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Open microalgae cultures host a myriad of bacteria, creating a complex system

of interacting species that influence algal growth and health. Many algal microbiota

studies have been conducted to determine the relative importance of bacterial

taxa to algal culture health and physiological states, but these studies have not

characterized the interspecies relationships in the microbial communities. We subjected

Nanochroloropsis salina cultures to multiple chemical treatments (antibiotics and quorum

sensing compounds) and obtained dense time-series data on changes to the microbial

community using 16S gene amplicon metagenomic sequencing (21,029,577 reads

for 23 samples) to measure microbial taxa-taxa abundance correlations. Short-term

treatment with antibiotics resulted in substantially larger shifts in the microbiota

structure compared to changes observed following treatment with signaling compounds

and glucose. We also calculated operational taxonomic unit (OTU) associations and

generated OTU correlation networks to provide an overview of possible bacterial OTU

interactions. This analysis identified fivemajor cohesivemodules of microbiota with similar

co-abundance profiles across different chemical treatments. The Eigengenes of OTU

modules were examined for correlation with different external treatment factors. This

correlation-based analysis revealed that culture age (time) and treatment types have

primary effects on forming network modules and shaping the community structure.

Additional network analysis detected Alteromonadeles and Alphaproteobacteria as

having the highest centrality, suggesting these species are “keystone” OTUs in the

microbial community. Furthermore, we illustrated that the chemical tropodithietic acid,

which is secreted by several species in the Alphaproteobacteria taxon, is able to

drastically change the structure of the microbiota within 3 h. Taken together, these results

provide valuable insights into the structure of the microbiota associated with N. salina

cultures and how these structures change in response to chemical perturbations.
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INTRODUCTION

Open algal cultures are complex dynamic ecosystems inhabited
by diverse microbial communities (Carney et al., 2014). In
many cases, microbes in microalgae ecosystems have effects
on algal physiology and nutrition as well as play critical roles
on stability and homeostasis of algal ecosystems in both lab
cultures and field studies (Kayser, 1979; Lee et al., 2000; Geng
and Belas, 2010b). These types of algal-microbial interactions
have been shown to either promote algal growth (Hold et al.,
2001) and protect algae from invading pathogens (Geng and
Belas, 2010b), or to inhibit algal growth and destabilize the algal
ecosystem (Cole, 1982; Carney et al., 2014). Thus, knowledge
of the composition and structure of algal-associated microbiota
is important for understanding homeostasis in robust algal
cultures, as aberrant microbiota have been reportedly linked
with precipitous crashes of algal cultures (Cole, 1982; Carney
et al., 2014). These observations argue for finding important
relevant factors that contribute to the appropriate composition
and proper structuring of this complex biological community
(Carney et al., 2014; Sison-Mangus et al., 2014).

Given that microbial communities are enormously diverse,
we are only able to characterize their diversity with the recent
use of next-generation sequencing technologies (Gonzalez et al.,
2012). In the past, algal microbiota researchers have focused
on understanding the relationship between collective population
diversity and environmental conditions in algal cultures (Alavi
et al., 2001; Carney et al., 2014) and on linking individual
membership composition to ecosystem descriptors (Costello
et al., 2009). However, the overarching property of a microbial
consortium may stem from the requisite biological functions
of collective groups consisting of multiple interacting bacterial
species (known as modules) found in the community. For
example, biofilm formation and metabolic complementation are
modules in which the collective bacteria species deliver the
required functions (Raes and Bork, 2008; Geng and Belas, 2010b).
However, limited information is available on the substructure
of the microbial communities (e.g., formation of bacterial
groups or modularities recapitulated from interacting bacterial
species) associated with microalgae. This not only hinders the
interpretation of topological structures that oversee the proper
function of the microbial community but also reduces the
reliability of prediction of the community structure and its effects
on the long-term stability of microalgae cultures.

One way of exploring substructures in biological systems is
to look for pairs of entity relationships and subsequently using
this information to build a correlation network of potentially
interacting entities. Correlation networks have been successfully
used in studies of cancer (Choi et al., 2005), yeast genetics
(Ge et al., 2001), and microbial ecology (Lovejoy et al., 1998;
Duran-Pinedo et al., 2011; Gilbert et al., 2012), which focused
on searching for groups of lineages that occur together more
often than expected by chance. Once networks have been
built, several measures and metrics such as node centrality
and betweenness can be evaluated to assess and identify the
most important and influential nodes in the network (Jeong
et al., 2001). Centrality measures the importance of a node

based on the number of connections it makes with other nodes
(degree centrality) in the network and may include measures
of the importance of the neighbors to which it is connected
(eigenvalue centrality, Katz centrality, page rank). Nodes with
high number of connections to other nodes are perceived as
having greater influence over the entire network (Jeong et al.,
2001). Betweenness centrality measures the extent to which a
node lies on paths between other nodes and is an indicator of the
influence a node exerts over other nodes in the network. Nodes
with higher betweenness are perceived to have greater influence
within a network by virtue of their control over information
passing among the other nodes in the network (Yoon et al., 2006).
In other microbial ecological systems, network analyses based on
Weighted Correlation Network Analysis (WGCNA) were used to
identify hub OTUs with influential roles in maintaining a mature
biofilm (Duran-Pinedo et al., 2011).

Recently, we found a microbial community associated with
Nannochloropsis salina (CCMP, 1776) that displayed community
stability and resilience to environmental perturbations at a
global level (Geng et al., 2016). To obtain clues about the
substructuring of the microbial community associated with N.
salina, we subjected N. salina containing communities to various
chemicals (e.g., antibiotics, metabolites) and examined changes
in the connectivities among taxa in the microbial community.
We used longitudinal 16S gene amplicon sequencing of 23
samples descended from a single ancestral microbiota and built
correlation networks to reflect the dynamics of the inter-taxa
associations and to investigate variations in taxa organization
in response to different chemical treatments. As a result, we
identified five cohesive modules representing various chemical
treatment responses. Subsequently, through network centrality
analysis, our data showed that key nodes in the modeled
network were primarily from the bacterial species belonging
to Alteromonadeles and Alphaproteobacteria, suggesting species
from these groups are of particular significance and serve
as “keystone” OTUs in the microbial community associate
with N. salina.

Species of the Roseobacter clade of Alphaproteobacteria are
important symbionts of microalgae (Gonzalez and Moran,
1997; Treangen et al., 2013). One of the key aspects of the
Roseobacter–microalgae symbiosis is founded on Roseobacter’s
ability to produce a distinct set of infochemicals or signaling
compounds with specialized functions (Mayali and Azam, 2004;
Geng and Belas, 2010b; Seyedsayamdost et al., 2011; Treangen
et al., 2013). For example, the antibiotic tropodithietic acid
(TDA) produced by Roseobacter played a pivotal role in the
bacterial-algal symbiosis by regulating TDA gene expression
across various species (Geng and Belas, 2010a; Porsby et al.,
2011) and preventing bacterial infection during prosperous
algal blooms (Brinkhoff et al., 2004; Bruhn et al., 2007).
Inspired by insights from network analysis, we treated the
microbiota with various concentrations of TDA, simulating
TDA secretion from someAlphaproteobacteria. The introduction
of TDA drastically impacted community structure at a global
level. Taken together, this experimental metagenomics study,
while not fully characterizing OTU interactions in the microbial
community associated with N. salina, provides a valuable
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framework to aid modeling of interactions among the algal
microbiota and understanding the important microbiota—
microalgae interactions in the context of the complexity of the
studied ecosystem.

MATERIALS AND METHODS

Algal Cultures and Experimental Design
Artificial microcosms of N. salina (CCMP, 1776) and the
microbiota were generated by acclimating N. salina culture
together with seawater microbiota from the coast of Santa Cruz,
CA (Geng et al., 2016). After 1:10 culture dilution with fresh
sterile artificial seawater media (ESAW) (Berges et al., 2001), algal
cultures were grown to exponential phase. For the community
restructuring experiments, triplicates were generated by splitting
the algal cultures into 8 ml/well in 6-well Corning Costar R©

cell culture plates. The aliquoted exponential phase N. salina
cultures (day 4 post-inoculation) were immediately spiked with
two separate doses of sterile-filtered organic compounds (dosage
were chosen based on the typical working concentrations for
each chemical and a reference concentration (500 nM) for all
chemicals; Table 1): (i) mixtures of common forms of bacterial
quorum-sensing signaling molecules (Atkinson and Williams,
2009), including acyl-homoserine lactones (AHLs) [Sigma

TABLE 1 | Chemical treatments in algal microcosms.

Sample Chemicalsa Treatment Number Observed

name time (hours) of sequences OTUsb

starth0 Blank 0 81,967 3731

AHLL3 AHLs (31 nM) 3 114,404 3711

AMPL3 Ampicillin (500 nM) 3 103,175 3774

GLUCOSEL3 Glucose (500 nm) 3 159,219 3550

TDAL3 TDA (31 nm) 3 121,794 3698

TETL3 Tetracycline (500 nm) 3 138,805 3615

AHLH3 AHLs (500 nm) 3 114,275 4029

AMPH3 Ampicillin (134 µM) 3 121,688 4208

BLANK3 Blank 3 110,341 3759

GLUCOSEH3 Glucose (300 µM) 3 137,209 3778

TDAH3 TDA (500 nm) 3 122,655 4176

TETH3 Tetracycline (104 µM) 3 146,511 4104

AHLL24 AHLs (31 nm) 24 223,733 3036

AMPL24 Ampicillin (500 nm) 24 135,886 3857

GLUCOSEL24 Glucose (500 nm) 24 138,265 3360

TDAL24 TDA (31 nm) 24 245,234 3320

TETL24 Tetracycline (500 nm) 24 242,666 4100

AHLH24 AHLs (500 nm) 24 180,657 3606

AMPH24 Ampicillin (134 µM) 24 130,815 3732

BLANK24 Blank 24 128,023 3704

GLUCOSEH24 Glucose (300 µM) 24 242,402 2892

TDAH24 TDA (500 nm) 24 203,911 4130

TETH24 Tet (104 µM) 24 311,800 2875

aChemical name (final concentration).
bObserved OTUs/sample rarefied at 80,000 sequences per sample.

Aldrich (St. Louis, MO)] composed of N-butyryl-DL-homoserine
lactone, N-hexanoyl-DL-homoserine lactone, N-octanoyl-DL-
homoserine lactone, N-(β-Ketocaproyl)-L-homoserine lactone
[31 nM (Wagner-Dobler et al., 2005) and 500 nM]; (ii)
tetracycline (500 nM and 104 µM; Sambrook et al., 1989);
(iii) ampicillin (500 nM and 134 µM; Sambrook et al., 1989);
(iv) tropodithietic acid (TDA), an antibacterial and chemical
signaling compound (31 nM and 500 nM; D’Alvise et al., 2012;
Enzo Scientific, Farmingdale, NY); (v) D-glucose (500 nM and
300 µM) [Sigma Aldrich (St. Louis, MO)]. Low doses of D-
glucose (500 nM) were treated as negative controls, as the effect
of glucose on the bacterial community has been found to be
minimal compared to antibiotic treatment (Dandekar et al.,
2012). The incubation continued at 21◦C under constant light
conditions (100 µmol photons m−2s−1). An initial 4 ml was
taken from each sample after 3 h and centrifuged 10,000 g for 5
min to pellet the bacterial community. The remaining 4 ml in
each well were harvested after 24 h. Bacterial community pellets
were stored at−80◦C prior to DNA extraction.

Samples and 16S rRNA Gene Sequencing
Genomic DNA was extracted from algal culture samples
with associated microbiota using a ZR Fungal/Bacterial
DNA MiniPrep (ZYMO Research, Irvine, CA) following the
manufacturer’s protocol. 16S gene PCR preparation with
standard procedures with barcoded primer set 341F forward
and 518R reverse primer as previously described (Bartram
et al., 2011). The triplicate PCR products from each sample
were pooled and purified using QIAquick PCR purification kit
(Qiagen, Valencia, CA) followed by quantification on aNanodrop
ND spectrophotometer (Thermo Science, Wilmington, DE).
Twenty-three samples in equal amount with unique index
sequence were mixed and further subjected to 2% gel purification
using QIAquick gel extraction kit (Qiagen) following by
quantification with a Bioanalyser DNA 7500 chip (Agilent
Technologies, Santa Clara, CA). The prepared 16S rRNA gene
library with addition of 30% PhiX was sequenced for 151-
nucleotide paired-end multiplex sequence on MiSeq (Illumina,
Hayward, CA) with a loading concentration of 8 pM following
manufacturer’s protocol.

Sequence Processing
Sequence reads were filtered to remove sequences of poor quality
(e.g., two or more continuous base calls below 30 and length <75
bases). Forward and reverse sequences of paired-end sequences
were assembled by aligning 3′ ends using SHE-RA software
(Rodrigue et al., 2010). Stitched sequences were then clustered
using the UCLUST algorithm with 97% similarity and assigned
to operational taxonomic units (OTUs) above a 0.80 confidence
threshold, which is a homology cutoff value above which typically
denotes bacterial species, and taxonomic classifications were
assigned in reference to Greengenes taxonomy (RDP-Classifier)
in QIIME (DeSantis et al., 2006; Caporaso et al., 2010; Sul et al.,
2011). OTUs ascribed to chloroplasts were then excluded from
the pre-trimmed OTU table. Differences between samples (beta
diversities) were performed using QIIME rarefied at depth 80,000
sequences/sample in post-trimmed OTUs table (DeSantis et al.,
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2006; Caporaso et al., 2010). To obtain relative abundances of
OTUs per sample, the post-trimmed OTU reads were divided by
the sum of usable reads. Principal coordinate analysis (PCoA)
was applied based on their between-samples weighted UniFrac
distances metrics. Jackknifing was performed by resampling 1000
times with replacement of 50,000 sequences per sample in post-
trimmed OTUs table and was used to build a rooted pairwise
similarity tree using the Unweighted Pair Group Method with
Arithmetic Mean (UPGMA) in QIIME (Caporaso et al., 2010)

Correlation Network Analysis
To remove poorly represented OTUs and reduce network
complexity, we filtered and retained OTUs that were observed
in a minimum of 13 out of total 23 samples, resulting in 1766
OTUs out of 27,298 OTUs being selected. Based on this, we
calculated all pairwise Pearson correlations between OTUs using
the WGCNA module in R (Team, 2015). Rather than focusing
on the significance of the correlation, soft thresholding power
was applied in WGCNA to dynamically prune branches off the
dendrogram depending on clusters shape (DiLeo et al., 2011).
To minimize spurious associations during module identification,
the adjacency matrix was transformed to a Topological Overlap
Matrix, corresponding dissimilarity was then calculated as a

robust measure of interconnectedness in a hierarchical cluster
analysis (DiLeo et al., 2011). Average linkage hierarchical cluster
analysis was used to construct the corresponding dendrogram
(DiLeo et al., 2011).

Network Centralities
Networks were explored, analyzed and visualized with Cytoscape
based on the pairwise correlations (Smoot et al., 2011). Global
measurements (e.g., betweenness, closeness, neighborhood
connectivity, and topological coefficient) assessing the topology
and centrality of the resulting network were calculated using
Cytoscape with the NetworkAnalyzer plugin (Doncheva et al.,
2012). To relate modules to chemical treatments, we correlated
the eigengene for each module with the chemicals and looked for
significant associations based on p-values.

RESULTS

Response of the Microbial Community
Associated with N. salina to Chemical
Perturbations
To generate a collection of datasets representing species relative
abundance in response to known perturbations, we added a set

FIGURE 1 | Clustering of microbial diversity (β-diversity) of the starting microbiota with the samples from different chemical treatments at 3 and 24h.

Jackknifing of the UPGMA tree displays the robustness of clustering of the microbiota from the 3 h from 24h samples. Bootstrap values are shown at the nodes of the

tree, indicating percentage of jackknifed data supporting the node. Samples are named as following: chemical name (e.g., GLUCOSE), H/L (high/low concentration,

e.g., L) and treatment time (e.g., 3), sample (GLUCOSEL3, treated with low amount of glucose for 3 h). Samples from 3h (blue) treatment that were most similar to the

starting microbiota are highlighted with a red vertical red bar.
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of chemicals expected to have pervasive effects on N. salina
microbial communities to the culture during exponential growth
phase. The spiked chemicals include AHLsmixtures, tetracycline,
ampicillin, TDA, and D-glucose in low and high concentrations
chosen to maximize the likelihood of microbiota perturbations
(Section Materials and Methods). The microbial community
associated with N. salina from one untreated and four treated
samples were collected at 3 and 24 h post inoculation, along
with one starting microbiota (0 h), collectively generating 23
samples (Table 1). A total combined 21,029,577 reads from rRNA
16S gene V3 region of 23 microbiota samples were successfully
assigned to individual samples. After filtering out low quality
reads and OTU assignments (Section Materials and Methods),
we obtained an OTU table of the 23 samples with a mean
of 158,931 Seqs/sample (minimum: 81,976; maximum: 311,800;
median 137,209 Seqs/sample) (Table 1). We assessed inter-
sample variability using PCoA based on unweighted Unifrac
metric measures in which the distance represents dissimilarity
among community structures (Figure 1) (Lozupone and Knight,
2005). Among all tested microbiota, the initial microbiota
(start0), blank control (3 h) and glucose treated samples (3 h)
were found to be most similar in composition, thus clustering
to what we call the “early” microbiota group (Figure 1, labeled
with the red bar). The similarities among these groups reflect
glucose and short temporal lags have only marginal effects on
the structure of the microbiota. These patterns are expected,
as glucose is widely used by many bacteria through the hexose
monophosphate pathway in glucose metabolism, thereby having
minimal effects in restructuring the microbial assemblage as
compared to antibiotics (Dandekar et al., 2012). In contrast,
short-term 3-h low concentration antibiotics treated-samples
(TETL3 and AMPL3) migrate further away from the starting
sample (start0) (Figure 1). This shift is further pronounced when
comparing the starting microbiota and the high-dose antibiotics-
treated samples (TETH3 and AMPH3) at the same 3-h timepoint
(Figure 1). In addition, the short-term low TDA treatment for
3 h (TDAL3) resulted in a microbiota that coincided with
“early” group microbiotas, which are most similar to the starting
microbiota, whereas the high TDA imposed pronounced effects
on the microbiota.

The microbiotas from the 3 h time points clustered together,
while the 24 h treatment microbiotas formed a separate cluster
(Figure 1), revealing groupings in the bacterial community as
a function of treatment time. Collectively, 16S gene profiles
displayed both culture age-dependent and chemical-responsive
structural rearrangement of algal microbiota.

Structural Modulation of Algal Microbiota
upon Chemical Treatments
To assess pairwise Pearson correlations among OTU relative-
abundance data, we randomly selected 80,000 sequences per
sample, built OTU tables, and filtered OTUs that contributed
to at least half of 23 microbiota samples. The 1766 qualified
OTUs produced from this process were subsequently fitted to a
correlation matrix with scale free topology (power of 6, R2 =

0.81) using WGCNA, which has been shown to be robust for

analyzing relative abundance data (DiLeo et al., 2011). WGCNA
revealed five major co-abundance modules that were arbitrarily
given colors yellow, brown, blue, turquoise, and gray (Figure S1).
Upon identification of modules in the microbial community
associated with N. salina, we associated them with external
treatment factors. Figure 2A shows that OTU membership in
the yellow module was positively correlated with culture-age
associated OTUs (coefficient = 0.54, P < 0.05). Figure 2B

illustrates that treatment time was especially important, as
three modules were found to be significantly associated with
treatment time, whereas the blue (coefficient = −0.80, P < 0.05)
and turquoise (coefficient = −0.57, P < 0.05) modules were
negatively correlated with treatment time. These data indicate
treatment time was a primary factor in contributing to variations
in species abundance in these particular studies, which is
consistent with beta-diversity analysis using unweighted Unifrac
metric measure (Figure 1). Neither the glucose treatment nor
the untreated microbiota was significantly associated with any
of the five identified modules (P > 0.05). There were also
no modules significantly associated with tetracycline under the
studied concentrations. Figure 2B shows the brown colored
module was selectively correlated with ampicillin treatment
(P < 10−7). Taxonomy analysis showed the brown chemotype-
specific module was enriched by the Rhodobacteraceae family (13
out of 14, with only 1 coming from the Erythrobacteraceae family,
P < 0.05, enrichment analysis), whereas the yellow module was

FIGURE 2 | Association of modules with external treatment factors. (A)

OTUs associated with treatment–time with respect to their membership

significance belonging to the yellow module. (B) Eigengene adjacencies

heatmap identifying modules (row) that significantly associated with chemical

treatments (column). Negative correlations (green) and positive correlations

(red) indicate high adjacency (DiLeo et al., 2011), while white (zero) indicates

low adjacency.
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enriched by the Alteromonadaceae family (8 out of 11, P < 0.05,
enrichment analysis) (Figure 3). Therefore, the apparent module
substructures were associated with the taxonomical coherence of
dominant OTUs.

Network Centralities and Identification of
Hubs
To display an empirical base for discovery and to explore specific
details of the substructures of the community, associations from
the top 1000 OTUs ranked by coefficient were plotted. Figure 4
shows the resulting microbial network consisting of 1000 nodes
and 68,675 edges with average clustering network coefficient
of 0.856, suggesting the down-selected OTUs constituted a
highly connected network. The average number of network
neighbors between all pairs of nodes was 137, and the network
centralization was 0.768 as determined using NetworkAnalyzer

(Doncheva et al., 2012). Hub nodes within respective modules
are often proposed to be critical components for the network
(Mayali and Azam, 2004). To identify species that may be acting
as hubs, and thus be critically important components of the
community network structure, we ranked nodes using various
network centrality measures, including betweenness, closeness,
neighborhood connectivity and topological coefficient (Table 2).
Based on these measures, species from the Alteromonas and
Rhodobacteraceae families were hypothesized to be key species
influencing the inter-OTU relationships.

TDA Alter the Structure of the Microbial
Community Associated with N. salina
Correlation network analysis led us to hypothesize that bacterial
species from Rhodobacteraceae are key species in structuring
the microbial community associated with N. salina. To gather

FIGURE 3 | Relative abundance of OTUs at the family level (indicated by different colors) in identified modules. (A) Blue module (total OTUs 40 annotated

at family level, 127 OTUs unassigned at family level are not shown) was dominated by Flavobacteriaceae (25%, n = 10) and Alteromonadaceae (20%, n = 8). (B)

Brown module (14 OTUs annotated, 63 unassigned) was dominated by Rhodobacteraceae (92%, n = 13). (C) Yellow module (total OTUs 11 annotated at family level)

is comprised of Alteromonadaceae (72%, n = 8), Rhodobacteraceae (9.1%, n = 1), and Moraxellaceae (9.1%, n = 1). (D) Turquoise module (10 OTUs assigned to 8

families, 876 unassigned OTUs) is comprised of 8 families. These data showed that Rhodobacteraceae was significantly enriched in the brown module (one-sided

Fisher’s exact test, P < 0.0001) and Alteromonadaceae was significantly enriched in the yellow module (one-sided Fisher’s exact test, P < 0.05).
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FIGURE 4 | Topology of the microbial community associated with N. salina. The identified modules were colored according to module names (Blue, Brown,

Turquoise, and Yellow). The whole network contains 1000 nodes representing bacterial OTUs and 68,675 edges, showing correlations between the OTUs with an

edge weight cutoff of 0.20 in the WGCNA network (DiLeo et al., 2011). OTUs were annotated at the family level. Rhodobacteraceae and Alteromonadaceae are

shown as squares and triangles, respectively. OTUs from families other than Rhodobacteraceae and Alteromonadaceae are displayed as circle.

evidence for this hypothesis, we treated N. salina containing
microbial communities with varying concentrations of TDA,
a hallmark antibiotic in many species of the Roseobacteria
clade in Rhodobacteraceae, and sampled the microbiota at 3
and 24 h time periods. Taxonomic distributions at the family-
level across TDA-perturbed samples, grouped by exposure time,
are illustrated in Figure 5. The largest taxa in all microbiota
were populations of Flavobacteriia, Alphaproteobacteria, and
Gammaproteobacteria bacterial classes. Figure 5 also shows
that the 24 h microbiota decreased in relative abundance
of Flavobacteriia (23 ± 4%) and Alphaproteobacteria (14
± 4%), comparted to 3 h (excluding TDA, 500 nM, 3 h)
Flavobacteriia (39 ± 2%) and Alphaproteobacteria (32 ± 2%).
Meanwhile, Gammaproteobacteria relative abundance at 24 h
increased to 60 ± 9% compared to 3 h (excluding TDA,
500 nM, 3 h) Gammaproteobacteria (25 ± 9%). Of particular
note, the microbiota (TDA, 500 nM, 3 h) was composed of
Flavobacteriia (31 ± 1%), Alphaproteobacteria (21 ± 0%), and

Gammaproteobacteria (45 ± 2%), suggesting it exhibits some
compositional similarities to 24 hmicrobiota (Figure 5). PCoA of
the data revealed patterns of beta-diversity (unweighted UniFrac
distance metric) primarily forming two clusters differentiated by
the time point at which the microbiota was sampled (Figure 6).
Specifically, without TDA treatment, the microbiota at the 3-h
time point were similar in structure to the starting microbiota
(Unifrac distance, 0.03 ± 0.01). The addition of low doses of
TDA (31.25 nM) slightly shifted the microbial composition over
the 3-h time period (Unifrac distance, 0.05 ± 0.02). In contrast,
treatment with higher TDA doses (500 nM) markedly shifted
the composition away from the initial microbiota (Unifrac, 0.14
± 0.02), and at the 3-h time point clustered with the samples
obtained after 24 h. Hence, the data imply that microbiota
exposed to 500 nM TDA will not only drastically restructure
(as compared to the unperturbed community), but also hasten
the progression of microbial community structure in a dose-
dependent manner toward the more mature microbiota.
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TABLE 2 | Identified “keystone” OTUs in co-abundance networks.

OTU IDa Familyb Betweenness Closeness Neighborhood Topological Module

Connectivity Coefficient Membership

268 NAc 0.51 0.71 8 0.36 Brown

179d Rhodobacteraceae 0.29 0.51 5 0.28 Brown

1070 NA 0.14 0.9 151 0.16 Turquoise

264 Erythrobacteraceae 0.11 0.63 8 0.41 Brown

265 NA 0.08 0.62 8 0.43 Brown

267 NA 0.07 0.6 9 0.45 Brown

1057 NA 0.06 0.85 161 0.17 Turquoise

176 Rhodobacteraceae 0.05 0.38 3 0.47 Brown

91 Alteromonadaceae 0.05 0.49 276 0.3 Blue

126 Rhodobacteraceae 0.05 0.47 10 0.53 Brown

1040 NA 0.04 0.82 165 0.18 Turquoise

1009 NA 0.03 0.81 163 0.18 Turquoise

1066 NA 0.03 0.8 165 0.18 Turquoise

266 NA 0.03 0.56 10 0.51 Brown

1087 NA 0.02 0.79 168 0.18 Turquoise

1048 NA 0.02 0.8 167 0.18 Turquoise

131 Rhodobacteraceae 0.02 0.52 10 0.5 Brown

257 NA 0.02 0.55 10 0.54 Brown

89 Alteromonadaceae 0.02 0.48 643 0.7 Yellow

92 Alteromonadaceae 0.02 0.33 11 0.44 Yellow

aAssigned OTU identity.
bOTU taxonomy at family level.
cNA, OTU taxonomic assignment not available at family level.
dProposed “keystone” OTUs Rhodobacteraceae and Alteromonadaceae are highlighted in bold.

DISCUSSION

Among the efforts to understand the complexity of microalgae
microbiota, this current study is unique in that it aimed to
chart multispecies relationships underpinning the substructure
of microalgae microbiota. To achieve this aim, we experimentally
perturbed a multispecies algal microbiota with various chemical
treatments, quantified the changes to taxa profiles, and applied
network analysis for modeling of interspecies relationship which
provided a cohesive overview of the microbial community
associated with N. salina structure.

It is well established that antibiotics can cause major
disturbances within the ecological balance of microbiomes
(Mayali and Azam, 2004). Thus, we postulated that antibiotic
treatment provides an inferable means to introduce variations
among bacterial species due to differential antibiotic
susceptibility among them. Indeed, chemical treatments
introduced major variations among the microbial communities
within the same treatment time. High doses of antibiotic
treatment noticeably shifted the overall microbiota structure.
Thus, the generated 16S gene metagenomics profiles generally
reflected microbiota changes in response to chemical
perturbations.

These observations highlight two strengths of correlation
network approach. First, rather than listing pair-wise
correlations, all correlations were integrated into a unified

network of interacting species, making it possible to identify
small substructures within the microbiota. While this model
is generated only by first-order correlations among species,
it presents rich, albeit indirect, information on microbiota
community structure, allowing us to explore and test species
interactions and prioritize hypotheses. Specifically, the bacterial
OTU variations resulting from a set of time-series chemical
treatments allowed us to identify five modules emerging out of
the complex N. salina microbial community. We demonstrated
that members of Rhodobacteraceae dominated the brown OTUs
module, which was significantly associated with ampicillin
treatment (Figure 3). Reports have shown that species of the
Roseobacter clade encode intrinsic β-lactamases and are resistant
to β-lactam antibiotics such as ampicillin, with tolerance up to
500 µg/ml (Peng et al., 2011; Treangen et al., 2013). This is 10-
fold greater than our high dose ampicillin treatment of 50 µg/ml.
Meanwhile, bacteriostatic tetracycline, which inhibits bacteria
from reproducing (Peng et al., 2011), surprisingly did not result
in the formation of modules. Lack of module formation from
tetracycline treatment in our experiments can be explained
by the possibility of tetracycline activities being compromised
by the formation of complexes with divalent cations (such as
Mg2+) prevalent in F/2 medium (Lambs et al., 1988; Treangen
et al., 2013). In comparison, general metabolites such as glucose
did not perturb the network significantly as evidenced by the
absence of modules emerging from glucose-supplemented
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FIGURE 5 | Family-level taxonomic composition of TDA-perturbed microbiota. Triplicate samples are grouped by TDA concentration and exposure time.

Taxonomic affiliations of OTUs are shown at the family level (see legend colors) and TDA treatment concentrations are indicated.

cultures. Overall, these results reflect that an OTU co-abundance
network generated correlated associations from empirical data
that recapitulates biological information, and therefore has value
for further inference analysis.

While correlation analyses do not offer direct mechanistic
interpretations, the formation of modules might stem from,
for example, between-bacteria metabolic cross-feedings, biofilm
formation of aggregated sub-communities, species couplings
via chemical signaling or toxic compounds, which could

result in bacterial species-species abundance correlations in
16S gene profile data sets. With our data sets, it appears
the correlation network has applicability in mining subsets
of microbial lineages that share common responsiveness to
acute perturbation such as antibiotic treatment and is perhaps
less applicable to those stemming from treatments (such
as with ubiquitous metabolites) that do not significantly
perturb bacterial abundance. Nevertheless, the integration of
correlations into interconnected networks may be applied in
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FIGURE 6 | Microbiota were shifted by TDA addition in a

dose-dependent manner within 3 h treatment based on weight-Unifrac

PCoA with respect to treatment time and TDA concentration. TDA

(500 nM)-treated microbiota shifted the microbiota structure away from 3

h-microbiota cluster toward the 24 h-group.

bridging from bacterial species’ activity to microbial community
functionality.

Network centrality analysis has been successfully applied in
multiple fields (Jeong et al., 2001; Rho et al., 2010; Duran-
Pinedo et al., 2011), and we used it to mine influential
bacterial species underpinning the interaction network of
the microbial community associated with N. salina. The top
Rhodobacteraceae OTU has low connectivity, suggesting it has
few interaction with other OTUs in the network. Meanwhile,
it has higher betweenness values compared to other OTUs.
This pattern suggests modular organization of the network via
a minimal number of connections required for information
flow. These high-betweenness, low-connectivity OTUs may be
conceptually thought of as “bridges” in the non-redundant
shortest paths, the observation of which resembles previously
reported properties of other biological networks (Joy et al.,
2005). In comparison, the high-connectivity, low-betweenness
case of Alteromonadacea suggests it lies on a large number
of redundant shortest paths between other vertices. The
difference between the network inferences of Rhodobacteraceae
and Alteromonadacea is likely linked to distinct biological and
ecological roles of these two groups. Rhodobacteraceae, which
contains the Roseobacter clade, are one of the most ubiquitous
and abundant bacterial lineages associated with phytoplankton
both in environmental and laboratory cultures (Geng and Belas,
2010b; Amin et al., 2012) and has been shown to form close
relationships with microalgae (Treangen et al., 2013; Kelder
et al., 2014). The interactions among members of the Roseobacter
clade (Alphaproteobacteria) and microalgae may occur through
physical attachment (Miller and Belas, 2006; Mayali et al.,
2008; Krohn-Molt et al., 2013), exchange of nutrients and
metabolites (Keshtacher-Liebso et al., 1995; Howard et al., 2006),
or antibiotics and signaling molecules (Brinkhoff et al., 2004;
Seyedsayamdost et al., 2011; Amin et al., 2015). On the other
hand, the marine bacteria from Alteromonadaceae are dominant

phylotypes among microbial communities in response to the
flux of organic matter in phytoplankton blooms, demonstrating
how species ofAlteromonadaceae could participate in structuring
microalgae bacterial communities (McCarren et al., 2010; Tada
et al., 2011).

To explore the possibility of the key species having influential
effects on the overall configuration of the microbiota, we looked
for evidence of microbiota responsiveness to the proposed key
species. We subjected the N. salina microbial communities to
varying doses of TDA, which is secreted as a hallmark bioactive
compound in many species of the Roseobacter clade from
Rhodobacteraceae family (Berger et al., 2011). TDA has both
antibiotic and transcription induction activity in a subgroup
of algae-associated bacterial genera that include Phaeobacter,
Silicibacter, Ruegeria, and Pseudovibrio (Berger et al., 2011).
Interestingly, we found that in general the relative abundance of
Rhodobacteraceae decreased, while bacteria in Alteromonadales
order of unclassified family increased in composition (Figure 5).
These observed patterns between TDA and taxa composition
are less clear since TDA activity to Alteromonadales has
not been documented. Meanwhile the large total number of
bacterial populations and differential bacterial growth rates
in microbiota might have compounded the observed relative
abundance. In terms of community structure, we observed
shifting of microalgae microbiota induced by TDA dosage, and
a 3 h 500 nM TDA treatment sufficiently skewed the original
microbiota structure toward the 24 h unperturbed microbiota.
This suggests that, given the myriad complexity in microbiota,
microbial community associated with N. salina potentially
harbors a dynamic property that responds to the presence of
infochemicals exemplified by TDA. While the concentration
of TDA produced naturally in either sea water or within the
phycosphere is not documented, the involvement of bioactive
compounds such as TDA in modulating microbiota structure
has profound implications for bacterial community assemblages.
Indeed, multiple bioactive compounds with various activities and
specificities, such as indole-3-acetic acid (Amin et al., 2015) and
indigoidine (Cude et al., 2012), have been characterized in many
Roseobacter strains from microalgae microbiota (Buchan et al.,
2005; Cude et al., 2012; Leiman et al., 2013; Treangen et al.,
2013). In this context, the chemical composition and quantities
of bioactive compounds from key species in microbiota may
play a role in fine tuning of microbiota to different microbiota
compositions and structures.

Our finding from network analysis therefore offers a
tangible experimental metagenomics framework to tackle the
following question: what is the structure of microbial community
associated with N. salina if modeled from the species-species
correlation network? Module formation in the microbiota
network helps bridge the gap between deep knowledge of
individual keystone OTUs and a systems-level view of the
microbial community. But such application will have to tackle
several issues. Given the connectivity of the correlation network,
the correlation network model does not provide detailed
mechanisms nor offer regulatory ramification of such variations.
While accurate inter-OTU correlation analysis remains an
area of active research, methods developed recently such as
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CoNet (Faust et al., 2012), SparCC (Friedman and Alm,
2012), SPIEC-EASI (Kurtz et al., 2015), and MENA (Deng
et al., 2012) could potentially be used to analyze inter-OTUs
relationships in microalgae microbiota to improve association
accuracy. Meanwhile, many of the remaining OTUs in modules
have limited functional annotations due to the nature of 16S
amplicon method. Such limitation, however, could be solved
using metagenomics combined with metatranscriptomics to
better understand microbiota roles in the ecosystem. In the
long term, delineation of the substructure of the microbial
community associated with N. salina may help us detect,
investigate, and assess practical responsiveness of “key” species
or probiotic species introduced into the microbiome to
withstand environmental perturbations and improve microalgae
production.
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