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Microbiological studies are increasingly relying on in silico methods to perform
exploration and rapid analysis of genomic data, and functional genomics studies are
supplemented by the new perspectives that genome-scale metabolic models offer.
A mathematical model consisting of a microbe’s entire metabolic map can be rapidly
determined from whole-genome sequencing and annotating the genomic material
encoded in its DNA. Flux-balance analysis (FBA), a linear programming technique that
uses metabolic models to predict the phenotypic responses imposed by environmental
elements and factors, is the leading method to simulate and manipulate cellular growth
in silico. However, the process of creating an accurate model to use in FBA consists
of a series of steps involving a multitude of connections between bioinformatics
databases, enzyme resources, and metabolic pathways. We present the methodology
and procedure to obtain a metabolic model using PyFBA, an extensible Python-
based open-source software package aimed to provide a platform where functional
annotations are used to build metabolic models (http://linsalrob.github.io/PyFBA).
Backed by the Model SEED biochemistry database, PyFBA contains methods to
reconstruct a microbe’s metabolic map, run FBA upon different media conditions, and
gap-fill its metabolism. The extensibility of PyFBA facilitates novel techniques in creating
accurate genome-scale metabolic models.

Keywords: metabolic modeling, metabolic reconstruction, in silico modeling, flux-balance analysis, model SEED,
genome annotation

INTRODUCTION

Since the dawn of genomics, homology-based algorithms and annotation databases have been used
to infer meaning from raw sequences (Overbeek et al., 2000, 2003; Aziz et al., 2008), and papers
describing microbial genomes have summarized the number of metabolic genes and breakdowns
of their potential capacity. However, that information was usually presented in absentia the
biochemical network that it purports to describe. The metabolic summary of a genome was limited
to a few tables of higher metabolic categories. Genome-scale metabolic networks have the potential
to completely change our perspective of microbial genomics and of the meaning inferred from
a genome sequence (Oberhardt et al., 2011; Plata et al., 2015; Yurkovich and Palsson, 2016). By
placing the genome annotation in the context of how the biochemical components of the cell
combine to consume substrates, produce energy, and grow, genome-scale models demonstrate
the breadth of our understanding of an organism whose genome has been sequenced, while also
highlighting the gaps in our knowledge that further study will complete.
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Flux-balance analysis (FBA), described elsewhere in this
special issue have become the de facto standard method for
predicting the fluxes through the reactions in the metabolic
network, and thereby asserting which biochemical reactions are
complete in the organism. FBA is a constraint-based linear
optimization approach to solving the flow of compounds through
a metabolic network in order to predict cellular phenotypes
(Palsson, 2000; Edwards et al., 2002; Orth et al., 2010). The
reactions are written as equations, with compounds being
converted from substrates to products. A single equation is
included in the system that represents the objective function,
the equation that is targeted to be optimized. In order to get
growth (biomass production), ATP production, or any other
output of the system, the system of equations representing the cell
must produce a solution that results in flux through that single
equation that represents the objective function; the optimization
is typically to maximize the amount of flux through that equation.
In modeling bacterial cells there are almost always more reactions
than there are compounds (whose concentrations are unknown)
that describe the system. For example, the Citrobacter model we
recently published recently contains 1,399 reactions (columns)
and 1,301 compounds (rows) (Cuevas et al., 2014). Therefore,
these models are mathematically underdetermined and the only
way to solve them is to apply specific constraints to the system
(Kauffman et al., 2003).

The process of running FBA can be broken down into two
broad objectives: creating the mathematical model and solving
the mathematical model. Solving the mathematical model is
straightforward and is usually performed by an optimization
library. There are a number of alternatives including the Open
Source Gnu Linear Programming Kit (GLPK) (Makhorin, 2008),
the commercial (MATLAB, 2012) linprog', and IBM ILOG
CPLEX Optimization Studio (IBM ILOG, 2014) is not the focus
of this work. Creating the mathematical model is much more
complex, as it requires incorporating biological knowledge to
transition between DNA sequence, functional roles, enzymes,
and reactions. Including other metabolic-related sources of
information has also been used to build these models (Lee
et al, 2006; Raman and Chandra, 2009; Carrera et al., 2014;
Liu et al, 2014). There are several software packages designed
to do some or all of these steps for you, such as the COBRA
Toolbox (Schellenberger et al., 2011; Ebrahim et al., 2013),
KBase (Overbeek et al., 2013), the Systems Biology Research
Tool (Wright and Wagner, 2008), FASIMU (Hoppe et al.,
2011), CellNetAnalyzer (Klamt and von Kamp, 2011), the Model
SEED (DeJongh et al.,, 2007; Devoid et al,, 2013), and others
(Lakshmanan et al., 2012; Hamilton and Reed, 2014).

In this paper we describe the process of generating a
metabolic reconstruction and running FBA starting with a
genome sequence. We demonstrate how to identify the reactions
present in a model derived from a genome, and how to convert
those reactions to a stoichiometric matrix. We demonstrate how
to identify additional reactions that need to be included in the
model, and reactions that can be excluded, and how to test the
model under different growth conditions. We introduce a new

Uhttp://www.mathworks.com/help/optim/ug/linprog.html

open source library, PyFBA, that allows bioinformaticians to
build and explore FBA models using the Python programming
language and that is freely available to all researchers. We explain
each of the steps required to go from DNA to FBA for the
bioinformatician.

FROM DNA TO FBA

The steps from DNA to FBA include identifying the functional
roles in the genome; connecting those roles to enzyme complexes
and then to reactions; converting those reactions to equations
that describe the conversion of substrates to products; defining
the growth media and external conditions; and testing growth
of that model. Usually, developing a complete metabolic model
requires several iterations of adding reactions to enable the model
to grow and removing reactions to limit the growth of the model
under conditions where it should not grow. We discuss each of
these steps individually below.

PyFBA
We have developed a Python code base, PyFBA, that allows
you to build a genome-scale metabolic model and run FBA on
that model. The PyFBA code is available from GitHub or the
Python Package Index repository under the MIT License (Cuevas
etal,, 2016a,b). PyFBA works with the GNU Linear Programming
Kit (GLPK) or the IBM ILOG CPLEX Optimization Studio for
solving the linear system. In the examples below we use this
code to demonstrate how to go from DNA to FBA. To install
the PyFBA code, see the detailed instructions available online at
http://linsalrob.github.io/PyFBA/installation.html.

Genome Annotations

The first step in building a metabolic model of an organism
is to identify all the genes present in that organism. There
are a number of tools for genome annotation, including RAST
(Aziz et al., 2008; Overbeek et al., 2013), PROKKA (Seemann,
2014), BG7 (Tobes et al., 2015), Blast2GO (Conesa et al.,
2005), and BASys (Van Domselaar et al., 2005). Most of these
tools take unannotated contigs, and iterate through steps for
accurately identifying the protein- and RNA-encoding genes
and assigning functional roles to those genes. Although all of
these tools will identify most of the metabolic genes in the
genome and will provide accurate annotations of those genes
[including Enzyme Commission (EC) numbers, see below],
connecting those annotations to enzymes and then to reactions
is a complex undertaking for the output from most tools. In
this paper we use annotations generated by RAST to connect
to biochemical reactions encoded by the Model SEED as both
the functional roles and connections to enzymes are publicly
available and frequently updated. PyFBA does not require RAST
annotations, but does require a connection from annotation to
biochemistry.

The list of functional roles in a genome can be downloaded
from the RAST website in several different formats: for example,
from the Job Details page of an annotated genome, the
annotations can be downloaded as spreadsheets (the easiest to use
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in model building), GenBank files, GFF files, or RAST genome
directories.

Converting Functional Roles to

Reactions

After identifying the protein encoding genes present in the
organism, and assigning functions to those proteins, the
enzyme complexes that are created by those proteins must be
characterized. EC numbers (Webb, 1992) are most often used
when making these mappings between different repositories
because they are the most widely applied annotation to gene
products. However, EC numbers do not cover all reactions
in microbial cells, and with different annotation naming
conventions and nomenclature, automated processes to compile
the list of reactions is extremely difficult. However, using a single
database (e.g., the SEED that underlies the RAST platform)
provides a convenient connection between functions, enzyme
complexes, reactions, and compounds because of the consistent
work of the annotators.

Enzyme complexes can be formed by one or several functional
roles, and each functional role can be involved in one or more
complexes, illustrating a many-to-many relationship (Figure 1).
For example, the functional role “Phosphoenolpyruvate-protein
phosphotransferase of PTS system (EC 2.7.3.9)” encoded by
the ptsI gene in Escherichia coli is involved in several different
complexes each associated with the import of a different sugar
(Figure 1A); the Ubiquinol-cytochrome C complex requires
ten different functional roles each encoded by a separate gene
(Figure 1B); and the role “Alkaline phosphatase (EC 3.1.3.1)”
encoded by the phoA gene in E. coli is in a complex by itself
(Figure 1C). The first step in identifying the reactions that are
encoded by a genome is therefore to convert the functional
roles associated with the proteins identified in the genome to
enzyme complexes that are functional in the cell. Comparably,
each reaction in a cell can require one or more complexes,
while each complex can be involved in one or more reactions,
thus creating another many-to-many relationship. For example,
the complex created by alkaline phosphatase is responsible
for many dephosphorylation reactions (Figure 1C) while the
dodecomeric glutamine synthetase catalyzes a single reaction
(Figure 1D).

To convert functional roles to reactions roles must first be
connected to enzyme complexes. If the annotation system used
to identify the roles in the genome only provides EC numbers,
these need to be connected to complexes. Most subunits of
the same enzyme complex are given the same EC number;
for example all the subunits of ATP synthase are given the
EC number 3.6.3.14, which facilitates joining reactions into
complexes. The connections between functional roles (and EC
numbers in particular) and reactions or pathways can be obtained
from several public resources, such as EXPASY? (Gasteiger et al.,
2003), the KEGG REACTION database® (Kanehisa et al., 2004),

Zhttp://www.expasy.org/
3http://www.genome.jp/kegg/pathway.html

MetaCyc* (Caspi et al., 2014), and BRENDA® (Schomburg et al.,
2002). As an alternative, the Model SEED® (Overbeek et al., 2013)
maintains a mapping between functional roles and complex IDs
and a separate mapping between complex IDs and reactions.

Converting Reactions to a

Stoichiometric Matrix

A genome-scale metabolic model starts with a list of reaction
equations, compounds, and compartments, and for the
mathematical solution we convert that to a stoichiometric matrix,
essentially a table of reactions and compounds (Figures 2A,B).
The stoichiometric matrix provides the first level of constraint
on the metabolic system — it contains only those reactions and
their associated metabolites present within the network, defining
the feasible space of phenotypes the system can express. The
cells of the matrix represent the relationship between each of
the compounds and each of the reactions in the network; thus,
a reaction that is not included in the stoichiometric matrix is
not included in the model. All phenotypes recognized in the cell
must be included in the stoichiometric matrix for an accurate
metabolic model.

To construct the stoichiometric matrix, all of the compounds
used in all the reactions are stored in the rows of a matrix. All
the reactions used in the model are stored in the columns of
the matrix, and the individual cells contain the stoichiometry of
each compound in each reaction, with negative values indicating
that the compound is consumed in the reaction; zero indicating
that the compound is not involved in the reaction; and positive
values indicating that the compound is produced by the reaction.
Most of the values in the stoichiometric matrix are zero because
most of the compounds are not involved in many reactions. The
dimensions of the matrix are the number of compounds and the
number of reactions; thus for the Citrobacter model discussed
earlier (Cuevas et al., 2014) the matrix was 1,301 x 1,399,
providing 1,820,099 possible combinations of reactions and
compounds, but only 6,355 values (0.35%) in the matrix are
nonzero. Table 1 illustrates a stoichiometric matrix for the
glycolysis pathway (9 reactions, 18 compounds) included in the
Citrobacter model. The cells that contain a zero have been left
blank for visual purposes.

Compounds in the stoichiometric matrix are also denoted
by the compartment in which they are located to differentiate
which compounds are required inside the cell from those
required outside the cell. The location also provides a convenient
mechanism to constrain the model based on which compounds
are in the media and which can be transported (see below).
Bacterial models typically use just two compartments: intra- or
extra-cellular, while models of Eukaryotes often include other
compartments, such as the mitochondria or chloroplast (Seaver
et al,, 2012). For the purpose of these models the Gram negative
periplasmic space and things anchored to the outer cell wall
are typically considered extracellular. For example, the Gram

*http://metacyc.org/
*http://www.brenda-enzymes.info/
Chttp://www.theseed.org/models/
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A
Functional Enzyme Biochemical
Roles Complexes Reactions
Phosphoenolpyruvate- —> D-glucose PTS ———— D-glucose importer
protein —— > D-mannitol PTS ———— D-mannitol importer
phospotransferase Sucrose PTS Sucrose importer
B Y
Cytochrome b
Cytochrome b6 —— o
Ubiquinol Ubiquinol
Cytochrome c1 cytochrome C > cytochrome C
complex reductase
2Fe-2S cluster
A .
Phosphate-monoester
phosphohydrolase
. : 4-nitrophenyl phosphate
Alkaline phosphatase ———— Alkaline phosphatase phosphohydrolase
Glycerone phosphate
phosphohydrolase
D
Glutamine Glutamine
synthetase type | synthetase type |
Glutamine Glutamine
synthetase type Il synthetase type I GEltamine
Glutamine Glutamine synthetase
synthetase type Il synthetase type Il
FIGURE 1 | Roles to complexes to reactions. Functional roles have a many-to-many relationship with enzyme complexes. Similarly, enzyme complexes have a
many-to-many relationship with biochemical reactions. (A) A one-to-many relationship from roles to complexes. (B) A many-to-one relationship from roles to
complexes. (C) A one-to-many relationship from complexes to reactions. (D) A many-to-one relationship from complexes to reactions.

negative Citrobacter model includes 175 compounds in the
extracellular compartment.

Preparing the stoichiometric matrix requires iterating through
all the reactions and all the compounds associated with those
reactions, and creating a table. If the compounds are consumed
the coefficient of that compound is negated in the stoichiometric
matrix cell. If the reaction is reversed, the coefficients of the
appropriate compounds may be negated (although this can
also be controlled by the reaction bounds, described below).

An example stoichiometric matrix is shown in Figure 2 and
provided in the supplementary table as a tab-separated text file
(Supplementary Material 1) that can be imported into any office
suite of programs.

Media Formulation

The media in which the organism is growing defines another
constraint imposed upon the metabolic model. Encoding defined
media is straightforward, and recipes for almost all media
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A
ri: A+D — B
—irs Extracellular r;: 2B<€«— 2E
————— -—
- Cytosol ~N .
/ D N rs: E ——»A
/ \ . \ ri: B+ E — 2C
rs !
4—‘\—» A - B \ re: A
2 r,
& / 2 / o D transport
\ E c / reactions
AN 2x)/ r;; «—E
\ -— — -— e — ’
r7
B rl r2 r3 r4 r5 r5 r7 v1
A |-l 0 0 1 0 0 vz
B 1 |-2 0 |-1 0 0 0 V3
S=2¢C 0 0 0 2 0 0 0 v=| W
D | -1 0 0 0 1 0 Vs
E 0 2 |[-1 |-1 0 0 1 Ve
(%4
(Stoichiometric values) (Metaboliz flux values)
C
Objective function Subject to
max Z = vy
(Production of compound C) dA
W=-vl+v3+v5 O=sv; <o
-0 <V, <
a8 _ Vi -2V, - vy 2
(C]é O=svy<ow
SV =0 = —dt=2V4 O<sv,<
< <
dbD =v; + Vg O=svs=sow
dt —0 < Vg <
dE—Zv-v-v+v O=svy;=o
— T 4Va-V3-Vy 7 =Vy =
dt
(Steady state system) (Reaction bounds)
FIGURE 2 | Flux-balance analysis (FBA). (A) Example of a bacterial metabolic model displaying two compartments separated by a dashed boundary (extracellular
and cytoplasm), seven reactions labeled in blue text (four intracellular and three transporters), and five compounds. (B) The stoichiometric matrix S with
corresponding stoichiometric coefficients, and the flux vector v. Each matrix-cell represents the number of compound molecules required for the particular reaction.
The integer sign denotes the compound as a reactant (negative value) or as a product (positive value). A zero means the compound is not involved in the reaction.
Reversible reactions are typically present in the matrix in one direction. In the instance that a reaction is reversed in the solution, the metabolic flux value for the
corresponding reaction will be negative, thus indicating a switch in directionality. (C) The linear programming problem. The mass balance equations constrain the
change of compound concentration over time to zero. The final constraints on the system are the physicochemical enzymatic bounds. These bounds signify
directionality (e.g., vz has a lower bound of 0 and can only produce compound A, whereas vo is completely unbounded and can proceed in both directions). The
objective function is indicated to maximize the flux of v4 (i.e., the production of compound C).

[including complex media such as lysogeny broth (LB) media]
are available online. The only difficulty is to ensure correlation
between the compound names used in the media formulation
and the compound names used in the metabolic reactions. One

approach to overcome that obstacle, used, for example, by the
Model SEED, is to use a separate database of compounds with
unique IDs. By default, of course, the media components have
an extracellular location, and the presence of transporters is
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TABLE 1 | Glycolysis portion of stoichiometric matrix.

Reaction ID/Compound Rxn 00216 00558 00545 00786 00781 01100 01106 00459 00148
ATP -1 —1 1 1
ADP 1 1 —1 —1
D-Glucose -1

D-Glucose-6-Phosphate 1 —1

D-Fructose-6-Phopshate 1 -1

D-Fructose-1,6-Biphosphate 1 —1

Glyceraldehyde-3-Phosphate
Glycerone-phosphate

NAD

Phosphate
1,3-Bisphospho-b-Glycerate
NADH

H+

3-Phosphogylcerate
2-Phospho-D-Gylcerate
H20

Phosphoenolpyruvate
Pyruvate

required to move them into the cell; another constraint imposed
on the genome-scale metabolic model. Historically, identification
of transporter proteins is challenging because they are largely
homologous to each other and only differ by their substrate
specificity (Marger and Saier, 1993; Saier, 1994). Latitude is
therefore often given in the assertion of which transporter
pathways a cell actually has, especially for some of the less
well characterized biochemical compounds. Small molecules and
ions may diffuse into and out of the cell as well as being
actively transported across the membrane, and protein-free
reactions invoking those diffusions are included in the cellular
model.

Uptake and Secretion from the Media

The linear programming solution to the genome-scale metabolic
model requires that compounds are taken up from the outside
(i.e., the media components), and also that some compounds
are secreted from the cell (waste products). Moreover, each
compound in the stoichiometric matrix must be balanced for
a solution to the problem. Therefore, a set of unconstrained
reactions are generated that consume all external compounds
in the model, but do not do anything with those compounds
(in essence, they disappear from the equation; in practice
this is akin to them being diluted to extinction in the
growth media). These reactions also provide the media
compounds as if from nowhere (in practice this is akin to
the media compounds diffusing toward the cell as they are
consumed). These reactions are sometimes called drain flux
reactions or external reactions, and in PyFBA they are called
uptake and secretion reactions. Since the set of uptake and
secretion reactions is dependent on the external compounds
produced by the model and the external compounds present
in the media, it is generally calculated for each model upon
creation.

Reaction Bounds

In solving linear equations of underdetermined systems, a defined
solution space has to be provided that limits the parameters
applied to each of the reactions. It is highly unlikely that one,
or a few, reactions would have extremely high fluxes through
them while the other reactions in the cell have moderate or low
fluxes. Therefore, each reaction in the stoichiometric matrix is
controlled by a set of reaction bounds that limit the flux through
that reaction. In most cases, the reaction bound also assigns
the directionality of the reaction. As shown in Figure 2A, the
direction of reaction r1 is set from left to right. This is controlled
by setting the lower bound of reaction r; to zero (Figure 2C),
thus preventing reaction r; from producing compounds A and
D by the linear solver. Furthermore, an alternative approach to
designating the directionality of a reaction is to limit the flux
through the reaction by negating the coefficients in the equations.
The limits are conventionally positive if a reaction proceeds from
left to right; negative if a reaction proceeds from right to left; and
positive and negative if a reaction is bidirectional. The reactions
bounds are applied to the linear solver before the stoichiometric
matrix is solved.

The media formulation (described above) is typically encoded
as a list of compounds that are present in the media, and
this is used to determine the reaction bounds of the reactions
that transport these compounds into the cell. As we noted,
there are a series of uptake and secretion reactions that mimic
the diffusion of a media compound toward the cell, and the
diffusion of a waste product away from the cell. By setting
the bounds of these reactions appropriately, we can control
the growth conditions of the cell. If the reaction bounds for
diffusion of media components toward the cell are set to allow
production of those components and if they are required for
growth, they can be consumed. Similarly, the reaction bounds
are set to only allow consumption of waste products so that
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Anaerobic

0<EX 02 e0<w
-0 < O2_transport < «

02.b

Aerobic

-0 < EX 02 e0 <
-0 < O2_transport < o

Media &
Environment

02_b
EX 02 e0 T

—

02_e0 Extracellular 02_e0
02 _transport
Cytosol
02_c0 02_c0

FIGURE 3 | Controlling oxygen exchange example. The lower bound in
exchange reactions (e.g., EX_02_e0) moderate the availability of a compound
for the extracellular compartment. To simulate an anaerobic environment, flux
from the environment to extracellular space is cutoff by setting the lower
bound to zero, whereas the lower bound is set to negative infinity for an
aerobic environment, allowing unlimited amount of oxygen into the
extracellular space.

they are removed from the media at the same rate that they are
created. The reaction bounds can be manipulated to mimic gene
knockouts and environmental changes. For example, simulating
an anaerobic environment is accomplished by removing the
model’s input oxygen capability by setting the bound to zero
(Figure 3). The benefit in this method instead of completely
removing the uptake/secretion reaction from the stoichiometric
matrix is oxygen produced by intracellular reactions could still be
secreted from the cell while still preventing oxygen uptake from
the environment.

Compound Bounds

A central tenet of FBA is the assumption that the change in
each compound concentration is equal or balanced (Figure 1C),
and thus overall (with the exception of compounds that are
taken up or secreted) the concentration of the compounds sums
to 0. This is the steady state mass balance that allows FBA
to perform without any kinetic information, and also acts as
another constraint on the system. To ensure that the compound
consumption is equal to production, the compound bounds are
set so that the concentration of the compound can not be greater
or less than zero.

The Objective Function (What We Are
Trying to Maximize)

A single reaction is designated as the objective function and is
included in the stoichiometric matrix. This is usually the biomass
reaction (Supplementary Figure S1), a complex reaction that
consists of biomass precursors (e.g., amino acids, nucleotides,
carbohydrates, and lipids; but is almost always dominated by
the consumption of ATP) and in return produces biomass, a
generic term to mean growth of the cell. However, the objective

function can consume and produce other cellular components.
Likewise, typically the solution required maximizes the flux
through the objective function (i.e., produce as much biomass
as possible), however, with different outcomes represented by
alternate equations it may be more suitable to minimize the flux
through that equation. The biomass equation reaction is typically
added as the first or last row in the stoichiometric matrix.

Solving the Linear Programming Puzzle
Once the stoichiometric matrix has been constructed, the
media defined, the compound and reaction bounds set, and
the biomass equation (or other objective function) added to
the stoichiometric matrix, the system can be solved by linear
programming. The solvers return the value of the flux through the
reaction designated as the objective function, with a value above
one generally indicating growth, and a value approaching zero
indicating no growth (because of the limitations of floating point
arithmetic, no growth is not often exactly zero).

Gap-filling

Typically, a genome-scale metabolic model constructed from
the annotations in a genome will not result in growth because
the metabolic network is incomplete. Additional reactions
have to be added to the model to ensure growth, a process
called gap-filling. The gap-filling step of building the model
is the point where most of the erroneous assertions about
the metabolism of an organism are made. A selection of
reactions has to be added to the metabolic network derived
from the genome annotations, and the selection is often made
with little supporting evidence. Consequently, there are many
different approaches for identifying the reactions missing from a
model, including identifying missing reactions from expression
information (Kharchenko et al., 2004), finding reactions that
complete the metabolic networks based on their topology (Satish
Kumar et al., 2007), using phenotypic data to identify growth
conditions (Herrgard et al., 2006; Satish Kumar and Maranas,
2009; Vitkin and Shlomi, 2012; Cuevas et al., 2014), and most
recently likelihood based approaches that use sequence similarity
(Benedict et al.,, 2014). Enough reactions could be added that
result in the growth of any model on any media, but to retain
biological accuracy, only those reactions that result in growth on
media where the organism is known to grow should be added to
the model.

The gap-filling approach taken by most applications is an
iterative approach. Starting with the metabolic model derived
from the annotations of the genome, the model is tested for
growth. While the model does not grow, additional reactions are
proposed, based on a variety of criteria, and the model including
the additional reactions are tested again. Once the model grows,
gap-generation (see below) can be used to prune unnecessary
reactions in the model.

PyFBA includes several different modules for gap-filling,
sequentially suggesting reactions to add to the model. For
example, there is a set of 109 predefined reactions that are
present in every model tested to date and that can be added
to gap-fill any model. If an organism is known to grow on a
particular media, reactions are also identified to be added to
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the model that transport the media components into the cell.
As noted elsewhere, the identification of transport reactions
from genome sequences is problematic, and therefore using
phenotype data ensures accurate representation of the biology of
the organism in the model. Reactions are identified that connect
to orphan compounds - compounds that are only associated with
a single reaction in the network. If the orphan compounds are
consumed they either need to be produced by another reaction
or transported into the cell by a transport reaction. If the orphan
compounds are produced in the model they either need to
be secreted as waste (via a transport reaction) or consumed
in another reaction. A gap-filling approach is also included
in PyFBA that analyzes the presence of all the subsystems in
the reaction network, and proposes reactions that complete the
subsystems in the model. A general framework is also available
that accepts tuples of annotations from other genome(s) and the
probability that those annotations are associated with the current
model and proposes reactions based on those annotations. For
example, when building a model of Citrobacter a gap-filling
approach may be to identify all functional roles annotated in all
other Citrobacter genomes and the likelihood that the functional
role should also be in this Citrobacter genome (we typically define
this as the fraction of genomes tested that contain this role).
Reactions can be suggested for addition to the model based on
those annotations and their likelihoods. In addition to suggesting
new reactions to the model, the PyFBA gap-filling approach is
extensible with new approaches as they are developed.

There are many different approaches that can be used to
suggest reactions to be added to models, but most approaches
will suggest many more reactions to add than are actually needed
for growth. Therefore, excess reactions, that are not absolutely
essential for growth, should be trimmed from those suggestions.
PyFBA includes a recursive algorithm to reduce a set of proposed
reactions from the initial proposal to just those reactions that are
absolutely required for growth. Under the best conditions, this
algorithm provides O(log n) complexity (where n is the number
of reactions that are proposed to be added) as it is based on binary
search, however, under the worst conditions the algorithm will
approach O(n) complexity as all the reactions in the model have
to be tested.

Gap-generation

Once a model has been generated that grows under a set
of conditions, reactions can be recursively removed until the
minimum set of reactions that are required for the model to grow
are identified. This approach has O(n) complexity (where n is the
number of reactions in the model) as each reaction is tested one
at a time. It is also worth noting that another method previously
developed to identify network redundancy and insubstantial
reactions, but is not yet implemented in PyFBA, is flux-variability
analysis (Burgard et al., 2001; Gudmundsson and Thiele, 2010).
Flux-variability analysis is a linear programming problem that
minimizes and maximizes the flux through each reaction while
maintaining the same phenotype. Typically, the maximal rate of
biomass production is kept constant during flux variable analysis
in order to test the flexibility of the metabolic network, or to find
ineffective reactions.

Exchanging Models

Several exchangeable file formats exist that can be used to
store metabolic models. The most common among existing
tools is the systems biology markup language, or SBML
(Lakshmanan et al., 2012). JavaScript Object Notation (JSON) is
a widespread key-value format used in many web-based software
applications. Consequently, JSON libraries are easily accessible
in most programming languages. Both formats are supplied as
Supplementary Materials 2 and 3 and are supported by the FBA
scripts used here.

CONSTRUCTING GENOME SCALE
METABOLIC MODELS USING PyFBA

We have described the principles of how genome-scale metabolic
models are created from genome annotations, and in this section
we demonstrate how a genome scale metabolic model can be
created from genome annotations using PyFBA.

Starting with a genome annotated in RAST, download the
annotations as a spreadsheet from the RAST job overview
page. This provides a file that can be opened in any office
suite of software and contains information about all of the
genes identified in the genome, including the location of
the protein encoding gene (contig, start, stop, and strand),
and most importantly, the function of the protein. We
connect the functional roles in the function column of this
table to the reaction IDs in the Model SEED by using the
PyFBA filters.roles_to_reactions function. This function maps
from functional role to reaction ID. We then read an appropriate
media file using PyFBA.parse.read_media_file, and either define
a new biomass reaction or import one of the predefined reactions
from PyFBA.metabolism.biomass.biomass_equation. The
stoichiometric matrix is created from these data inputs via the
PyFBA.fba.create_stoichiometric_matrix method. The reaction
bounds are computed from all the reactions, including the uptake
and secretion reactions and the compound bounds (all zero)
are added using the two methods PyFBA.fba.reaction_bounds
and PyFBA.fba.compound_bounds. Finally, the stoichiometric
matrix is solved using the linear programming solver.

Gap-filling is available in PyFBA using the PyFBA.gapfill
modules. As described above, these modules provide several
different mechanisms for gap-filling as well as methods to bisect
the reactions proposed to be added to your model for growth.
Figure 4 illustrates the typical workflow for PyFBA alongside the
key module functions used at each step.

We have created an iPython Notebook” (Supplementary
Material 4) that demonstrates each of the steps in creating
a model and gap-filling the model using the example data
from the Citrobacter model discussed previously (Cuevas et al.,
2014). A second iPython Notebook® (Supplementary Material 5)
demonstrates how PyFBA can be used to import metabolic
models from an SBML document to run FBA.

"https://github.com/linsalrob/PyFBA/blob/working/iPythonNotebooks/From_
functional_roles_to_gap-filling.ipynb
8https://github.com/linsalrob/PyFBA/blob/working/iPythonNotebooks/Using _
an_SBML_model.ipynb
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PyFBA
module functions

parse.read _assigned functions()
filters.roles to _reactions()

parse.model seed.compounds _reactions_enzymes()
parse.read _media file()
metabolism.biomass.biomass _equation()

fba.run fba()

gapfill.
gapfill.
gapfill.
gapfill.
gapfill.

suggest essential reactions()
suggest from media()

suggest reactions from subsystems()
suggest_by compound()
suggest_from_roles()
gapfill.compound probability()
gapfill.suggest reactions with proteins()
gapfill.minimize additional reactions()

FIGURE 4 | PyFBA workflow. Each step to obtain a genome-scale metabolic model using PyFBA is presented on the right. Arrows represent actions to be taken
to obtain the next set of information in the workflow. Corresponding to each step are the necessary PyFBA module functions on the left. The gap-fill step is
associated with multiple functions, each one differing by the gap-fill strategy used to identify reactions. The gap-fill method is iterative, hence a subset or all of these
modules are used to obtain a growing model. The RAST portion of the workflow is an example for using functional role annotations; these steps can be replaced by

other methods yielding the same information.

workflow

Updated
model

PyFBA

RAST
functional role
annotations

Reactions
and
compounds

Draft
model

Growing
model

FBA Results

Growth?

No
y
Gap-fill model

Iterate through steps until
model asserts growth

Essential
Media-based
Subsystem
Orphan-based
Closely-related
Compound probability

ok wNE

DISCUSSION

Genome-scale metabolic modeling extends the usefulness of
the base microbial genome annotation by identifying the
biochemistry that is actually happening in the cell. The
conversion of functional roles to reactions highlights our
understanding of the cellular metabolism, while the gaps that

remain and need filling before the model “grows” highlight areas
where we have less detailed understanding of the biochemistry.
PyFBA is a novel Python based implementation of flux balance
analysis that can be easily extended and modified to provide new
metabolic modeling capabilities.

Gap-filling chooses reactions to add to the model in order to
generate growth, and with a database of over 30,000 reactions
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from which to choose there are many solutions that could
result in growth of the model. Therefore, in order to be
meaningful, FBA approaches must be constrained using real
biological and physicochemical constraints determined from
experimentation. Whole genome sequencing and bioinformatics
analyses rapidly identify metabolic genes for building draft
genome-scale metabolic models (Edwards and Palsson, 2000;
Price et al., 2003; Cuevas et al., 2014). Genome-scale databases are
expanding and improving, providing more accurate constraints
to metabolic models (Overbeek et al., 2013; Wattam et al., 2014;
Brettin et al., 2015). More enzymes are being characterized, thus
linking new genes to metabolic functions (Kanehisa et al., 2012;
Caspi et al,, 2014; Sanchez et al.,, 2015). Accordingly, this will
result in more accurate draft metabolic models but will also
provide more accurate choices when gap-filling. Transporter
reactions are more difficult to differentiate from each other, and
some spontaneous reactions do not require any proteins for
catalysis. Phenotypic data such as those from minimal media
growth experiments provide further evidence to incorporate
reactions from particular transporters and enzymes into the
metabolic model. Overtime, rendering metabolic models using
annotations can be directly improved by the accumulation of
unique genomic and phenomic data.

Identifying reactions during gap-filling inadvertently leads
to an opportunity to improve genomic annotations. Regions
where DNA sequences were not assigned a function due to types
of problems with the annotation step, such as the sequence
lacking known homology to another organism, can be connected
to the gap-filled reactions from PyFBA. This positive feedback
has not been efficiently captured by previous software but
could provide current databases a means for improving their
annotations, narrowing the search space of functional roles the
genetic material may be associated with. Future endeavors in
model reconciliation will support associations between gap-filled
reactions and unannotated genome content.

There are several limitations to the previous versions of
genome-scale metabolic modeling that the new iterations of these
models overcome. For example, most models lack an integration
of regulatory processes in the networks — if a gene is present it is
assumed to be expressed and functional. Recent models include
transcription factors and gene expression information alongside
traditional models (Chandrasekaran and Price, 2010; O’Brien
et al., 2013). Another limitation with existing models is the
choice of the objective function and the resulting flux distribution
through the network. However, the assumption that the flux of
compounds through the metabolic networks to optimize growth
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