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This study describes the community composition and functions of the microbiome
associated with the mucus of the coral Fungia echinata based on metagenomic
approach. Metagenome sequence data showed a dominance of the class
Gammaproteobacteria followed by Alphaproteobacteria, Betaproteobacteria,
Deltaproteobacteria, Flavobacteriia, Bacilli, and Clostridia. At the order level, the
most abundant groups were Pseudomonadales, Oceanospirillales, Alteromonadales,
and Rhodobacterales. The genus Psychrobacter was the most predominant
followed by Thalassolituus and Cobetia, although other genera were also present,
such as Sulfitobacter, Pseudoalteromonas, Oleispira, Halomonas, Oceanobacter,
Acinetobacter, Pseudomonas, Vibrio, and Marinobacter. The metabolic profile of
the bacterial community displayed high prevalence of genes associated with core-
housekeeping processes, such as carbohydrates, amino acids, proteins, and nucleic
acid metabolism. Further, high abundance of genes coding for DNA replication and
repair, stress response, and virulence factors in the metagenome suggested acquisition
of specific environmental adaptation by the microbiota. Comparative analysis with
other coral metagenome exhibits marked differences at the taxonomical and functional
level. This study suggests the bacterial community compositions are influenced by the
specific coral micro-niche and the oligotrophic marine environment.
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INTRODUCTION

India has a vast reserve of coral reef ecosystem in the east coast of Andaman and Nicobar
Islands. Microbial communities are vital in the functioning of all ecosystems; however, most
microorganisms are uncultivated, and their roles in natural systems are unclear. In this regard,
microbial diversity in the Andaman Sea is one of the least studied among marine environments. In
the recent past, metagenomic study has been employed in the field of marine microbial ecology to
explore the diversity of unknown microbes in different marine habitats. It has been demonstrated
by comparative metagenomic study that functional attributes in the microbial communities are
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evolved by typical environmental adaptation (Tyson et al., 2004;
Daniel, 2005; Simon and Daniel, 2011). Bacteria are known to
be abundant in seawater around coral zones, in coral skeleton,
tissues, and surface mucus layer (Rohwer et al., 2002; Lampert
et al., 2006, 2008; Kooperman et al., 2007; Rosenberg et al., 2007;
Bayer et al., 2013), and each of these habitat supports different
bacterial species (Koren and Rosenberg, 2006; Littman et al.,
2009). However, functional role of microbiome associated with
coral is poorly understood, although few studies have suggested
their involvement in the supply of nutrients (Lesser et al., 2007;
Olson et al., 2009) and inhibition of coral diseases by the
production of antibiotics (Rohwer et al., 2002; Ritchie, 2006;
Krediet et al., 2013). Metagenomic approach gives a description
of the taxonomic information (Tyson et al., 2004), the relative

abundance of phylotypes and genes (Wegley et al., 2007; Littman
et al., 2011), antibiotic resistance reservoir (Sommer et al., 2009),
and identification of genes involved in various biosynthetic and
metabolic pathways (Schirmer et al., 2005; Tringe et al., 2005;
Rodriguez-Brito et al., 2006). This approach enables assessment
of taxonomic and functional characteristics of complex microbial
communities.

Coral mucus is a rich source of nutrients for microorganisms
(Wild et al., 2004; Brown and Bythell, 2005; Tremblay et al.,
2011) and as such the mucus layer constitutes an important
ecological niche for microbiome (Lampert et al., 2006, 2008;
Nithyanand and Pandian, 2009). Following culture-dependent
approach, we have identified several new species of bacteria
with unique functions from the corals collected from Andaman

FIGURE 1 | Location of the sampling sites around the Havelock Island in Andaman Sea. Points A, B, C, D, and E on the map represent the five sampling
sites.
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FIGURE 2 | Taxonomic composition of the mucus-associated microbiome of coral F. echinata from Andaman Sea based on metagenomic
sequencing.
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FIGURE 3 | Distribution of functional genes related to various SEED subsystems (level 2) and KEGG pathways present in the metagenome of the
coral F. echinata. Only genes with an abundance of at least 50 are shown.

Sea (Badhai et al., 2013; Kumari et al., 2014; Lepcha et al.,
2015). However, taxonomic and functional profiling of the
microbiome of the coral Fungia echinata from Andaman Sea
has not been performed so far. As the microbial diversity
and functions are directly linked with local environment, it is
justifying examination of new niches for novel genes and species.
In this regard, our metagenomic study with the coral mucus
of F. echinata provides distinct taxonomical and functional
attributes that has not been reported earlier in other marine
environment.

MATERIALS AND METHODS

Collection of the Metagenome and
Sequencing
Metagenomic DNA was prepared from the mucus of multiple
specimens (five numbers) of coral F. echinata collected from five

different locations within the reefs around the Havelock Island in
Andaman Sea (Figure 1). Coral specimens were collected during
March, 2012 from a depth of about 3.5–5 m. Metagenomic DNA
was prepared from pooled mucus samples following an earlier
protocol (Goldenberger et al., 1995) with slight modifications.
Typically, the metagenome extraction process starts by filtering
samples onto 0.22-µm Millex filters. In this regard, corals were
briefly expose to air (Wild et al., 2005), placed in a sterile tray
and then repeatedly flushed with sterile marine water using
a 50 ml syringe. About 500 ml of the pooled coral mucus
suspension in marine water was filtered and the membrane was
collected and washed with 10 ml Milli-Q water by vortexing.
The suspension was centrifuged at 14,000 rpm for 10 min to
collect the cell pellet. Cell pellet was transferred to a Lysing Matrix
E tube. Reaming procedures was followed as per manufacturer
instruction (FastDNA R© SPIN Kit for Soil, MP Biomedicals, CA,
USA). The concentration of DNA was approximately 150 ng
µl−1. Sequencing of the metagenomic DNA samples were
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done by a commercial source (NxGenBio Life Sciences, New
Delhi, India) applying shotgun pyrosequencing approach on a
Roche 454 GS-FLX platform (Roche Applied Sciences, Manheim,
Germany) according to the manufacturer’s protocol. A total of
40,938 reads representing cumulative 20.61 Mb of sequence data
were obtained.

Metagenomic DNA Sequence Data
Generation
Raw sequence reads were processed and calculation of DNA
sequence statistics such as length and GC content of the processed
reads were carried out using the freely available online WebMGA
server1 (Wu et al., 2011). The total shotgun metagenomic
sequences from each site were preprocessed using the following
parameters: (i) quality filtration (at min length = 200 bases
and min average quality score = 21) and (ii) CD-HIT-454
clustering at a sequence identity threshold of 0.98 to remove
artificial duplicates generated during sequencing (Niu et al.,
2010). Subsequently, after the preprocessing approx. 26,534
sequence reads (av. sequence length = 516 bases, av. % GC
content= 48.73) were retained for further analysis.

1http://weizhong-lab.ucsd.edu/metagenomic-analysis/server/

Taxonomic and Functional Analysis of
Metagenome
Taxonomic and functional assignments for the protein-coding
sequences in each metagenomic reads dataset were obtained
using BLASTX (Altschul et al., 1997; applying an e-value cut-
off of 1e–10) against NCBI-NR database (local BLAST-2.2.29+
package; BLAST R© Help, 2008; Camacho et al., 2009) and the
standalone MEtaGenome analyzer software (MEGAN v5.5.3;
Huson et al., 2011) according to suggested parameters for the
lowest common ancestor (LCA) assignment algorithm (min
score: 50.0; max expected: 0.01; top percent: 10.0; and min
support percent: 0.01). To perform taxonomic classification,
the MEGAN5 program placed the reads/genes onto the NCBI
taxonomy tree, whereas for the functional classifications,
genes were mapped onto the SEED and KEGG classification
using SEED and KEGG identifiers, respectively. Additionally,
taxonomic and functional annotation, and comparisons with
other coral metagenomes (Dinsdale et al., 2008; Vega Thurber
et al., 2009; Littman et al., 2011) were carried out on the MG-
RAST v3.6 metagenome analysis server2 (Meyer et al., 2008) using

2https://metagenomics.anl.gov/

FIGURE 4 | Metabolic profile of the mucus-associated bacterial genus Psychrobacter, based on SEED subsystem classification of the metagenomic
sequences obtained in this study.
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the default set parameters (e-value cutoff: < 1e–5, min. % identity
cutoff: 60%, and min. alignment length cutoff: 15).

Statistical Analysis of Data
Comparative taxonomic and functional profiling were performed
with the reference coral metagenomes available in MG-RAST
database using the STAMP v2.0.8 software (Parks and Beiko,
2010; Parks et al., 2014) for statistical analyses. The gene
counts were normalized by dividing the number of gene hits
to individual taxa/function by total number of gene hits in
each metagenome dataset to remove bias due to difference in
sequencing efforts. To identify differentially abundant SEED
or KEGG functions in the metagenome, statistical tests of

the relative gene abundances compared to the other coral
metagenomes were carried out by applying two-sided Welch’s
exact test with Benjamini–Hochberg False Discovery Rate (FDR)
multiple test correction method and a p-value < 0.05.

Sequence Data Availability
Metagenomic sequence dataset obtained from the mucus of
coral F. echinata is available on the MG-RAST server under
accession ID 4653307.3. The other 12 metagenomes used in
the comparative analysis can be accessed through the MG-
RAST website under the accession IDs: 4440037.3, 4440039.3,
4440041.3, 4440279.3, 4445755.3, 4445756.3, 4440372.3,
4440373.3, 4440378.3, 4440379.3, 4440380.3, and 4440381.3.

FIGURE 5 | Comparative taxonomic profile of metagenomes generated using MG-RAST based on best hits to M5NR database. Metagenome data
source: this study (cyan color), Dinsdale et al., 2008 (green color), Vega Thurber et al., 2009 (red color), and Littman et al., 2011 (blue color).
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RESULTS AND DISCUSSIONS

Taxonomic Composition of the Microbial
Community
Bacteria constituted the single largest kingdom within the
mucus-associated microbial assemblage of the coral F. echinata.
Approximately 75.96% of the metagenomic sequences were
classified as Bacteria and only 0.21% as viruses; the remaining
23.83% of the sequences could not be classified due to
lack of reference sequences from close taxonomic relatives.
The bacterial community in the coral mucus was dominated
by sequences affiliated to the class Gammaproteobacteria
(64.7%), followed by the class Alphaproteobacteria (3.5%);
the other bacterial sequences (abundances <0.1–0.2%) were
affiliated to the Betaproteobacteria, Flavobacteriia, Clostridia,
Deltaproteobacteria, and Bacilli (Figure 2). The virus-like
sequences were classified as dsDNA viruses of the order
Caudovirales. Gammaproteobacteria was the sole dominant
phylum. This phylum displayed a large phylogenetic diversity
that might explain the colonization of a large range of ecological
environment (Williams et al., 2010). Our analysis of the
microbiome of F. echinata supported the fact that microbial

diversity is directly linked with local environment. Further, this
community was different from those reported in earlier studies,
which suggested that microbial association with coral species
reveal species-specific distribution and geographic variability
(Rohwer et al., 2002; Lampert et al., 2006, 2008; Wegley et al.,
2007; Littman et al., 2009; Morrow et al., 2012).

At the order level (Figure 2), the major bacterial groups
identified were Pseudomonadales (35.6%), Oceanospirillales
(17.9%), Rhodobacterales (3.0%), and Alteromonadales (2.8%),
whereas the abundance of taxa (< 1%) were Vibrionales,
Clostridales, Flavobacteriales, Rhodospirillales, Burkholderiales,
Enterobacteriales, Chromatiales, and Rhizobiales. Further
classification at the genus level suggested that the Psychrobacter
(32.7%) was the most predominant bacterial group in the
metagenome and the other genera that were identified include
Thalassolituus (4.6%), Cobetia (4.5%), Sulfitobacter (1.6%), and
Pseudoalteromonas (1.4%). In addition, less abundant (<1%)
genera were also observed (Figure 2). The previous study with
the metagenome of the coral Ctenactis echinata from Red Sea
(Roder et al., 2015) demonstrated the predominance of the genus
Endozoicomonas. In contrast, a significant change was observed
in the microbial community of F. echinata from Andaman
Sea, which become dominated by Psychrobacter. As we found

FIGURE 6 | Comparative functional profile of metagenomes generated using the KEGG (level 2) classification of reads on MG-RAST server.
Metagenome data source: this study (cyan color), Dinsdale et al., 2008 (green color), Vega Thurber et al., 2009 (red color), and Littman et al., 2011 (blue color).
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that mucus microbiome become more dissimilar from other
studies with geographical distance, indicating that different
regions harbor distinct communities (Sunagawa et al., 2009;
Littman et al., 2010). One possible explanation could be water
temperature in the Andaman Sea (25–28◦C), leading to the
development of Psychrobacter community in the mucus layer,
which has been frequently identified in the Antarctic deep waters
(López-García et al., 2001) and it is more dissimilar with the
bacterial communities of fungid coral C. echinata in Red Sea
(Roder et al., 2015). These differences might be in part due to
the physicochemical condition of the Red Sea which has been
characterized as an oligotrophic environment with year round
UV irradiation and high surface temperature up to 34◦C (Ngugi
et al., 2012). Further, bacteria particularly Vibrio species are
ubiquitous have been implicated as the causative agent in some
cases of coral and influencing the coral health (Rosenberg et al.,
2007; Bourne et al., 2008), but very low abundance of sequences
affiliated to the Vibrio group probably due to specific micro-
niche (i.e., surface mucus layer) or the general structure of the
bacteria–coral association. The unclassified group representing
23.83% of the sequences may serve important functional roles in
biogeochemical cycle and degradation of xenobiotic compounds
and warrant further investigation, especially in highly dynamic
ecosystem.

Functional Analysis of the Metagenome
Functional analysis of the metagenomic showed approximately
60 and 36% of the predicted protein coding sequences or genes
were matched to 25 SEED subsystems and 23 KEGG categories,
respectively (Figure 3). Analysis of metagenome suggested
that genes associated with the core-housekeeping functions,
such as carbohydrates, amino acids, proteins, nucleotides,
cofactors, and vitamin metabolism were the most abundant
metabolic categories (Supplementary Figure S1). Our result
corroborated the findings on coral-associated microbiomes in
tropical environments (Wegley et al., 2007; Tout et al., 2014).
In addition, genes affiliated to virulence, stress response, signal
transduction, membrane transport, and DNA replication and
repair functions were also highly abundant in our dataset
(Supplementary Figure S1).

The predicted genes encoding virulence functions (SEED
level 2), such as iron-scavenging mechanisms, Ton and Tol
transport systems, and protein secretion systems, were highly
abundant (Supplementary Figure S2). As iron is an important
micronutrient and poorly available in the seawater (Wells
et al., 1994), the metabolic ability to take up and store iron
is advantageous and these functional subsystems may have
a modulatory role in the structuring of the coral-associated
bacterial community. Further, genes encoding resistance to
antibiotics and toxic compounds along with the oxidative stress,
and DNA replication and repair functions were also highly
represented (Figure 3, Supplementary Figure S2) and predicted
that these coral-associated bacteria are more suited to deal with
intense selection pressure and environmental stressors, such as
heavy metal ions, reactive oxygen, and ultraviolet radiations,
etc. The abundance of genes associated with the metabolic
functions such as bacterial chemotaxis, two-component systems

and ABC transporters (Figure 3) predicted higher level of cellular
interactions and metabolic exchanges between the bacterial
community and coral host (Tout et al., 2014; Ainsworth et al.,
2015).

Earlier, McKew et al. (2012) reported the abundance of
Psychrobacter in the mucus of Acropora spp. and Porites spp.,
but they have not analyzed the functions of these bacteria in the
coral holobiont. In this regard, our analysis of genes affiliated
to the genus Psychrobacter identified their functional role in
the carbon and nitrogen metabolism within the coral niche.
Accordingly, the abundance of genes related to carbohydrates,
lipids and amino acids metabolisms (Figure 4) indicated
the high metabolic potential of these bacteria to efficiently
utilize the complex organic compounds in the coral mucus.
Further, presence of the qseC gene predicted these bacteria
respond to quorum sensing and form biofilm-like structure
to successfully colonize the coral surface (Yang et al., 2014).
In addition, the presence of genes corresponding to the two-
component systems for sensing phosphate limitation (phoR,
phoB, and phoD), stress (rstA and rstB), copper tolerance
(cusS and cusR), nitrate respiration (narX and narL), and low
nitrogen availability (glnL and glnG) revealed that these bacteria
are better adapted to the continuous chemical fluctuations
in the seawater surrounding the coral niche. Of the other
metabolic categories that increased significantly within the coral
metagenome, it is notable that genes associated with ABC
transporters for ions of sulfate (cysPUWA), phosphate (pstS,
pstC, and pstB), phosphonate (phnD), zinc (znuABC), nickel
(oppABCDF), and iron (afuABC and fhuBCD). Furthermore,
genes homologous to virulence, stress response, and DNA
replication and repair functions were examined (Figure 4). Taken
together, it appears that microorganisms associated with the
mucus of the coral F. echinata have mechanisms to deal with
biotic or abiotic stressors within the coral niche and help in their
colonization.

Comparative Analysis of Metagenomic
Sequences with MG-RAST DataBase
The taxonomic and functional profiles of mucus-associated
microbiome of F. echinata was compared with the microbial
communities associated with (i) colonies of coral Acropora
millepora from the Great Barrier Reef (Littman et al., 2011),
(ii) coral Porites compressa from Hawaii (Vega Thurber et al.,
2009), and (iii) four coral atolls (Kingman, Kiritimati, Palmyra,
and Tabuaeran) in the Northern Line Islands, central Pacific
(Dinsdale et al., 2008).

The taxonomic profile of microbial community associated
with the mucus of F. echinata showed an exclusive dominance
of Bacteria, belonging to the phylum Proteobacteria (Figure 5),
whereas the functional profile showed higher abundance of
genes involved in core-housekeeping functions, as well as genes
encoding specialized and ecologically important metabolic
functions. These genes are related to the metabolisms of
glutathione, biotin, riboflavin, butanoate, tyrosine, tryptophan,
glycerophospholipid, glyoxylate and dicarboxylate, lysine
degradation, biosynthesis of folate, zeatin and lipopolysaccharide,
degradation of nitrotoluene, benzoate, chlorocyclohexane and
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FIGURE 7 | Distribution of the (A) SEED (level 2) and (B) KEGG (level 2) categories with differences between the coral F. echinata metagenome (this
study; cyan color) and other coral metagenomes (dark gray color).
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chlorobenzene, drug metabolism, catabolism of aromatic
compounds, etc. (Supplementary Figures S3 and S4). Our analysis
demonstrates the microbial diversity and distribution of various
metabolic pathways over a previously unexplored range of
bacterial phyla.

Clustering of the metagenome of F. echinata based on relative
abundance of functional genes with those of healthy corals
from the Great Barrier Reef and the Northern Line Islands’
reefs (Figure 6, Supplementary Figure S4) suggested that the
association between the coral host and bacterial community
very likely mutualistic in nature. Further, statistical tests of
the relative abundance of genes encoding functions related
to various SEED (level 2) and KEGG (level 2) categories
showed significantly (p-value <0.05) higher proportions of genes
encoding functions affiliated to resistance to antibiotics and
toxic compounds, iron acquisition and metabolism, potassium,
phosphorous and nitrogen metabolism, RNA processing and
modification, oxidative stress, DNA replication and repair, signal
transduction, membrane transport, cell motility, cofactors and
vitamins metabolism, carbohydrates, lipids and amino acids
metabolism, glycan biosynthesis and metabolism. In contrast,
the genes related to the functions of energy metabolism and
respiration, such as ATP synthases, electron donating and
accepting reactions, and metabolism of di- and oligosaccharides
were detected at significantly (p-value <0.05) lower proportions
compared to the other coral metagenomes (Figure 7).

These findings indicated that specific environmental stressors
and niches promote enrichment of specific metabolic pathways
and functions which provides adaptive advantages to the bacterial
community associated with corals in oligotrophic seawater. The
metabolic processes related to signal transduction, membrane
transport, and cell motility play an important role in structuring
of the microbial communities. The high proportion of genes
associated with these functions in the F. echinata metagenome
as compared to the other coral metagenomes indicated that the
mucus-associated bacteria have the metabolic flexibility to adapt
in the changing nutrient concentrations and chemical gradients
in the coral micro-niche.

CONCLUSIONS

The present study provides a metagenomic snapshot of
the microbial community composition and functions in the
mucus layer of the coral F. echinata from Andaman Sea.
Our results showed an exclusive dominance of Bacteria
affiliated to the class Gammaproteobacteria (specially, genus
Psychrobacter, Thalassolituus, and Cobetia), while the virus-
like sequences affiliated to the order Caudovirales constituted
only a small fraction. Overall, the coral mucus-associated

bacterial community was heterotrophic and carried genes
required for the metabolism of complex organic compounds,
such as proteins, lipids, and polysaccharides found in the
coral mucus. Comparison with other coral metagenomes (both
healthy and diseased corals) identified metabolic functions that
are either required or advantageous for the coral colonization,
such as resistance to antibiotics and toxic compounds, signal
transduction, cell motility and membrane transport. Finally,
mucus-associated microbiome of F. echinata is directly linked
with local chemical gradients in the environment and different
from those reported in other coral species from different
geographic regions.
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