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Having co-evolved with humans, herpesviruses have adapted to exploit the host

molecular machinery to ensure viral persistence. The cellular protein Signal Transducer

and Activator of Transcription 3 (STAT3) is a leading example. STAT3 is a prominent

transcription factor that functions in a variety of physiologic processes including

embryonic development, inflammation, immunity, and wound healing. Generally

activated via growth factor and cytokine signaling, STAT3 can transcriptionally

drive oncoproteins, pro-survival and pro-proliferative proteins as well as angiogenic

factors, thereby contributing to cancer. As in most non-viral cancers, STAT3 is

constitutively active in EBV-related B and epithelial cell cancers and in animal

models of KSHV-cancers. Again, similar to non-viral cancers, STAT3 contributes

to gammaherpesvirus (EBV and KSHV)-mediated cancers by driving cell proliferation,

invasion and angiogenesis. Being herpesviruses, EBV and KSHV establish latency in

humans with episodic lytic activation. Importantly, both viruses activate STAT3 almost

immediately upon infection of primary cells. In the setting of infection of primary B cells

by EBV, this rapidly activated STAT3 plays a key role in suppressing the DNA damage

response (DDR) to EBV-oncogene triggered replication stress, thereby facilitating B

cell proliferation and ultimately establishment of latency. STAT3 also contributes to

maintenance of latency by curbing lytic activation of EBV and KSHV in latent cells

that express high levels of STAT3. In this way, gammaherpesviruses exploit STAT3 to

overcome cellular anti-proliferative and anti-lytic barriers to promote viral persistence.

These investigations into gammaherpesviruses and STAT3 have simultaneously revealed

a novel function for STAT3 in suppression of the DDR, a process fundamental to

physiologic cell proliferation as well as development of cancer.

Keywords: gammaherpesvirus, Epstein-Barr virus, Kaposi’s sarcoma-associated herpesvirus, STAT3, latency, lytic

cycle, viral persistence, DNA damage response

INTRODUCTION

Epstein-Barr virus (EBV) and Kaposi’s Sarcoma-Associated Herpesvirus (KSHV), members
of the gammaherpesvirus subfamily, are oncogenic in humans. EBV (HHV4) infection is
nearly ubiquitous; on the other hand, seroprevalence rates of KSHV (HHV8) range from less
than 5% in northern and central Europe, North America and most of Asia to over 20%
in the Middle East and the Mediterranean and 30–60% in Africa and the Amazon basin
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(Henke-Gendo and Schulz, 2004; Knipe and Howley, 2013). EBV
and KSHV are both B lymphotropic and like other herpesviruses,
establish latency with periodic lytic (re)activation to produce
infectious virions (Knipe and Howley, 2013). This dual lifestyle,
that includes latent and lytic phases, ensures persistence in a
single host as well as in the human population.

While EBV persists as an asymptomatic infection in B
cells of most individuals, its disease spectrum ranges from
immunopathologic disorders such as infectious mononucleosis
resulting from primary infection during early adulthood
to endemic African Burkitt lymphoma (BL), Hodgkin
lymphoma (HL), diffuse large B cell lymphoma (DLBCL),
and nasopharyngeal cell carcinoma (NPC) in seemingly
immunocompetent individuals and B cell lymphoproliferative
disease (LPD) in immunocompromised hosts such as transplant
and AIDS patients. Notably, EBV-related cancers are observed
not only in B cells, the site of EBV latency, but also in epithelial
cells, T cells and NK cells.

KSHV is linked most strongly to Kaposi’s sarcoma (KS), a
multifocal, angiogenic-inflammatory neoplasm that originates
from vascular endothelial cells. Four varieties of KS have
been described: Classic KS affecting middle aged men of
Mediterranean and Eastern European descent, endemic African
KS affecting children and young adults, post-transplant KS
and AIDS-associated KS (Bhaduri-McIntosh, 2005). KSHV is
also associated with 4 distinct lymphoproliferative disorders:
primary effusion lymphoma (PEL; an AIDS-related body
cavity B cell lymphoma), multicentric Castleman disease
(MCD; primarily in HIV-infected individuals), MCD-associated
plasmablastic lymphoma and HHV8-associated germinotropic
lymphoproliferative disorder (Du et al., 2002; Cannon et al.,
2003; De Paoli, 2004). Like EBV, KSHV-related neoplasms extend
beyond B lymphocytes, specifically to endothelial cells.

FEATURES OF GAMMAHERPESVIRUS
LIFE CYCLE

EBV and KSHV genomes exist as episomes during latency with
production of linear genomes packaged in capsid proteins as a
result of lytic activation (Decker et al., 1996; Knipe and Howley,
2013). In healthy adults, between 1 and 50 per million circulating
B cells are latently infected with EBV (Babcock et al., 1998).
While herpesvirus genomes encode approximately 100 viral
proteins, only a limited set is expressed during latency (Knipe
and Howley, 2013). In vitro infection of primary B cells with EBV
gives rise to indefinitely proliferating lymphoblastoid cell lines
(LCL) that express all 9 latency proteins (i.e., type III latency).
However, latently infected cells in healthy individuals express

TABLE 1 | Viral proteins expressed during different types of EBV latency.

EBV protein EBNA1 EBNA2 EBNA3A EBNA3B EBNA3C EBNA-LP LMP1 LMP2A LMP2B

Latency type I +

Latency type II + + + +

Latency type III + + + + + + + + +

very few, if any, EBV proteins (type 0 latency) with increasingly
more latency proteins expressed in BL and gastric carcinoma
(type I), HL and NPC (type II) and LPD (type III) (Table 1).
Importantly, limiting viral gene expression during latency
provides a mechanism for escape from immune surveillance.
Key latency proteins include LMP1, LMP2 and EBNAs for EBV,
and v-FLIP, v-cyclin and LANA in the case of KSHV (Jenner
et al., 2001; Knipe and Howley, 2013). These (and other) proteins
serve multiple functions including promoting cell survival,
proliferation, angiogenesis, invasion and immune modulation
(Knipe and Howley, 2013).

Switch from latent to the lytic phase is an essential feature
of the life cycle of herpesviruses. Lytic activation leads to
regulated expression of a cascade of viral lytic genes of 3
kinetic classes: immediate early, early and late, accompanied
by replication of viral genomes. Following packaging and
release, virus particles can infect new cells in the same
host and new hosts. While in vivo triggers for spontaneous
lytic activation of gammaherpesviruses are a mystery, latently-
infected EBV-positive (EBV+) B lymphoma cell lines and LCLs
as well as KSHV-positive (KSHV+) PEL cell lines can be
readily “induced” into the lytic phase in culture by phorbol
esters, HDAC inhibitors, DNA methyltransferase inhibitors
and immunoglobulin crosslinking (Knipe and Howley, 2013).
Also, because EBV infects primary human B cells in vitro
giving rise to LCLs, gammaherpesviruses, and in particular
EBV, provide excellent models to study not only herpesvirus
latency-to-lytic activation but also establishment of latency.
Consequently, mechanisms underlying establishment of latency
and activation of the lytic cycle have been studied in some
depth in gammaherpesviruses and, in the last two decades, have
revealed a prominent role for the cellular transcription factor
STAT3 in latency, tumor-like properties of infected cells, and lytic
activation of EBV and KSHV.

STAT3

STAT3 is a well-studied member of the signal transducer and
activator of transcription (STAT) family. Ligation of several
cytokine (most notably IL6) receptors and growth factor
receptors can activate STAT3; activation typically involves
phosphorylation of a tyrosine residue (Y705) (Raz et al.,
1994; Schindler and Darnell, 1995; Darnell, 1997, 2002).
Phosphorylation can be mediated by receptor tyrosine kinases
such as the Janus-activated kinase (JAK) family kinases or less
frequently by non-receptor kinases such as Src (Schindler and
Darnell, 1995; Silva, 2004). STAT3 can also be activated by
phosphorylation of a serine residue (S727) (Hazan-Halevy et al.,
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2010). Activated STAT3 translocates to the nucleus and activates
transcription of a large number of genes including STAT3
itself; prominent among those are proproliferative and anti-
apoptotic genes. STAT3 also plays critical roles in embryogenesis
and immunity: deficiency of STAT3 results in death of mouse
embryos by day 7 (Takeda et al., 1997) and in humans, STAT3
deficiency causes deficient TH17 cells, central memory T cells
and memory B cells (Ma et al., 2008; Avery et al., 2010; Siegel
et al., 2011). On the other hand, constitutive activation of STAT3,
almost never associated with mutations in STAT3, is a feature of
many human cancers (Yu and Jove, 2004).

In addition to activation in cancer cells, STAT3 can be
activated by viruses such as HTLV1, Hepatitis B, Hepatitis C,
varicella zoster virus, SV40, Friend virus and herpesvirus saimiri
(Lee and Yun, 1998; Nakamura et al., 1999; Yoshida et al., 2002;
Chung et al., 2004; Sarcar et al., 2004; Vultur et al., 2005; Ni
et al., 2007; Sen et al., 2012). Many of these are oncogenic
viruses, again underscoring the link between STAT3 and cancer.
However, the link between STAT3 and oncogenic viruses has
been investigatedmore comprehensively in the context of human
gammaherpesviruses.

STAT3 AND
GAMMAHERPESVIRUS-RELATED
DISEASES

Activation state, typically phosphorylation at Y705, expression
of STAT3 and presence of nuclear STAT3 have been examined
in EBV-related cancers. Among B cell lymphomas, STAT3
was found to be constitutively active in post-transplant LPD
and in spontaneous LCLs derived from patients with post-
transplant LPD (Nepomuceno et al., 2002, 2003). STAT3 was
also preferentially activated in EBV-positive DLBCL compared
to EBV-negative DLBCL (Kato et al., 2014) and the presence
of EBV in Hodgkin Reed-Sternberg cells correlated strongly
with STAT3 expression (Garcia et al., 2003). Several studies
have pointed out that STAT3 is also connected to epithelial
cell cancers: cells from NPC have shown constitutively active
and nuclear STAT3 (Chen et al., 2001; Hsiao et al., 2003;
Buettner et al., 2006; Lui et al., 2009). Furthermore, EBV+

NPCs frequently had p-(Y705)STAT3, and phosphorylation at
this position correlated with higher NPC stage (Liu et al.,
2008).

The in vivo link between STAT3 and KSHV tumors is
primarily derived from animal models. KSHV was found to
increase STAT3 and NFκB levels in a tumor maintenance
model in mice (Sun et al., 2015). Another study described
the contribution of p-(Y705)STAT3 toward angiogenesis in
KSHV-tumors in mice (Ma et al., 2013). Yet another study
found that KSHV-encoded IL6 (vIL6) and mouse IL6 were
both required for development of plasmacytosis and MCD-
like pathology in a transgenic mouse model (Suthaus et al.,
2012); IL6 is a potent activator of STAT3. Thus, there is
substantial evidence for aberrant activation or increased levels of
STAT3 in gammaherpesvirus-related cancers and cancer models.
The following sections will describe investigations into STAT3

activation as well as the effects of STAT3 on host cellular
functions and the life cycle of gammaherpesviruses.

MECHANISMS OF STAT3 ACTIVATION IN
THE CONTEXT OF
GAMMAHERPESVIRUSES

Activation of STAT3 and its effects have been examined using
virus infection models in culture, virus-infected/transformed
cell lines (including those derived from patients with virus-
related cancers), mouse models, and by selectively expressing
viral proteins or their domains in uninfected cells. Mechanisms
by which STAT3 is activated in the context of EBV and KSHV
infection are depicted in Figures 1–4. Common themes between
the two viruses include virus binding (or potentially virus entry)
(Figures 1, 4), reactive oxygen species (ROS) (Figures 1, 4) and
IL6 (Figures 2–4). Upon exposure of primary B cells to EBV
or tert-immortalized microvascular endothelial (TIME) cells to
KSHV, STAT3 was phosphorylated at Y705 within 30 min. This
rapid phase activation by both viruses was dependent on virus
binding and signaling via JAK but was independent of and
preceded viral gene expression (Figures 1, 4) (Punjabi et al., 2007;
Koganti et al., 2014a). Another study showed that KSHV binding
to DC SIGN activated STAT3 in dendritic cells (Santarelli et al.,
2014). Notably, STAT3 activation in TIME cells was not mediated
by IL6 (Punjabi et al., 2007).

ROS has been shown to activate STAT3 (Figures 1, 4)
but much later after infection: 4 to 10 days after infection
of primary B cells with EBV, ROS activated STAT3 while
simultaneously inhibiting viral miRNAs that suppress LMP1
expression. Whether STAT3 and LMP1 activated each other in
this setting was unclear (Chen et al., 2015). ROS was also shown
to increase p-(Y705)STAT3 in a KSHV tumor model in mice (Ma
et al., 2013). As for EBV-mediated activation of STAT3 via cellular
IL6, this has been reported mainly in epithelial cells (Figure 2).
NPC-associated fibroblasts, stromal cells and inflammatory cells
produced IL6, likely resulting in increased IL6 in sera of NPC
patients; some of these tumors also demonstrated increased
expression of IL6 receptor, thereby enhancing STAT3 activation
(Ma et al., 2008; Tsang et al., 2013; Zhang et al., 2013). IL6
expressed through the actions of LMP1 and NFκB has also been
shown to activate STAT3 in NPC and HeLa cells (Chen et al.,
2003; Tudor et al., 2012). In contrast to EBV, KSHV encodes a
homolog of the cellular IL6 (i.e., vIL6) which has been found to
activate STAT3 via the common gp130 subunit of IL6 receptor
in endothelial cells and PEL cell lines; vIL6-gp130 signaling also
originated in the endoplasmic reticulum (Morris et al., 2008,
2012; Cousins and Nicholas, 2013; Giffin et al., 2014, 2015; Wu
et al., 2014) (Figures 3, 4).

Several virus-specific modes of STAT3 activation have also
been observed. For example, IL21, known to activate STAT3, was
found to cause LMP1 expression and STAT3 activation in EBV+

BL cells (Figure 1). Whether STAT3 was activated directly or
via LMP1 remained unexplained (Kis et al., 2010). Recently, the
alternate complement pathway was found to activate STAT3 in
KSHV-infected endothelial cells and KS tumor cells (Figure 4).
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FIGURE 1 | Mechanisms by which EBV activates STAT3 in B lymphocytes. EBV binding/entry rapidly activates STAT3 via Janus kinases. Additional modes of

activation, i.e., phosphorylation of STAT3 at Y705 via ROS, cellular cytokines (IL-10, IL21), EBV LMP1 and EBV miRNAs are depicted. STAT3 can transcriptionally

activate LMP1 and cellular PCBP2; PCBP2 represses EBV lytic genes.

However, how these cells escaped death from complement
activation was unclear (Lee et al., 2014).

Viral proteins have also been found to activate STAT3. Most
remarkably, LMP1, through NFκB activation and IL6 expression
activated STAT3 in NPC and HeLa cells (Figure 2). Activated
STAT3 could in turn increase LMP1 expression via its TR
promoter, driving a positive feed-forward loop in these cells.
Based on these studies, the authors also proposed that in EBV+

cancers characterized by type II latency (i.e., lacking EBNA2),
STAT3 may drive LMP1 expression (Chen et al., 2001, 2003).
In an EBV-negative NPC line, LMP1 was found to activate
STAT3 via JAK3 (Figure 2). Notably, LMP1, via PKCδ and ERK
could also cause phosphorylation of STAT3 at S727. PKCδ also
increased EGFR expression leading to increased p-(Y705)STAT3.
This picture was further complicated by active STAT3-mediated
increase in EGFR via Bcl-3, NFκB and PKCδ (Kung and Raab-
Traub, 2008; Liu et al., 2008; Kung et al., 2011) (Figure 2).
LMP2A, another EBV protein, was also shown to activate
STAT3 in gastric cancer cells and fibroblasts (Hino et al., 2009;
Nakaya et al., 2013). On the other hand, LMP2A could block
STAT3 activation by inhibiting NFκB, thereby impairing LMP1
expression. This latter finding provided a mechanistic basis for
the observation that NPC cells express LMP2A but very little
LMP1 (Stewart et al., 2004).

Following infection of endothelial cells, KSHV Kaposin B
was found to cause phosphorylation of KAP1 (a transcriptional
corepressor that functions by recruitment of heterochromatin

inducing factors) at S473 via MAP kinase-activated
protein kinase 2 (MK2; a serine/threonine protein kinase).
Phospho-KAP1 then derepressed STAT3 transcription; MK2
simultaneously caused phosphorylation of STAT3 at S727 (King,
2013; Figure 4). In a separate study, KSHV was found to repress
PDLIM2 by promoter methylation resulting in increased levels
of STAT3 and NFκB (Figure 3). Importantly, suppression of
PDLIM2, a putative tumor suppressor, is thought to contribute
to tumor cell migration (Sun et al., 2015).

STAT3 function can also be modulated via protein-protein
interaction. EBV EBNA2 and cellular EGFR have been shown
to independently bind STAT3 and increase its transcriptional
activity in epithelial cells (Lo et al., 2005; Muromoto et al., 2009).
Interestingly, cellular SMRT (a transcriptional corepressor that
facilitates recruitment of histone deacetylases to promoters) was
shown to impair EBNA2-mediated STAT3 coactivation while
EBNA2 interfered with SMRT and STAT3 interaction in EBV-
negative epithelial cells (Ikeda et al., 2009). In the context of
KSHV, LANA was shown to bind and cause transcriptional
coactivation of STAT3 in PEL cells (Figure 3); similarly, ORF50
bound to and increased STAT3 transcriptional activity in
epithelial cells and fibroblasts (Gwack et al., 2002; Muromoto
et al., 2006). More recently, KSHV miR-K6-3p was shown to
downregulate cellular SH3BGR (SH3 domain binding glutamate-
rich protein), thereby relieving STAT3 from the inhibitory
interaction with SH3BGR to cause enhanced activation of
STAT3 (Figure 4; Li et al., 2016). Taken together, these studies
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FIGURE 2 | EBV-mediated activation of STAT3 in epithelial cells. STAT3 can be phosphorylated at Y705 by EBV LMP1 through the cooperation of cellular

proteins such as NFκB, IL6, EGFR and Janus kinases. LMP1 can also cause phosphorylation of STAT3 at S727 through PKCδ. LMP2A can impair NFκB-mediated

expression of IL6, thereby suppressing STAT3 activation.

underscore the complex relationships between STAT3, other
cellular proteins and gammaherpesvirus proteins.

In summary, EBV- and KSHV-infection mediated activation
of STAT3 can be divided into very early and late phases.
Early activation is triggered by virus binding (or entry)
and JAK-STAT signaling while late phase activation involves
a multitude of cellular and viral proteins. Importantly, the
functional consequences of STAT3 activation during the early
phase appear to be distinct from activation at later times after
infection. Late phase activation of STAT3 is important for virus
persistence and potentiating cancer-like properties of infected
cells. In comparison, the consequences of almost-instantaneous
activation of STAT3 are not well-understood other than the
critical role of EBV-activated STAT3 in rapidly crippling the DNA
damage response (DDR) in B cells (described below).

CONTRIBUTION OF STAT3 TO
CANCER-RELATED PROPERTIES OF
GAMMAHERPESVIRUSES

Mice transgenic for keratin-promoter driven LMP1 and LMP2A
developed squamous cell carcinoma with increased frequency;
these lesions demonstrated high levels of STAT3 and ERK
(Shair et al., 2012). In another study by the same investigators,
LMP1-transgenic mice developed STAT3-dependent B-1a cell

lymphomas after 12 months of age at a higher frequency
compared to wild type mice (Shair et al., 2007). In NPC
cell lines, STAT3 has been found to promote cell growth
and invasion. These properties could be attributed to STAT3-
mediated transcriptional activation of cellular genes such as
MUC1, c-Myc, VEGF, and cyclin D1, all known for their tumor-
promoting functions (Weber-Nordt et al., 1996; Kondo et al.,
2007; Lui et al., 2009; Wang et al., 2010; Shair and Raab-Traub,
2012). STAT3 has also been shown to suppress cellular miR204
to increase cdc42 and NPC cell line invasion and metastasis (Ma
et al., 2014). In a somewhat indirect mechanism in gastric cancer
cells, LMP2A-activated STAT3 was found to increase DNMT1
levels which led to transcriptional repression of PTEN, a well-
known tumor suppressor.

Activated STAT3 contributed to cell proliferation and
angiogenesis in a KSHV tumor model in mice (Ma et al.,
2013). Moreover, KSHV vIL6-transgenic mice developed human
plasma cell-type MCD accompanied by STAT3 activation
(Suthaus et al., 2012). In KSHV- infected culture systems,
STAT3 contributed to endothelial cell survival, proliferation,
migration, differentiation and angiogenesis as well as survival of
PEL cell lines. These functions resulted from STAT3-mediated
transcriptional activation of survivin, DNMT1 and CEACAM1
(a member of the carcinoembryonic gene family that participates
in cell-cell adhesion). Furthermore, STAT3 was found to block
autophagy in KSHV-infected dendritic cells (Aoki et al., 2003;
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FIGURE 3 | Mechanisms of STAT3 activation in KSHV-infected B lymphocytes. STAT3 is phosphorylated by Janus kinases and KSHV IL6 (vIL6) in PEL cells.

Activated STAT3 can transcriptionally activate the STAT3 gene while KSHV can repress cellular PDLIM2, an inhibitor of STAT3. KSHV LANA can serve as a

transcriptional coactivator of STAT3. STAT3 represses KSHV lytic genes by transcriptional activation of the cellular corepressor KAP1.

Morris et al., 2008, 2012; Cousins and Nicholas, 2013; Santarelli
et al., 2014; Wu et al., 2014; Giffin et al., 2015). Thus, STAT3
can mediate a multitude of pro-tumorigenic functions during
gammaherpesvirus infection.

A KEY ROLE FOR STAT3 IN
ESTABLISHMENT OF EBV LATENCY VIA
BLOCKADE OF DNA DAMAGE RESPONSE
SIGNALING

Two sets of observations in the literature led to this line
of investigation. First, most human cancers demonstrate
constitutively active STAT3 (Yu and Jove, 2004); yet, whether
STAT3 contributes during the early stages of cell transformation
was not known. Second, contrary to expectations that sporadic
cancers were triggered by driver mutations in genes belonging
to the DDR category, majority of human sporadic cancers did
not have such mutations; instead, most had driver mutations
in cytokine and growth factor signaling pathways (Greenman
et al., 2007). The realization that most of these signaling pathways
activate STAT3 prompted the question: does STAT3 suppress the
DDR to facilitate oncogene-driven cell proliferation?

Experiments to address the above question revealed that
STAT3 was activated very rapidly (within 30 min) after exposure
of primary B cells to EBV (Koganti et al., 2014a); a similar

observation was also reported in KSHV-exposed endothelial cells
(Punjabi et al., 2007). Activation of STAT3 resulted in activation
of the effector caspase 7 but not caspase 3 or 6 in EBV-infected
cells. Caspase 7 degraded the cellular protein claspin temporally
before EBV oncogene-induced cellular DNA replication stress
could be observed. Because claspin was absent, ATR-Chk1
signaling in response to replication stress was interrupted and
the intra S phase cell cycle checkpoint was relaxed. Intra S
phase checkpoint relaxation safeguarded against senescence or
apoptosis despite replication stress. Continued cell proliferation
ensured outgrowth of latently infected EBV+ cell lines (Koganti
et al., 2014a,b). Therefore, during the very early stages of
infection, EBV uses a cellular mechanism (involving STAT3,
caspase 7 and claspin) to block ATR-Chk1 signaling, thereby
ensuring that cell proliferation would endure while viral latency
gene expression gained traction (Figure 5). Key components of
this mechanism were confirmed in circulating naturally-infected
proliferating B cells from patients with primary EBV infection.
This set of experiments exemplifies the use of viruses to uncover
novel cellular mechanisms. In doing so, a new function for STAT3
in mitigation of replication stress-induced DDR signaling was
also discovered—a function that may contribute to cell cycle
checkpoint recovery during physiologic cell proliferation as well
as implicating STAT3 as a molecular switch used by cancers to
turn down DDR signaling during oncogene-induced replication
stress.
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FIGURE 4 | Activation of STAT3 in KSHV-infected endothelial cells. KSHV binding/entry into endothelial cells rapidly phosphorylates STAT3 at Y705 through

Janus kinases. STAT3 can also be phosphorylated at S727 by the activities of viral Kaposin B through cellular MK2. Simultaneously, phosphorylation of cellular KAP1

by MK2 releases STAT3 from KAP1-mediated repression. Additionally, ROS, the alternate complement pathway and KSHV gene products such as vGPCR, vIL6 and

miRNAs can also mediate phosphorylation of STAT3 at Y705.

FIGURE 5 | Contribution of STAT3 to gammaherpesvirus persistence. Infection of primary cells with gammaherpesviruses results in rapid activation of STAT3

(indicated in green). In the context of EBV infection, rapidly activated STAT3 blocks replication stress-induced cellular ATR-to-Chk1 signaling resulting in relaxation of

the intra S phase cell cycle checkpoint; replication stress results from viral oncoprotein-driven cellular DNA replication. Relaxation of the intra S phase checkpoint

ensures that infected cells do not undergo apoptosis or senescence in the early stages of infection, thereby promoting cell proliferation and establishment of viral

latency. Latently-infected cells demonstrate high levels of STAT3 which contributes to cell survival and maintenance of latency. Furthermore, STAT3 transcriptionally

activates cellular proteins PCBP2 and KAP1 that repress lytic genes, thus preventing loss of latency. The net effect of these STAT3-mediated activities is to promote

gammaherpesvirus persistence.
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STAT3 AS A CELLULAR RHEOSTAT
BETWEEN GAMMAHERPESVIRUS LATENT
AND LYTIC CYCLES

A long-standing observation in the herpesvirus field has been
that only a fraction of latently infected cells responds to lytic
cycle inducing triggers. Indeed, only about 50% of B cells latently
infected with EBV respond to lytic inducing agents at any
time (Bhaduri-McIntosh and Miller, 2006). While this property
of partial permissiveness ensures herpesvirus persistence, it
simultaneously hinders the effectiveness of oncolytic therapeutic
approaches that pharmacologically activate the viral lytic cycle
and kill lytic cells using anti-viral agents. Sorting single EBV+

lytic cells from cells refractory to lytic triggers resulted in the
identification of STAT3 as a key cellular switch between latent
and lytic phases. Specifically, a high level of STAT3 hindered the
transition of EBV and KSHV to the lytic phase despite exposure
to lytic cycle inducing triggers (Daigle et al., 2010; Hill et al.,
2013; King et al., 2015; Koganti et al., 2015). In EBV-infected
cells, STAT3-mediated resistance to lytic cycle activation was
executed via PCBP2, a cellular multifunctional poly(rC)-binding
protein (Figures 1, 5; Koganti et al., 2015). In KSHV-infected
cells, STAT3 inhibited viral lytic gene transcription via KAP1,
a well-known transcriptional co-repressor (Figures 3, 5; King
et al., 2015). Importantly, STAT3-mediated regulation of lytic
susceptibility may be broadly utilized by human herpesviruses as
STAT3 was also shown to restrict lytic activation of HSV1 (Du
et al., 2013).

The presence of high levels of STAT3 in latent/refractory
cells serves two functions. From a virologic viewpoint, limiting
lytic activation to a fraction of infected cells ensures herpesvirus
persistence in the refractory population. On the other hand,
restricting lytic activation may be viewed as a cellular anti-
viral strategy, since the lytic phase is responsible for significant
pathology particularly for alpha and betaherpesviruses.

CONCLUSION

Two decades of investigations have revealed a complex
relationship between the cellular proto-oncogene STAT3 and
the highly prevalent human gammaherpesviruses. As with many
physiologic and pathologic conditions, STAT3 can be activated
by signaling through cytokine- and growth factor-receptors.
STAT3 can also be activated by herpesvirus binding, viral
proteins and ROS. Further, STAT3 can be transcriptionally
regulated. Activation and increased expression of STAT3
contribute to growth promoting, invasive and angiogenic
properties of tumor cells in tissue culture and animal models.
Apart from its well-described tumorigenic properties, STAT3
orchestrates herpesvirus persistence. By interfering with DDR
signaling immediately after EBV infection of B cells, it ensures
establishment of latency. By restricting lytic cycle activation in
latently infected EBV+, KSHV+ and HSV+ cells, STAT3 also
ensures maintenance of latency. Thus, the net effect is to promote
herpesvirus persistence in the host (Figure 5). Continued
investigation into how STAT3 mediates these novel functions in

virus-infected cells is likely to uncover new mechanistic links
between cellular and viral machineries that may be exploited for
therapeutic applications.
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