
DATA REPORT
published: 07 July 2016

doi: 10.3389/fmicb.2016.01060

Frontiers in Microbiology | www.frontiersin.org 1 July 2016 | Volume 7 | Article 1060

Edited by:

David Berry,

University of Vienna, Austria

Reviewed by:

David William Waite,

University of Queensland,

New Zealand

Jan Slapeta,

University of Sydney, Australia

*Correspondence:

Alessio Mengoni

alessio.mengoni@unifi.it

Specialty section:

This article was submitted to

Microbial Symbioses,

a section of the journal

Frontiers in Microbiology

Received: 06 June 2016

Accepted: 23 June 2016

Published: 07 July 2016

Citation:

Abdelrhman KFA, Bacci G,

Mancusi C, Mengoni A, Serena F and

Ugolini A (2016) A First Insight into the

Gut Microbiota of the Sea Turtle

Caretta caretta.

Front. Microbiol. 7:1060.

doi: 10.3389/fmicb.2016.01060

A First Insight into the Gut Microbiota
of the Sea Turtle Caretta caretta

Khaled F. A. Abdelrhman 1, Giovanni Bacci 1, Cecilia Mancusi 2, Alessio Mengoni 1*,

Fabrizio Serena 2 and Alberto Ugolini 1

1Dipartimento di Biologia, Università di Firenze, Sesto Fiorentino, Italy, 2 Agenzia Regionale per la Protezione Ambientale della

Toscana, Livorno, Italy

Keywords: microbial communities, gut, Loggerhead Turtle, Caretta caretta, 16S rRNA gene, microbiome,

Vagoccoccus

INTRODUCTION

In the last years the microbial communities (microbiota) associated with the digestive tract
of animals have been subjected to wide research interest (Ley et al., 2008; Zhu et al., 2010;
Huttenhower et al., 2012). The presence of functional relationship between the host and the
associated microbiome (the genes and genomes of the microbiota) has been highlighted, and the
new term of hologenome has been proposed to refer to the set of functions (genes) of host and
microorganisms associated with it (Zilber-Rosenberg and Rosenberg, 2008). The study of model
animals has revealed roles for the microbiome in adaptive immunity development and in host
physiology, ranging from mate selection to skeletal biology and lipid metabolism (Ley et al., 2008;
Kostic et al., 2013; Du Toit, 2016). For vertebrates, most of the studies on gut microbiota and
microbiome have been performed in mammals (i.e., mouse, rat and humans) and in fishes (as
the model Danio rerio) (Huttenhower et al., 2012; Kostic et al., 2013). Recently, microbiotas and
microbiomes of non-model organisms have started to be investigated with the aim to shed light on
animal-associated microbial diversity (Keenan et al., 2013; Mengoni et al., 2013; Cahill et al., 2016)
and to potentially discover new biotechnologically important microbial strains (Papaleo et al., 2012;
Sanchez et al., 2012).

Sea turtles (Testudines, Reptilia) occur in oceanic and neritic habitats, from the tropics to
subarctic waters, and venture onto terrestrial habitats to nest or bask in tropical and temperate
latitudes. Sea turtle populations around the world have dwindled and, in many places, continue
to decline (Wallace et al., 2010). Caretta caretta L. (Loggerhead Turtle) is distributed throughout
the subtropical and temperate regions of the Mediterranean Sea and Pacific, Indian, and Atlantic
Oceans. Loggerhead Turtle is classified as Vulnerable A2b in the IUCN Red List (http://www.
iucnredlist.org/details/3897/0). The Loggerhead Turtle plays important roles in maintaining
marine ecosystem (Bjorndal and Jackson, 2002; Bolten and Witherington, 2003). These roles range
from maintaining productive coral reef ecosystems to transporting essential nutrients from the
oceans to beaches and coastal dunes. However, in spite of the considerable importance for the
study of vertebrates, few studies only are present on microbial communities associated with sea
turtles (Ferronato et al., 2009; Sarmiento-Ramírez et al., 2014; Yuan et al., 2015) and no reports on
gut microbial communities.

The aim of this work is the characterization, for the first time, of the gut microbiota of the sea
turtle C. caretta, to shed a preliminary light on its features with respect to other reptiles and to
marine vertebrates. Both feces and intestine samples were taken to have the wider overview of gut
microbiota taxonomic composition.
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LINKS TO DEPOSITED DATA

The sequences dataset (Table 1) was deposited in the
GenBank database (URL: http://www.ncbi.nlm.nih.gov/
bioproject/; Bioproject PRJNA314462, Biosample accessions
SAMN04508196-SAMN04508205). Users can download
and use the data freely for research purpose only with
acknowledgment to us and quoting this paper as reference to the
data.

MATERIALS AND METHODS

Sampling and Sequence Production
Samples of feces and intestine of C. caretta were collected in
the years 2014 and 2015, from different individuals stranded or
accidentally caught along the Tyrrhenian sea coast in Tuscany
and Liguria regions (Italy). Animals were hosted in the recovery
centers associated with network of the Tuscan Observatory for
Biodiversity. A total 10 samples of eight individuals was analyzed
(Table 1). The samples consisted of four samples of feces (T1,
T3, T11, T12) and six cloacal contents and intestine sections
(colorectal) (T4, T5, T6, T7, T9, T10). Intestine sections were
collected from animals stranded or dead in the recovery centers,
immediately after retrieval. Faeces were collected immediately
after deposition from living animals in hospitalized conditions
in the recovery centers. T1 and T3 were feces from the same
individual (“GoGo Luce”) collected in different days (at 37 and
40 days after hospitalization), as well as T4 and T5 were different
portions of cloacal samples from the same individual (“Camilla”).

TABLE 1 | Samples details and sequencing statistics.

Sample

code

Sample

type

Sample

name

Sex Dimension* Days of

hospitalization

before sampling

Sampling

date

Sampling

location**

Total

Reads

Reads Passing

Quality Filtering

% Reads

Passing Quality

Filtering

T1 Faeces GoGo Luce Female 37 40 2014-09-30 42.40 N

11.29 E

544605 507072 93.1 %

T3 Faeces GoGo Luce Female 37 37 2014-09-27 42.40 N

11.29 E

386371 357231 92.5 %

T4 Intestine Camilla Undetermined 52 21 2014-09-13 43.54 N

10.31 E

267169 249587 93.4 %

T5 Intestine Camilla Undetermined 52 21 2014-09-13 43.54 N

10.31 E

100635 91047 90.5 %

T6 Intestine RT46CC/2014 Undetermined 47 0 (death, under

decomposition)

2014-07-29 43.54 N

10.31 E

40231 37117 92.3 %

T7 Intestine RT44CC Undetermined 65 0 (death recently) 2014-07-21 43.54 N

10.31 E

220358 207119 94.0 %

T9 Intestine RT51CC Undetermined 56 0 (death recently) 2014-09-12 43.54 N

10.31 E

116819 108915 93.2 %

T10 Intestine Genova Female 52 22 2014-09-13 44.41 N

8.92 E

129634 111712 86.2 %

T11 Faeces F2600_Ondina Female 54 28 2015-02-25 42.40 N

11.29 E

115155 109961 95.5 %

T12 Faeces GR001_Olivia Female 63 41 2015-03-09 42.40 N

11.29 E

108224 102629 94.8 %

*The length of the standard curve in cm is reported.

**The location of the collection is that of the recovery center.

All samples were immediately stored at −20◦C prior of the
extraction of DNA.

DNA was extracted, simultaneously for all samples, from
feces, cloacal contents and gut tissues using the FastDNATM

SPIN Kit for soil (MP Biomedicals, Italy). From the extracted
DNA, the bacterial V4 region of 16S rRNA genes was amplified
with specific primers (515F, 806R) using the protocol reported in
the 16S Metagenomic Sequencing Library Preparation protocol
from Illumina (Part # 15044223 Rev. B; URL: http://www.
illumina.com/content/dam/illumina-support/documents/docum
entation/chemistry_documentation/16s/16s-metagenomic-libra
ary-prep-guide-15044223-b.pdf). PCR products were sequenced
in a single run using Illumina MiSeq technology with pair-
end sequencing strategy with MiSeq Reagent Kit v3. Library
preparation and demultiplexing have been performed following
Illumina ’s standard pipeline (Caporaso et al., 2012).

Raw Data Processing and Statistical
Analyses
Raw sequences were clustered into “Operation Taxonomic Units”
(OTUs) following the UPARSE pipeline as previously described
(Bacci et al., 2015a,b). A pre-processing step was also included
using StreamingTrim (Bacci et al., 2014), to remove low-quality
reads that can generate errors in downstream analyses. Read pairs
were merged using PANDAseq assembler with default settings
(Masella et al., 2012). Singletons were removed before the OTU
clustering step, which was performed using an identity threshold
of 97%. Chimeras were detected and removed by UPARSE
during clustering step (“cluster_otus” command). Finally, from
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OTU cluster, a single representative sequence was selected and
used for taxonomical identification by SINA classifier on the
latest SILVA dataset available when we performed the analysis
(SSURef Nr99 version 119). Reads which were attributed to
chloroplast andmithocondria were removed from theOTU table.
All steps were implemented with an in-house pipeline available at
(https://github.com/GiBacci/o2tab).

Collected 16S rRNA sequences were taxonomically classified
using the Ribosomal Database Project classifier with 80%
confidence threshold, as the most informative threshold (Masella
et al., 2012).

Rarefaction analysis was carried out plotting the number
of observed OTUs against the number of reads at genus
level (Table S1). Tabulated values were used to produce a
rarefaction curve for each sample and estimate diversity values.
Specific differences in community composition and the similarity
among microbial communities was determined using similarity
percentage (simper) analysis and Principal Component Analysis
(PCA). Both analyses were performed with the modules present
in PAST (PAlaeontological STatistics) ver. 3 software (Hammer
et al., 2001).

Ethical Statement
Samples were collected from hospitalized animals (the feces)
or dead animals (the intestine samples). All animals were kept

in Authorized Recovery Centers (as defined by the Italian
regulation).

RESULTS

A total 1882390 reads of all samples of C. caretta passed

quality filtering sequences (92.8% of total reads) (Table S1). After
OTU assignment (Table S1) rarefaction curves obtained reached
or nearly reached a plateau, indicating a satisfactory level of
diversity sampling (Figure S1).

Concerning the taxonomic composition (Figure 1) feces
samples were dominated by members of phyla Firmicutes (66%),
Proteobacteria (23%), Bacteroidetes (6.2%). Within the phylum
Firmicutes the class Clostridia was the most abundant (63.20%).
The intestine samples were dominated by phyla Firmicutes (87%),
Proteobacteria (4.2%) and Bacteroidetes (3.4%). Firmicutes were
represented by member of the classes Clostridia (43%) and Bacilli
(42.5%). This latter was entirely represented (100%) by order
Lactobacillales (Table S1). While the most represented bacterial
genera among intestine samples wereVagococcuswith 42.3%, and
among feces were Clostridium XI 21.3%, and Clostridium sensu
strict 14.6% (Table S1). Principal Component Analysis on OTU
representation (Figure S2) showed that most of the sample were
very similar each other. However, notably the two samples of
feces from the same individual (T1 and T3, taken in different

FIGURE 1 | Taxonomic composition of C. caretta gut and faeces microbiota at different taxonomic levels. The percentage of occurrence of each taxon is

reported as cumulative bar chart. (A) Phylum; (B) Class. The legend shows the list of taxa from top to bottom of the bars.
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times) were separated from the rest of the samples. In particular,
for T1 and T3, OTU 3, OTU 4, and OTU 5 (all attributed to
Clostridiales) collectively contributed for more than 30% of total
variance in the differentiation from the other samples (Table S2).
Indeed, T1 and T3 were taken from a young female after few
days of hospitalization in the recovery center and may mirror
the microbiota of a relatively healthy individual in the wild, while
the other samples mainly were from animals kept in the recovery
centers for longer times. However, we cannot exclude that T1
and T3 microbiota may represent a phase of rapid changes in
gut microbiota due to the change in diet (i.e., artificial feeding
in the recovery center), which then may bring to a more stable
and homogenous microbiota (present in the other samples) after
more days. Sampling of more individuals (healthy) would be
needed to clarify this issue.

Finally, we inspected which taxa of the microbiota mostly
contribute to differentiate feces vs. intestine. Results obtained
after Simper analysis showed that the genera mostly contributing
to differences were Vagococcus (Bacilli, Enteroccoaceae) with
11.92%, Robinsoniella (Class Clostridia) with 6.29%, this latter
represented more in intestine samples, Clostridium XI (Class
Clostridia) with 7.37 % and represented more in feces samples
(Table S2).

CONCLUSIONS

This first investigation on the gut microbiota of C. caretta
showed a pattern of taxa which include well know members
colonizing vertebrate guts. In particular the most abundant phyla
found (Firmicutes and Bacteroidetes) are also abundant in the
human gut (Ley et al., 2008) as well as in other land vertebrates
and reptiles (Costello et al., 2010; Keenan et al., 2013).
However, especially in the feces samples, Gammaproteobacteria
were particularly present (more than 15% of total reads)
including member of Oceanospirillales, Alteromonadaceae,
Pseudomonadaceae, Enterobacteriaceae. Moreover, as suggested

by T1 and T3 samples, quite important differences in the

microbiota could be detected, which may be related to the
influence of hospitalization in most of the sampled animals.

The presented data could be used for comparative analyses of
vertebrate gut microbiotas.
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Figure S1 | Rarefaction analysis on sequencing data of C. caretta gut

microbiota.

Figure S2 | Principal Component Analysis of OTU abundance in each

sample. The percentage of variance displayed by the first two components is

reported.

Table S1 | Occurrence of Operative Taxonomic Units (OTUs). The number of

reads for each OTU is reported for each sample. The taxonomy of each OTU is

also reported.

Table S2 | Results of SIMPER analysis on taxa occurrence. The taxonomic

attribution of OTUs, the percentage of contribution and the cumulative

contribution are reported.
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