructans, Dactylaria sp.,

Fusarium equiseti, Phoma

herbarum, P. leveillei

Pathogenic fungi:

Gaeumannomyces graminis var.

Tritici

Improve the competence for space

inhibiting the colonization of pathogens

Maciá-Vicente et al., 2008

Triticum aestivum

cv. “Morocco”

Chaetomium sp, Phoma sp. Pathogenic fungi: Puccinia

recondite

Activate defense reactions of the plant Dingle and McGee, 2003

Triptergyium

wilfordii

Cryptosporiopsis cf. quercina Pathogenic fungi: Pyricularia

oryzae

Produce cryptocin and cryptocandin toxic

to pathogens

Strobel et al., 1999

Oryza sativa Sordariomycetes sp. Pb2+ stress Inhibition of electron transportfrom the

quinone acceptor QA to QB

Li and Zhang, 2015

Capsicum annuum Penicillium resedanum LK6 Heat stress Improve nutrient, proline and flavonoid

contents, modulate amino acid

metabolism

Khan et al., 2013

of antioxidant compounds (e.g., flavonoids and other phenolic
antioxidants) in endophyte-infected plants (Richardson et al.,
1992; Harper et al., 2003; Huang et al., 2007a,b). Furthermore, it
was shown that endophytic fungi possessing metal sequestration
or chelation systems were able to increase tolerances of their
host plants to the presence of heavy metals, thereby, assisting
their hosts to survive in contaminated soil (Weyens et al.,
2009).

Promoting the Accumulation of Bioactive
Compounds of Medicinal Plants
Results from our reference analyses clearly indicated that
some endophytic fungi with ability promoted the accumulation
of secondary metabolites of host plants, which influenced
the quantity and quality of drugs (Chen et al., 2016).
Some endophytic fungi could produce diverse classes of
phytochemicals—secondary metabolites originally from plants,
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including the well-known compounds such as paclitaxel (also
known as taxol) (Stierle et al., 1993), podophyllotoxin (Eyberger
et al., 2006; Puri et al., 2006), deoxypodophyllotoxin (Kusari et al.,
2009a), camptothecin, and structural analogs (Puri et al., 2005;
Kusari et al., 2009c, 2011; Shweta et al., 2010), hypericin and
emodin (Kusari et al., 2008, 2009b), and azadirachtin (Kusari
et al., 2012) (Table 4). In fact, the best known example of
anticancer compound taxol was found in the taxol-producing
endophytic fungi T. andreanae that was isolated from T.
brevifolia (Stierle et al., 1995). Many endophytic fungi colonized
in other host plant species, such as Seimatoantlerium tepuiense,
Seimatoantlerium nepalense (Bashyal, 1999), Tubercularia sp.
strain TF5 (Wang J. et al., 2006), andMetarhizium anisopliae (Liu
et al., 2009), were also found to produce taxol.

Other endophytic fungi could promote the formation and
accumulation of secondary metabolites that were only produced
by host plants. For example, Coetotrichum gloesporioides could
induce the production of Artemisinin in hairy-root cultures of
Artemisia annua (Wang J. W. et al., 2006). These compounds
commonly function as bioactivities for antitumor, antipyretic,
antimalarial, analgesic, or anti-inflammatory in medicinal
treatments.

CONCLUSION AND PERSPECTIVES

This review highlights the environmental and host-plant factors
that can possibly influence the population structure and
distribution of endophytic fungi, as well as the benefits these
endophtes provide to their host plants.

The fungus-host relationships reveal that the distribution
and population structure of endophytic fungi rely largely on
the taxonomy, genetic background, age, and tissues of the
host plants, in addition to the types of environments. These
findings can assist in the investigation of bioactive compounds
produced by a certain host medicinal plant under specific
environment conditions. In addition, we have observed that there
are three types of beneficial interactions between endophytic
fungi and their host plants namely: (1) enhancement of the
growth of host medicinal plants, (2) increase in the resistance
of the host plants to biotic and abiotic stresses, and (3)
accumulation of secondary metabolites, including bioactive
compounds used as drugs, produced originally by the medicinal
plants. These findings have important practical implications for
obtaining and producing drugs with improved quality and higher
quantity.

Interestingly, genuine medicinal materials with the highest
quality and best effects to a certain disease seems to have
a special relationship with endophytic fungi. Special types
of endophytic fungi of medicinal plants may be associated
with the production of specific bioactive compounds needed
by human. For example, a medicinal plant Huperzia serrata
found in tropical region can produce Huperzine-A compounds
that are considered being stimulated by endophytic fungi
Acremonium sp. and Shiraia sp. (Wang Y. et al., 2009; Wang
et al., 2011; Zhou et al., 2009). This is the reason why in
traditional Chinese medicine, doctors prefer to use a particular

medicinal plants from a particular geographical locations or
habitats where the content and chemical types of particular
compounds can be expected. Therefore, understanding the
distribution and population structure patterns of endophytic
fungi will provide a theoretical guide for effectively exploring
bioactive compounds of drugs produced by a special host
medicinal plant in particular tissues under special environment
conditions.

Importantly, the application of target endophytic fungi can
promote seed germination of many host plant species. The
significance of this application can increase opportunities for
the germination of those seeds that cannot germinate under
the normal conditions. For example, seeds of some rare and
endangered medicinal species, such as Dendrobium nobile and
D. chrysanthum in the orchid family, are extremely difficult to
geminate under normal conditionsHowever, with the application
of endophytic fungi in the genus Mycena, these seeds can
germinate successfully, which has facilitated the artificial culture
of these medicinal plants (Chen and Guo, 2005). This is
particularly useful for the rare and endangered medicinal plants
that are used in breeding programs where seed germination is
crucial.

The most valuable application is to utilize the advantages
of endophytic fungi that can promote the accumulation of
secondary metabolites originally produced by plants. Through
such an application, we can enhance the synthesis and
accumulation of bioactive compounds of the host medicinal
plants for higher quality of crude drugs, by adding particular
endophytic fungi to the plants. This application may open a
complete new dimension for the production of natural medicines
in an extremely effective manner, given that the relationship
between endophytic fungi and their host medicinal plants is
completely understood.

Unfortunately, much of the work reported on the beneficial
strains is confined to experimental studies, and more efforts
should be put into field trials and applications to obtain
higher-quality drugs. Also, the mechanisms of the interactions
between endophytic fungi and their host plants have not
been clearly defined. In addition, the research emphasis of
endophyte need to be addressed over the next several decades,
such as:

• Build a bioengineering system to mimick the
mutualistic/antagonism symbiosis of endophytic fungi
and their host plants, and facilitate the production of the
bioactive compounds.

• Set up a guide for rapid screening of plant endophytic
fungi beneficial to host plants other than isolate all strains
uncritically.

• Establish target endophytic fungi library for plant breeding in
order to protect the endangeredmedicinal plants by using seed
germination.

• Solve the degradation problem of target endophytic fungi that
can produce desired metabolites.

• Make better use of beneficial strains in planting and cultivating
medicinal plants so the pharmaceutical products can be
improved.
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TABLE 4 | Endophytic fungi producing plant-secondary metabolites in host plants.

Endophytic fungi Plant-secondary

metabolite

Host plant Bioactivity of secondary

metabolite

References

Alternaria sp. Berberine Phellodendron amurense Antibiotic Duan, 2009

Fusarium solani Camptothecin Apodytes dimidiata Antitumor Shweta et al., 2010

Entrophospora infrequens,

Neurospora sp.

Camptothecin Nothapodytes foetida Antitumor Amna et al., 2006; Rehman

et al., 2008

Fusarium solani Camptothecin Camptotheca acuminata Antitumor Kusari et al., 2009c

Phomopsis sp., Diaporthe sp.,

Schizophyllum sp., Penicillium

sp., Fomitopsis sp., Arthrinium

sp.

Cinchona alkaloids: quinine,

quinidine, cinchonidine, and

cinchonine

Cinchona ledgeriana Antipyretic and antimalarial,

analgesic and anti-inflammatory

Maehara et al., 2012

Blastomyces sp., Botrytis sp. Huperzine A Phlegmariurus cryptomerianus Anticholinesterase Ju et al., 2009

Penicillium chrysogenum Huperzine A Lycopodium serratum Anticholinesterase Zhou et al., 2009

Acremonium sp., Shiraia sp. Huperzine A, Huperzia serrata Anticholinesterase Li et al., 2007

Cephalosporium corda Sipeimine Fritillaria ussuriensis Antibechic and anti-ulcer Yin and Chen, 2008

Alternaria sp, Fusarium

oxysporum

Vinblastine Catharanthus roseus Antitumor Zhang et al., 1998

Pestalotiopsis guepinii Paclitaxel Wollemia nobilis Antitumor Strobel et al., 1997

Pestalotiopsis terminaliae Paclitaxel Terminalia arjuna Antitumor Gangadevi and Muthumary,

2009

Phyllosticta spinarum Paclitaxel Cupressus sp. Antitumor Senthil Kumaran et al., 2008

Alternaria sp. Paclitaxel Ginkgo biloba Antitumor Kim and Ford, 1999

Phyllosticta dioscoreae Paclitaxel Hibiscus rosa-sinensis Antitumor Kumaran et al., 2009

Aspergillus fumigatus Paclitaxel Podocarpus sp. Antitumor Sun D. et al., 2008

Phyllosticta citricarpa Paclitaxel Citrus medica Antitumor Kumaran et al., 2008

Pestalotiopsis pauciseta Paclitaxel Cardiospermum helicacabum Antitumor Gangadevi et al., 2008

Botryodiplodia theobroma,

Fusarium lateritium, Monochaetia

sp., Pestalotia bicilia

Paclitaxel Taxus baccata Antitumor Venkatachalam et al., 2008

Taxomyces andreanae Paclitaxel Taxus brevifolia Antitumor Stierle et al., 1995

Fusarium solani Paclitaxel Taxus celebica Antitumor Chakravarthi et al., 2008

Fusarium solani, Metarhizium

anisopliae, Mucor rouxianus

Paclitaxel Taxus chinensis Antitumor Deng et al., 2009; Liu et al.,

2009

Ozonium sp., Alternaria alternata,

Botrytis sp., Ectostroma sp.,

Fusarium mairei, Papulaspora

sp., Tubercularia sp.

Paclitaxel Taxus chinensis var. mairei Antitumor Zhou et al., 2007; Guo

et al., 2009; Wu et al., 2013

Alternaria sp., Aspergillus niger

var. taxi, Botrytis sp., Fusarium

arthrosporioide, Pestalotiopsis

microspora

Paclitaxel Taxus cuspidata Antitumor Kim and Ford, 1999

Cladosporium cladosporio Paclitaxel Taxus media Antitumor Zhang et al., 2009

Pithomyces sp. Paclitaxel Taxus sumatrana Antitumor Strobel et al., 1996

Pestalotiopsis microspora,

Sporormia minima,

Trichothecium sp.

Paclitaxel Taxus wallachiana Antitumor Shrestha et al., 2001

Taxomyces sp. Paclitaxel Taxus yunnanensis Antitumor Qiu et al., 1994

Periconia sp. Paclitaxel Torreya grandifolia Antitumor Li et al., 1998

Pestalotiopsis microspora Paclitaxel Taxodium distichum Antitumor Li et al., 1996

Aspergillus nidulans, A. oryzae Quercetin Ginkgo biloba Anti-inflammatory Qiu et al., 2010

Unidentified Rutin Pteris multifida Antibacterial and antioxidant Fan et al., 2007

Rhizopus oryzae α-Irone, β-Irone Iris germanica Anti-inflammatory Zhang L. et al., 1999

Penicillium implicatum Podophyllotoxin Diphylleia sinensis Antitumor Zeng et al., 2004

Monilia sp., Penicillium

implication

Podophyllotoxin Dysosma veitchii Antitumor Yang et al., 2003

(Continued)
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TABLE 4 | Continued

Endophytic fungi Plant-secondary

metabolite

Host plant Bioactivity of secondary

metabolite

References

Penicillium sp., Phialocephala

fortinii, Trametes hirsuta,

Alternaria neesex

Podophyllotoxin Sinopodophyllum hexandrum Antitumor Li, 2007

Fusarium oxysporum Podophyllotoxin Juniperus recurva Antitumor Kour et al., 2008

Alternaria sp. Podophyllotoxin Sabina vulgaris Antitumor Lu et al., 2006

Chaetomium globosum Hypericin Hypericum perforatum Anti-depressant Kusari et al., 2008

Trichoderma atroviride D16 Tanshinone IIA and

tanshinone I

Salvia miltiorrhiza Antibacterial and

anti-inflammatory

Ming et al., 2011

Sordariomycete sp. Chlorogenic acid Eucommia ulmoides Antimicrobial and antitumor Chen et al., 2010

Cephalosporium sp.,

Paecilomyces sp.

Diosgenin Paris polyphylla var. yunnanensis Antitumor, anti-inflammatory, and

cardiovascular-protection

Cao et al., 2007

Fusarium oxysporum, Neonectria

macrodidym, F. solani, F.

proliferatum

Cajaninstilbene acid Cajanus cajan Antioxidant, hypotriglycerimic,

and hypoglycemic

Zhao et al., 2012

Cochliobolus nisikadoi Borneol Cinnamomum camphora chvar.

Borneol

Anti-inflammatory, antioxidant Chen M. et al., 2011

Fusarium oxysporum Ginkgolide B Ginkgo biloba Antishock, antiallergic, and

anti-inflammatory

Cui et al., 2012

Unidentified Toosendanin Melia azedarach Contact toxicity, stomach

toxicity, and anti-feeding

Zhao et al., 2011

Fusarium redolens Peimisine and

imperialine-3β-D-glucoside

Fritillaria unibracteata var.

wabuensis

Get rid of sputum, cough, and

antitumor

Pan et al., 2015

Colletotrichum gloeosporioides Piperine Piper nigrum Antimicrobial, antidepressant,

anti-inflammatory, and anticancer

Chithra et al., 2014

Such knowledge can be well exploited and applied for
obtaining better drugs from medicinal plants. We believe that
this review provides new insights into drug discovery and
clinical utility which can be further improved by investigating
endophytes further as these have the potential of playing a key
front line role in the treatment of various diseases.
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