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Ecological evidence suggests that heterotrophic diazotrophs fueled by organic carbon
respiration in sediments play an important role in marine nitrogen fixation. However,
fundamental knowledge about the identities, abundance, diversity, biogeography, and
controlling environmental factors of nitrogen-fixing communities in open ocean sediments
is still elusive. Surprisingly, little is known also about nitrogen-fixing communities in
sediments of the more research-accessible marginal seas. Here we report on an
investigation of the environmental geochemistry and putative diazotrophic microbiota
in the sediments of Bohai Sea, an eutrophic marginal sea of the western Pacific
Ocean. Diverse and abundant nifH gene sequences were identified and sulfate-reducing
bacteria (SRB) were found to be the dominant putative nitrogen-fixing microbes.
Community statistical analyses suggested bottom water temperature, bottom water
chlorophyll a content (or the covarying turbidity) and sediment porewater Eh (or the
covarying pH) as the most significant environmental factors controlling the structure
and spatial distribution of the putative diazotrophic communities, while sediment Hg
content, sulfide content, and porewater SiO%‘—Si content were identified as the key
environmental factors correlated positively with the nifH gene abundance in Bohai Sea
sediments. Comparative analyses between the Bohai Sea and the northern South China
Sea (nSCS) identified a significant composition difference of the putative diazotrophic
communities in sediments between the shallow-water (estuarine and nearshore) and
deep-water (offshore and deep-sea) environments, and sediment porewater dissolved
oxygen content, water depth and in situ temperature as the key environmental
factors tentatively controlling the species composition, community structure, and spatial
distribution of the marginal sea sediment nifH-harboring microbiota. This confirms the
ecophysiological specialization and niche differentiation between the shallow-water and
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deep-water sediment diazotrophic communities and suggests that the in situ physical
and geochemical conditions play a more important role than geographical contiguity
in determining the community similarity of the diazotrophic microbiota in marginal sea

sediments.

Keywords: coastal sediments, ecophysiological specialization, estuary, marginal sea, niche differentiation, nifH,
nitrogen fixation, sulfate-reducing bacteria

INTRODUCTION

N,-fixing prokaryotes play a key role in marine nitrogen (N)
cycling and ecosystem functioning such as carbon sequestration
by providing newly fixed nitrogenous nutrients, particularly
important in oligotrophic environments of the ocean (Karl
et al., 1997; Dore et al., 2002; Montoya et al., 2004; Steppe
and Paerl, 2005; Karl and Letelier, 2008; Sohm et al., 2011).
Marine N, fixation studies have been conducted for more
than half a century, yet many diazotrophic microbes, their
ecophysiology and environmental response have been revealed
only in recent decades (reviewed by Zehr and Kudela, 2011;
Voss et al, 2013). The marine N cycle appears to be a
conundrum because the estimated N input by N, fixation is
significantly lower than the estimated N loss via denitrification
and anaerobic ammonium oxidation (anammox) (Mahaffey
etal.,, 2005). This suggested that the inventory of reactive nitrogen
in the oceans is unbalanced and dwindling (Moisander et al.,
2014). However, this conundrum may be an artifact caused by
uncertainties in previous research results and underestimations
of N-fixation contribution to the marine N budget. These
include insufficient and inaccurate measurements of the N,
fixation rate (Deutsch et al, 2007; Groflkopf et al, 2012),
undiscovered Nj-fixing microbes (Zehr et al, 2001, 2008;
Pernthaler et al., 2008; Dekas et al., 2009; Zehr, 2011; Voss
et al, 2013), overlooked robustness of N,-fixing physiology
of environmental diazotrophs (Knapp, 2012), and overlooked
and undiscovered N;-fixing environments such as nutrient-
rich estuarine and coastal seas and marine sediments (Mehta
et al., 2003; Pernthaler et al., 2008; Bonnet et al., 2013; Voss
et al., 2013). Historically, marine N, fixation was thought to
be carried out mainly by aggregate-forming cyanobacteria such
as Trichodesmium and important only in surface and near-
surface waters of the ocean (Paerl, 1990; Dore et al., 2002;
Karl et al., 2002; Bergman et al., 2013). However, the water
column below the photic layer has been found to harbor
significant N, fixation activities in many marine waters, which
were mainly carried out by heterotrophic diazotrophs either
in hypoxic and anoxic environments or in marine particle-
associated microenvironments (Farnelid et al, 2011, 2013;
Fernandez et al., 2011; Jayakumar et al., 2012; Bird and Wyman,
2013; Rahav et al., 2013; Dang and Lovell, 2016). Furthermore,
the recent detection of numerous diazotrophic bacteria and
archaea in marine sediments led to the hypothesis that marine
sediments might constitute an important environment for N;
fixation in the oceans (Pernthaler et al., 2008; Dang et al., 2009a,
2013a; Dekas et al., 2009, 2014, 2016; Fulweiler, 2009; Miyazaki
et al., 2009).

Hypoxic and anoxic environments can be formed and
maintains more easily in marine sediments than in the water
column, particularly in eutrophic coastal seas. Nitrogen gas is
abundant in marine sediments, partially provided by microbial
denitrification and anammox processes (Dang et al., 2009b;
Trimmer and Nicholls, 2009; Shao et al.,, 2014). Therefore,
heterotrophic rather than cyanobacterial diazotrophy may play
a dominant role of N, fixation in marine sediments (Bertics et al.,
2013; Dekaezemacker et al., 2013). N fixation by heterotrophic
diazotrophs requires a high amount of cellular energy that is
mainly provided by respiration of large amounts of organic
carbon (Shanmugam et al., 1978; Brill, 1980; Dang and Jiao,
2014). It has been speculated that the low N,-fixing rates
of heterotrophic diazotrophs in the open ocean is caused by
the lack of sufficient metabolic energy due to the scarcity of
bioavailable organic carbon (Moisander et al., 2014). On the other
hand, estuarine and coastal sediments may support high rates
of N, fixation by heterotrophic diazotrophs due to enhanced
phytoplankton labile organic matter production under the
impact of anthropogenic eutrophication and terrigenous nutrient
inputs (Herbert, 1999; Boesch, 2002; Smith, 2003). Moreover,
iron, phosphorus or both have been found to be the key factors
limiting microbial N, fixation and export production in many
waters of the oligotrophic open oceans (Saiiudo-Wilhelmy et al.,
2001; Mills et al., 2004; Moore et al., 2009, 2013; Boyd and
Ellwood, 2010; Sohm et al., 2011; Jacq et al., 2014). In estuarine
and coastal sediments, iron and phosphorus may be sufficiently
abundant to support high rates of microbial N, fixation (Street
and Paytan, 2005; Homoky et al., 2013; Karl, 2014). Furthermore,
it is evident that the sediment diazotrophic communities are
highly resistant to the inhibition of high environmental NH;,
and NOj; concentrations (McGlathery et al., 1998; Knapp, 2012;
Bertics et al., 2013). It was thus reasonably hypothesized that the
marginal sea sediments may prove to be key environments of N,
fixation. However, fundamental knowledge about the identities,
diversity, biogeography, and controlling environmental factors of
sediment N,-fixing microbes is still lacking.

It has been reported that the sediments of the northern
South China Sea (nSCS), a large and relatively oligotrophic
marginal sea of the western Pacific Ocean, might harbor the
highest diazotroph diversity among all the marine environments
ever investigated using molecular ecology approaches targeting
the nifH gene (encoding the nitrogenase reductase subunit)
(Dang et al., 2013a). The Bohai Sea, another marginal sea of
the western Pacific Ocean, is conversely characterized by its
eutrophic status caused by high degree of river inputs and
anthropogenic pollutions and by its low water exchange with
the outer ocean due to its semi-enclosed topography (Figure 1;
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FIGURE 1 | Map of the Bohai Sea and sampling station sites. The insert
map shows the geographical location of the Bohai Sea in the western Pacific
Ocean. Abbreviation and numerical symbols: BS, Bohai Sea; 1, Haihe River; 2,
Luanhe River; 3, Dalinghe River; 4, Liaohe River; and 5, Daliache River (Dang
etal., 2013b).

Dang et al.,, 2013b). To answer the question how diazotrophic
communities vary and respond to distinct environmental
conditions, sediment nifH-harboring microbial assemblages
in the Bohai Sea were investigated in an environmental
geochemistry context and comparatively analyzed against the
putative diazotrophic assemblages of the nSCS.

MATERIALS AND METHODS

Site Description, Sample Collection, and

Environment Factor Measurements

Bohai Sea is a large shallow water basin with an area of
77 x 10° km? and an average water depth of only 18 m. It
is nearly enclosed and thus its water exchange capacity with
the outer Yellow Sea of the western Pacific Ocean is highly
limited (Figure 1). Moreover, more than 40 rivers discharge
into the Bohai Sea. Thus, the Bohai Sea receives intense and
extensive terrigenous and anthropogenic impacts, especially in
its estuarine and coastal bay areas (PEMSEA and BSEMP,
2005).

Samples of surface sediments in the top 0-5 cm layer were
collected from 14 stations of the Bohai Sea (Figure 1) in the
August of 2008 as described previously (Dang et al., 2013b). At
each station, seawater physicochemical and biological parameters
(Supplementary Table S1) were measured in situ at various
water depths with a Compact-CTD equipped with a TCDKU
sensor (Alec Electronics, Japan) as reported in a previous
publication (Dang et al., 2013b), which also contained most of
the sediment and sediment porewater environmental parameters,
except the sediment V and S contents that were measured in
the current study via a VARIAN 725-ES inductively coupled
plasma-optical emission spectrometer (Varian, Palo Alto, CA,
USA) (Supplementary Table S1).

DNA Extraction and nifH Gene Clone

Library Construction and Analyses
Community genomic DNA of sediment microbes was extracted
by using a FastPrep DNA Extraction Kit for Soil and a FastPrep-
24 Cell Disrupter (MP Biomedicals, Solon, OH, USA) as
previously described (Dang et al., 2013a,b). DNA concentrations
were measured with dye PicoGreen (Molecular Probes, Eugene,
OR, USA) and a Modulus Single Tube Multimode Reader
fluorometer (Turner BioSystems, Sunnyvale, CA, USA). Partial
nifH gene sequences were amplified with PCR primers nifHfw
and nifHrv, which have a very broad coverage for both bacterial
and archaeal nifH genes (Mehta et al.,, 2003). In order to test
reproducibility of our experimental procedure and to identify
any potential within-site variability of the sediment diazotrophic
community, two separate nifH gene clone libraries (B22-1 and
B22-2) were constructed for the sediments of sampling station
B22, each from a distinct subcore DNA sample, respectively.
PCR product cloning followed previous procedures (Dang et al.,
2009a, 2013a). A miniprep method was used for recombinant
plasmid extractions (Dang and Lovell, 2000). Cloned gene
fragments were reamplified to check the correct size of the DNA
inserts using cloning vector PCR primers M13-D and RV-M
(Dang et al., 2008), which were also used for sequencing with
an ABI 3770 sequencer (Applied BioSystems, Foster City, CA,
USA). The obtained nifH gene sequences have been submitted
to GenBank with accession numbers KM524369 to KM525656.

The nifH sequences were translated into conceptual protein
sequences and the BLASTp program was used for retrieval
of the top-hit NifH sequences from GenBank (last accessed
25 January 2014) (Altschul et al., 1997). The NifH protein
sequences were grouped into operational taxonomic units
(OTUs) using a 0.05 sequence distance cutoff calculated by using
the DOTUR program (Schloss and Handelsman, 2005). These
OTU sequences, along with reference sequences retrieved from
GenBank, were aligned with program CLUSTAL X (version 2.1;
Larkin et al., 2007), and used for phylogeny inference with
the distance and neighbor-joining method implemented within
the PHYLIP software package (version 3.69; Felsenstein, 1989),
following a previously reported procedure (Dang et al., 2009a,
2013a).

Quantification of Sediment nifH Gene Copy

Numbers

The technique of real-time fluorescent quantitative PCR (qPCR)
was employed to measure the abundance of the sediment nifH
genes using primers nifHfw and nifHrv (Mehta et al., 2003;
Dang et al,, 2013a). Triplicate sediment DNA samples from each
station were assayed with an ABI Prism 7500 Sequence Detection
System (Applied Biosystems, Foster City, CA, USA), following a
previously published SYBR Green qPCR protocol (Dang et al.,
2013a). Plasmids containing the nifH gene inserts were extracted
from Escherichia coli hosts using a Mini Plasmid Kit (Qiagen,
Valencia, CA, USA), linearized with an endonuclease specific in
the cloning vector region, and quantified using PicoGreen and
a Modulus Single Tube Multimode Reader fluorometer (Dang
et al,, 2013a). A qPCR standard curve was then generated with
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serially diluted linearized plasmids containing the target nifH
gene fragment.

The gqPCR condition for nifH gene quantification was
optimized based on a previous study (Dang et al, 2013a).
The efficiency and sensitivity of the qPCR were shown in
Supplementary Table S2, along with the range of the plasmid
copy numbers used for the qPCR standard curve construction.
In all experiments, negative controls lacking template DNA were
run with the same qPCR procedure to prevent contamination or
carryover. Agarose gel electrophoresis and melting curve analysis
were performed to confirm the specificity of the qPCR reactions.

Statistical Analyses
Clone library coverage (C) was calculated as C = [1 —
(n1/N)] x 100, where n; is the number of unique OTUs and
N the total number of clones in a library (Mullins et al., 1995).
Shannon-Wiener (H), Simpson (D), and evenness (J) indices
were calculated with the OTU data (Dang et al., 2013a). The
DOTUR program (Schloss and Handelsman, 2005) was used for
clone library rarefaction analysis and to calculate the abundance-
based coverage estimator (Sacg) and the bias-corrected richness
estimator Chaol (Sch,o1). The Fast UniFrac program (Hamady
et al., 2010) was used for nifH-harboring microbial community
clustering and principal coordinates analyses (PCoA). The
Canoco software (version 4.5, Microcomputer Power, Ithaca,
NY, USA) was used for the canonical correspondence analysis
(CCA) (ter Braak and Smilauer, 2002; Lep$ and Smilauer,
2003), to investigate any correlations between the nifH-harboring
microbial communities and environmental factors by following a
previously described procedure (Dang et al., 2013a). The SPSS
software (version 17.0) was used for Pearson correlation analyses
(significance level @ = 0.05) of the sediment nifH gene abundance
with environmental factors (Dang et al., 2013a).

The Fast UniFrac program (Hamady et al., 2010) was also used
for clustering analyses of the sediment nifH-harboring microbial

communities in both the Bohai Sea and the previously studied
nSCS (Dang et al., 2013a), to identify larger geographical-scale
characteristics of the putative diazotrophic microbiota. CCA
analysis (ter Braak and Smilauer, 2002; Leps and Smilauer, 2003)
was also performed to tentatively identify the key environmental
factors that may control the biogeographical distribution of
the sediment nifH-harboring microbial communities in both
marginal seas.

RESULTS

Diversity of nifH Gene Sequences from

Bohai Sea Sediments

Community clustering (Supplementary Figure S1) and PCoA
(Supplementary Figure S2) analyses using Fast UniFrac software
revealed that the two nifH gene clone libraries (B22-1 and
B22-2) constructed from separate sediment subcore samples
of station B22 were highly similar. These statistical results
demonstrated the reproducibility of our experimental procedures
and the negligibility of within-site variability of the putative
diazotrophic community detected by using the nifH gene
biomarker. Therefore, in subsequent analyses, these two nifH
gene clone libraries (B22-1 and B22-2) were pooled as a single
B22 clone library.

Of all the 14 nifH gene clone libraries constructed, a total
of 1309 clones were found to contain a valid nifH gene
fragment, which were further identified as 1288 unique nifH
DNA sequences yielding 619 deduced unique NifH protein
sequences and 246 OTUs. Based on the obtained biodiversity
index values (Table 1), the sediment nifH genes were highly
diverse and their richness was heterogeneously distributed in the
different sampling stations of the Bohai Sea. The high diversity
(Supplementary Figure S3, Table 1) indicated that the sequences
in the constructed nifH gene clone libraries might only represent

TABLE 1 | Biodiversity and predicted richness of the sediment nifH gene sequences obtained from the sampling stations of the Bohai Sea.

Station No. of clones No. of unique sequences No. of OTUs C (%) H 1/D J SACE Schaot
B1 82 63 40 69.51 4.86 28.38 0.91 94.49 77.50
B3 80 58 44 63.75 5.05 31.60 0.92 96.33 102.00
B5 85 59 48 61.18 5.17 36.06 0.93 141.89 114.00
B7 87 58 35 73.56 4.39 16.72 0.86 101.42 77A7
B8 92 63 44 71.74 5.08 36.40 0.93 86.16 90.43
B10 88 58 41 71.59 4.82 23.92 0.90 96.60 83.86
B11 83 54 34 73.49 4.35 14.80 0.86 97.45 72.50
B12 89 61 37 74.16 4.51 15.92 0.87 75.28 79.17
B14 85 55 36 75.29 4.53 16.76 0.88 73.26 62.25
B15 91 57 27 84.62 3.89 10.06 0.82 54.73 45.20
B16 93 71 47 68.82 5.14 36.56 0.93 104.87 87.60
B19 86 63 37 73.26 4.60 19.86 0.88 91.17 73.14
B20 83 61 48 59.04 5.17 35.82 0.93 154.44 118.13
B22 185 111 66 78.38 5.22 24.38 0.86 143.74 162.67
B22-1 96 70 50 66.67 5.16 32.11 0.91 126.55 91.30
B22-2 89 65 40 70.79 4.73 21.562 0.89 98.8 105.00
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the dominant putative diazotrophs in the Bohai Sea sediments.
In general, the coastal site B15 had the lowest nifH gene diversity
and the sites B5, B16, B20, and B22 might have the highest nifH
gene diversity (Supplementary Figure S3, Table 1).

Phylogeny of Deduced NifH Protein

Sequences from Bohai Sea Sediments
The obtained 1288 unique nifH gene sequences shared 37.5-
99.7% sequence identity with one another and 51-99%
sequence identity with the top-match sequences obtained
from GenBank. Interestingly, the majority (87.7%) of the
queried Bohai Sea sediment nifH gene sequences resulted
in nifH top-match sequences derived from samples obtained
from nSCS marine sediments (Dang et al, 2013a). The
deduced 619 unique NifH protein sequences shared 33.0-
99.2% sequence identity with one another and shared 53-100%
sequence identity with the top-match GenBank NifH sequences.
More than half (57.4%) of the 619 unique NifH sequences
shared >90% sequence identity with known bacteria, such as
Alphaproteobacteria, Gammaproteobacteria, Deltaproteobacteria,
Chlorobi, Firmicutes, and Verrucomicrobia (Supplementary Table
S3). Importantly, most of these bacteria with top-match NifH
sequences are known diazotrophs. This result indicates that
diverse obligately anaerobic sulfate-reducing bacteria (SRB) in
the Deltaproteobacteria class, which accounted for 18.3% of the
total OTUs and 48.2% of the total clones, probably constituted
the majority of taxa of diazotrophic communities in Bohai Sea
sediments (Supplementary Table S3, Supplementary Figure S4).
The deduced NifH sequences were affiliated with six major
groups in the constructed NifH phylogenetic tree (Figure 2,
Supplementary Figure S4, Table2), according to a recently
proposed NifH sequence phylogenetic classification (Dang et al.,
2009a, 2013a). Class I contained 141 OTUs and could be further
divided into four clusters (Clusters I, II, III, and Cluster IV
subcluster A), in which Cluster IIT was the largest containing 102
OTUs (Supplementary Figure S4). Clusters I and III were the
only clusters that contained the NifH sequences obtained from
all 14 sampling stations; therefore, these sequences tentatively
represent the most prevalent diazotrophic microbes in the
Bohai Sea sediments. Sequence Classes II, III, V, VI, and
VIII represented 19, 32, 10, 43, and 1 OTUs (Supplementary
Figure S4), respectively, and the pertinent putative diazotrophic
microbes might thus be specifically distributed only in certain
sediment environments of the Bohai Sea.

Key Factors Controlling the nifH-Harboring

Microbial Communities

Community classification based on Fast UniFrac clustering
analysis identified three distinct clusters of the nifH-harboring
microbial assemblages in Bohai Sea sediments (Figure 3). The
nifH-harboring microbial assemblages of stations B8 and B15
were grouped together and represented a distinct cluster, the
assemblage of station B5 represented another distinct cluster
formed by a singleton member, and the assemblages of the
remaining stations were grouped together and formed a third

distinct cluster. This community classification pattern of nifH-
harboring microbial assemblages in the Bohai Sea sediments was
further supported by the PCoA analysis (Figure 4).

CCA analysis was performed to decode the putative
diazotroph-environment relationship in the Bohai Sea
sediments (Supplementary Figure S5). Bottom water temperature
(p = 0.001; 1000 Monte Carlo permutations), bottom water
chlorophyll a content (or the covarying bottom water turbidity)
(p = 0.015; 1000 Monte Carlo permutations) and sediment
porewater Eh (or the covarying porewater pH; p = 0.032;
1000 Monte Carlo permutations) were identified as the
most significant environmental factors that might control
the structure and spatial distribution of the nifH-harboring
microbial communities in Bohai Sea sediments.

Abundance of the nifH-Harboring Microbes

in Bohai Sea Sediments

The qPCR results showed that the abundance of the nifH genes
ranged from 2.95 x 107 copies g~! sediment (station B3) to
2.63 x 10° copies g’l sediment (station B19) in the Bohai Sea
(Table 3). The highest nifH gene abundance occurred at the
sampling station B1, B19, and B14, respectively, in Liaodong
Bay, Laizhou Bay, and Bohai Bay sediments, respectively. Our
previous study showed that the total bacterial abundance was also
heterogeneously distributed in the sediments of the Bohai Sea,
with the bacterial 16S rRNA genes ranging from 3.25 x 10° copies
g~ ! sediment (station B16) to 2.10 x 10'° copies g~! sediment
(station B20) (Dang et al., 2013b). The ratios of the nifH gene
abundance to the bacterial 16S rRNA gene abundance ranged
from 0.36% (station B1) to 14.95% (station B19).

Pearson correlation analyses indicated that the sediment Hg
content (p = 0.018), sulfide content (p = 0.046), and porewater
SiO%f—Si content (p = 0.026) were positively correlated with the
nifH gene abundance in all investigated Bohai Sea sediments.

Comparison of nifH-Harboring Microbiota
in Bohai Sea and nSCS Sediments

In order to identify the difference of the diazotrophic microbial
communities in sediments from distinct marine environments
and to detect any general ecological characteristics of the
diazotrophic microbiota in sediments of different marginal
seas of the western Pacific Ocean, comparative analyses
were made between sediment samples from the Bohai Sea
and the previously studied nSCS (Dang et al, 2013a).
Community classification analyses indicated that the nifH-
harboring microbial communities could be classified into two
groups based on both unweighted (Figure 5A) and weighted and
normalized (Figure 5B) Fast UniFrac clustering analyses, with
Group I containing exclusively the nifH-harboring microbial
assemblages at the nSCS offshore and deep-sea sampling stations
(water depth > 130 m) and Group II containing the nifH-
harboring microbial assemblages at all the Bohai Sea sampling
stations as well as the shallow-water sampling stations A3
and E501 of the nSCS (water depth < 70 m). The estuarine
and nearshore sediments probably harbor N,-fixing microbial
assemblages distinctly different from those of the offshore
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TABLE 2 | The detail composition of the sequences (and OTUs) in the NifH phylogenetic tree obtained from the Bohai Sea sediments.

Station Class | Class Il Class Il Class V Class VI Class Vil
Cluster | Cluster I Cluster lll Cluster IV(A) Cluster IV(B) Cluster V Cluster VI(A) Cluster VI(B)
B1 28 (7) 41 (22) 1(1) 2(2) 4) 2(2) 2(2)
B3 24.(7) 37 (19) (6) 4 (4) (5) 1(1) 2(2)
B5 23 (10) 33(22) 3(1) 11 (5) 2 3 10 (6)
B7 38(9) 41 (19) 4(4) 4(3)
B8 17 (5) 1(1) 37 (18) 2(1) 4(2) 21 (10) 3(1) 7 (6)
B10 26 (5) 45 (23) 4(2) 5(3) 1(1) 6 (6) 1(1)
B11 30 (6) 40 (16) 2(2) 6 (6) 5 (4)
B12 21 (4) 49 (22) 1) 14 (8) 3(1) 1(1)
B14 29 (7) 47 (22) 1(1) 4(2) 4 (4)
B15 14 (5) 43 (14) 4(2) 2(2) 25 (2) 3(2)
B16 21 (7) 59 (28) 1(1) 3(3) 1(1) 8(7)
B19 19 (8) 57 (21) 2(2) (1) 6(4) 1(1)
B20 28 (10) 39 (25) 1(1) 32 9(7) 3@
B22 35 (10) 128 (44) 2(2) 1(1) 16 (6) 1(1) (2)
71 B1 0.10 T T T
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FIGURE 3 | Hierarchical clustering dendrogram of the Bohai Sea ercent variation expiaine &
sediment nifH-harboring microbial assemblages. This dendrogram was FIGURE 4 | PCoA L i f the Bohai .
constructed by using the Fast UniFrac weighted and normalized Jackknife _GU 4] ) Co _ordln_atlon diagram of t ? ,° ai Sea sediment
Environment Clusters statistical method with the use of the NifH protein me-harborlng mlcroblgl assemblages. Th|s diagram was prOQuced by
sequence data. The percentage supports of the classification tested with using the Fast UniFrac weighted and normalized PCoA method with the use of
sequence jackknifing resamplings are shown near the corresponding nodes. the N,'fH protein sequence data. The P1and P,Q show th? pgroent varllatlons of
the diazotroph assemblages explained by the first two principal coordinates.

and deep-sea sediments, regardless of the large geographical
distance between the Bohai Sea and the nSCS. The CCA analysis
further identified the sediment porewater dissolved oxygen
content (DO), water depth and in situ sediment temperature
(the bottom water temperature was used to approximate the
sediment temperature of the Bohai Sea) as the key environmental
factors (p = 0.001, p = 0.002, and p = 0.014, respectively;
1000 Monte Carlo permutations) influencing significantly the
community structure and biogeographical distribution of the

putative sediment diazotrophic microbiota in Bohai Sea and
nSCS sediments (Figure 6).

DISCUSSION

Nitrogenous nutrient-rich environments such as estuarine
and coastal seawaters and marine sediments have long been
regarded as environments lacking significant diazotrophic
activities, inferred previously from bacterial culture-based
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TABLE 3 | The abundance of the nifH and bacterial 16S rRNA genes in the
sediments of the Bohai Sea.

Sampling station

Mean copy no. of target genes g‘1 sediment (SE)

nifH Bacterial 16S rRNA*
B1 7.21 x 107 (2.70 x 109) 1.99 x 109 (1.30 x 109)
B3 2.95 x 107 (2.65 x 106) 5.04 x 109 (2.09 x 108)
B5 5.99 x 107 (5.75 x 106) 517 x 109 (1.71 x 108)
B7 1.45 x 108 (3.07 x 106) 8.00 x 109 (6.19 x 108)
B8 1.22 x 108 (9.57 x 106) 1.86 x 1010 (1.60 x 109)
B10 2.77 x 108 (1.01 x 107) 1.45 x 1010 (1.33 x 109)
B11 7.42 x 108 (4.26 x 107) 1.66 x 1019 (5.43 x 108)
B12 8.70 x 108 (7.46 x 107) 1.33 x 1010 (2.82 x 108)
B14 9.28 x 108 (5.40 x 107) 1.16 x 1010 (1.16 x 109)
B15 4.34 x 108 (3.88 x 107) 1.06 x 1010 (8.64 x 108)
B16 2.42 x 108 (1.90 x 107) 3.25 x 109 (4.08 x 108)
B19 2.63 x 109 (2.22 x 108) 1.76 x 1010 (7.52 x 108)
B20 9.45 x 108 (3.87 x 107) 2.10 x 1070 (6.29 x 108)
B22 5.54 x 108 (4.14 x 107) 1.83 x 1010 (6.02 x 108)

*The bacterial 16S rRNA gene abundance data were obtained from a previous study (Dang
etal., 2013b).

physiological studies. This inferred popular opinion resulted in
a long-time negligence of the N-fixing microorganisms and
activities in these environments whereas newer work led to
the hypothesis that marginal sea sediments may instead harbor
diverse and abundant N,-fixing microorganisms (Knapp, 2012;
Bertics et al., 2013; Dang et al., 2013a; Dekaezemacker et al.,
2013; Voss et al,, 2013). To test this hypothesis, we probed the
genetic potential of N, fixation in marine sediment microbial
communities: Indeed, highly diverse and abundant nifH gene
sequences were obtained from the sediments of the Bohai Sea
(Supplementary Figure S4, Table 2), consistent with the results
obtained recently from marine sediments of the nSCS (Dang
et al,, 2013a). Many of the Bohai Sea nifH gene sequences
are related to known bacterial diazotrophs (Supplementary
Figure S4, Supplementary Table S3). While these results
revealed the Nj-fixation potential of microbial communities
in Bohai Sea sediments, they also suggested microbial
diazotrophy as a common ecological property of marginal sea
sediments.

Besides being majorly related to environmental nifH gene
sequences obtained mainly from the nSCS sediments (Dang
et al,, 2013a) and occasionally from salt marsh sediments (Lovell
et al., 2001; Lovell and Davis, 2012), many of the nifH gene
sequences from Bohai Sea sediments are related to diverse known
bacterial species and a small number of methanogenic archaea
(Supplementary Figure S4). This is consistent with previous
findings that diazotrophic bacteria may be the predominant
N,-fixing microbes in shallow water sediments (Burns et al,
2002). A recently defined cluster of archaeal nifH gene sequences,
called Cluster III-x or Methane Seep Group, was associated
with microbes frequently found in deep-sea methane seep,
gas hydrate, and mud volcano sediments of the Pacific Ocean
marginal seas (Pernthaler et al, 2008; Dang et al, 2009a,
2013a; Dekas et al.,, 2009, 2014, 2016; Miyazaki et al., 2009).
However, Cluster III-x nifH gene sequences were not detected

in samples obtained from Bohai Sea sediments. Because Cluster
II-x nifH gene sequences are affiliated with anaerobic methane-
oxidizing archaea (ANME), they may occur only in methane-rich
environments. None of our Bohai Sea sampling stations were
located in methane seeps, gas hydrates or mud volcanoes. The
lack of the chemoautotrophic ANME nifH gene sequences in
samples from shallow coastal sediments is consistent with the in
situ geochemical condition of the Bohai Sea.

More than half of the deduced NifH sequences associated
with Bohai Sea sediment samples shared high (>90%) identity
with NifH sequences from known bacteria, of which the majority
are SRB. This result indicates that SRB may be the dominant
and prevalent N,-fixing microbes in the sediments of the Bohai
Sea. Many SRB harbor functional N, fixation genetic inventories
(Barton and Fauque, 2009) and SRB were previously found to be
important N,-fixing bacteria in marine intertidal microbial mats
(Zehr et al., 1995; Steppe and Paerl, 2002, 2005; Stal et al., 2010). It
was recently reported that the benthic microbial N, fixation rate
is coupled to sulfate reduction activities in lagoons and coastal
bays supporting the notion that SRB may play a key role in
sediment N, fixation and new nitrogen production (Bertics et al.,
2010, 2013). Furthermore, N fixation activities of sediment SRB
are tolerant of high (e.g., up to 0.8 or 1.2 mM) environmental
NH] concentrations (McGlathery et al., 1998; Bertics et al., 2013)
suggesting that benthic N, fixation is robust and widespread in
marine sediments. In our current study, sediment sulfide, the
product of microbial sulfate reduction, was found to correlate
positively with nifH gene abundance in Bohai Sea sediments.
This suggests that SRB may contribute substantially to N,
fixation and sulfate reduction in sediments and thus determine
the abundance, spatial distribution, structure, and activity of
diazotroph communities in marginal sea sediments.

SRB have been found to be the principal contributors to
the accumulation and persistence of environmental organic Hg
in coastal marine sediments (Sunderland et al., 2004; Schaefer
et al,, 2011; Parks et al., 2013). It is also known that sulfide
produced by SRB facilitates precipitation and thus accumulation
and persistence of Hg in anoxic marine sediments (Baeyens et al.,
1998). These ecophysiological properties of SRB may explain the
correlation between nifH gene abundance and Hg content in the
studied Bohai Sea sediments. Hg is one of the key environmental
contaminants in many estuaries and coastal bays of the Bohai
Sea (Wang et al., 2010; Gao et al., 2014), where eutrophication
is common, especially in summer times (Wang et al., 2009). Our
data suggest that the accumulation and persistence of Hg in the
sediments of the Bohai Sea may be attributable, at least partially,
to the activity of nifH-harboring SRB.

The in situ bottom water temperature was putatively identified
as a key environmental factor controlling the community
structure and spatial distribution of the sediment putative
diazotrophs in the Bohai Sea (Supplementary Figure S5). This
finding agrees with the previously reported relationship of
sediment in situ temperature with the community structure and
spatial distribution of nifH-harboring microbial assemblages in
the nSCS sediments (Dang et al, 2013a). Our current study
supports the importance of temperature as a key environmental
factor controlling universally the distribution of the diazotroph
communities in marine water columns and sediments; also
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FIGURE 5 | Hierarchical clustering dendrograms of the Bohai Sea and northern South China Sea sediment nifH-harboring microbial assemblages.
These dendrograms were constructed by using the Fast UniFrac unweighted (A) and weighted and normalized (B) Jackknife Environment Clusters statistical methods
with the use of the NifH protein sequence data obtained from the current study and a previous study of the nSCS (Dang et al., 2013a). The percentage supports of the
classifications tested with sequence jackknifing resamplings are shown near the corresponding nodes. The Bohai Sea sampling stations are labeled in red color and
the northern South China Sea sampling stations are labeled in blue color.

because temperature has previously been implicated as the most
important environmental factor in the spatial distribution of
seawater N,-fixing cyanobacteria in the oceans (Stal, 2009).
Temperature influences not only nitrogenase activity but also
O, solubility in seawater and sediment porewater. Enhanced
respiration is usually employed by diazotrophs under elevated
O, concentrations (such as under low temperature conditions)
for providing energy to replace O,-damaged nitrogenase by
de novo synthesis and/or for O, consumption to maintain
anaerobic N,-fixing activity (Stal, 2009; Groflkopf and Laroche,
2012; Bandyopadhyay et al., 2013; Brauer et al.,, 2013). These
biochemical and physiological mechanisms explain well the
importance of environmental temperature on the community
structure, distribution, and activity of marine diazotrophic
microbiota.

The bottom water chlorophyll a content (or the covarying
bottom water turbidity) was putatively identified as another key
environmental factor controlling the community structure and

spatial distribution of the putative diazotrophs in Bohai Sea
sediments (Supplementary Figure S5). Chlorophyll a is related
to the biomass and primary production of phytoplankton and
both chlorophyll a and turbidity may indicate the potential of
organic matter export from water column to marine sediments
(Sobczak et al., 2002; Volkman and Tanoue, 2002). The positive
correlation between nifH gene abundance with SiO%f—Si content
in Bohai Sea sediments suggests that diatom productivity affects
size and activity of the diazotroph community in sediments
(Yool and Tyrrell, 2003; Wei et al., 2004). The phylogenetic
analysis of deduced NifH sequences (Supplementary Figure
S4) suggests that most of the nifH-harboring microbes in
Bohai Sea sediments are heterotrophic bacteria. Respiration of
bioavailable organic carbon is the major process for heterotrophic
diazotrophs to acquire the metabolic energy to fix N, (Riemann
et al,, 2010; Moisander et al., 2014), which is highly energy
demanding (Shanmugam et al., 1978; Brill, 1980). Therefore,
organic carbon supplies, especially those from metabolizable
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study of the northern South China Sea (Dang et al., 2013a).

phytoplankton and benthic diatom products, may constitute
the major energy sources to fuel the obligately or facultatively
anaerobic diazotrophic microbiota in sediments of coastal seas.
In addition, obligately anaerobic bacteria such as SRB and,
in particular, the process of N, fixation, are highly sensitive
to oxygen stress (Dixon and Kahn, 2004; Riemann et al,
2010; Zhou et al., 2011). Benthic respiration on organic matter
consumes oxygen, which may thus help maintaining the hypoxic
to anoxic state of the sediment environment and facilitate N,
fixation by anaerobic diazotrophs. In line with this, sediment
porewater Eh, an indicator of the environmental redox status,
was found to correlate significantly with the community structure
and biogeographical distribution of nifH-harboring microbes in
Bohai Sea sediments (Supplementary Figure S5). To maintain the
hypoxic to anoxic condition may also be necessary for N, supply
in marine sediments: for instance, the heterotrophic N fixation
process was linked directly to the N, production processes by
anammox and denitrifying bacteria in marine OMZ waters off
the Peru coast (Loescher et al., 2014). A similar coupling of N,
fixation and N, production microbial processes may also exist
in marine sediments. Indeed, the Bohai Sea sediments harbor
diverse anammox bacteria including a new species, Candidatus
Scalindua pacifica (Dang et al., 2013b). Therefore, the in situ
physical and geochemical condition, rather than the geographical
location (Figures 3, 4, Supplementary Figure S5), may play a
key role in determining the abundance, community structure,
niche availability, biogeographical distribution, and activity of
the diazotrophic microbiota in the sediment environments of the
Bohai Sea.

In order to examine the general biogeographical and
ecological characteristics of diazotrophic communities in

sediments of the western Pacific Ocean, we performed a
comparative analysis of nifH-harboring microbial communities
in Bohai Sea and nSCS sediments (Dang et al., 2013a). The results
of community classification analyses indicate that the estuarine
and nearshore benthic environments harbor distinctly different
putative diazotrophic assemblages from those of the offshore
and deep-sea benthic environments (Figure 5). Furthermore, the
consistency of the unweighted (only taking into account the NifH
OTU composition for the analysis; Figure 5A) and weighted
(taking into account both the composition of the NifH OTUs and
their relative abundances for the analysis; Figure 5B) community
classification results suggests that the difference in composition
(Figure 5A) may be the key contributor to the difference between
sediment diazotroph communities in the western Pacific Ocean.
Although the A3 and E501 sampling stations in the nSCS are
very distant and segregated from the Bohai Sea, the sediment
diazotrophic assemblages of these two stations are separated
from the remaining nSCS stations and clustered with the
sampling stations of the Bohai Sea (Figure 5), indicating that
the in situ physical and geochemical condition may play a more
important role than geographical contiguity in determining the
community similarity of diazotrophic microbiota in sediments.
In line with this, water depth, sediment porewater DO and
in situ temperature were identified as the key environmental
factors tentatively controlling the composition, community
structure and biogeographical distribution of the N,-fixing
microbiota in the western Pacific Ocean sediments (Figure 6).
The identification of sediment porewater DO as a controlling
environmental factor further verifies the importance of the
anaerobic heterotrophs in N, fixation in marginal sea sediments,
while the importance of water depth and in situ temperature
suggests niche specialization and segregation between the
shallow-water (estuarine and nearshore) and the deep-water
(offshore and deep-sea) diazotrophic sediment communities.
Our current investigation tentatively identified important general
ecological, biogeochemical, and biogeographical characteristics
and key environmental factors that influence the sediment
diazotrophic microbiota and their potential activity in marginal
seas.
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