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Helicobacter pylori is the dominant species of the human gastric microbiota and

is present in the stomach of more than half of the human population worldwide.

Colonization by H. pylori causes persistent inflammatory response and H. pylori-induced

gastritis is the strongest singular risk factor for the development of gastric

adenocarcinoma. However, only a small proportion of infected individuals develop

malignancy. Besides H. pylori, other microbial species have also been shown to be

related to gastritis. We previously reported that interspeciesmicrobial interaction between

H. pylori and S. mitis resulted in alteration of their metabolite profiles. In this study,

we followed up by analyzing the changing protein profiles of H. pylori and S. mitis

by LC/Q-TOF mass spectrometry to understand the different response of the two

bacterial species in a multi-species micro-environment. Differentially-expressed proteins

in mono- and co-cultures could be mapped into 18 biological pathways. The number

of proteins involve in RNA degradation, nucleotide excision repair, mismatch repair,

and lipopolysaccharide (LPS) biosynthesis were increased in co-cultured H. pylori. On

the other hand, fewer proteins involve in citrate cycle, glycolysis/ gluconeogenesis,

aminoacyl-tRNA biosynthesis, translation, metabolism, and cell signaling were detected

in co-cultured H. pylori. This is consistent with our previous observation that

in the presence of S. mitis, H. pylori was transformed to coccoid. Interestingly,

phosphoglycerate kinase (PGK), a major enzyme used in glycolysis, was found in

abundance in co-cultured S. mitis and this may have enhanced the survival of S. mitis

in the multi-species microenvironment. On the other hand, thioredoxin (TrxA) and

other redox-regulating enzymes of H. pylori were less abundant in co-culture possibly

suggesting reduced oxidative stress. Oxidative stress plays an important role in tissue

damage and carcinogenesis. Using the in vitro co-culture model, this study emphasized

the possibility that pathogen-microbiota interaction may have a protective effect against

H. pylori-associated carcinogenesis.

Keywords: Helicobacter pylori, Streptococcus mitis, LC/Q-TOF mass spectrometry, phosphoglycerate kinase

(PGK), thioredoxin (TrxA)

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://dx.doi.org/10.3389/fmicb.2016.01462
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2016.01462&domain=pdf&date_stamp=2016-09-15
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:jamuna@ummc.edu.my
http://dx.doi.org/10.3389/fmicb.2016.01462
http://journal.frontiersin.org/article/10.3389/fmicb.2016.01462/abstract
http://loop.frontiersin.org/people/324832/overview
http://loop.frontiersin.org/people/211920/overview
http://loop.frontiersin.org/people/106099/overview


Khosravi et al. H. pylori and S. mitis Crosstalk

INTRODUCTION

The human stomach was considered to be microbiologically
sterile before the successful culturing of Helicobacter pylori
from gastric biopsy tissue (Marshall and Warren, 1984). It
was shown that gastritis and stomach ulcers in humans are
caused by the Gram-negative, urease producing bacterium
(Marshall and Warren, 1984). Later, it also became clear that
this bacterium is a major risk factor in the development of
gastric adenocarcinoma and mucosa-associated lymphoid tissue
(MALT) lymphoma (Kusters et al., 2006). In developing
countries, 70–90% of the population is infected with
H. pylori; while in developed countries, the prevalence of
H. pylori is 25–50% (Solnick et al., 2003; Obiageli and Ivan,
2016).

Besides H. pylori, the human stomach can also contain
transient oral, esophageal or intestinal bacteria and is highly
dominated by Proteobacteria, Firmicutes, Actinobacteria, and
Bacteroidetes (Dicksved et al., 2007). These microorganisms may
either be permanent members of the gastric microbiota
but not picked up due to limitation of conventional
microbiological culturing methods or may be in transit in
the stomach (e.g., together with food intake). However, a
change of the physiological conditions of the stomach, as
occurs during acid-reducing drug therapy, corpus atrophy
or gastric cancer, provides an opportunity for foreign
microbes to enter and colonize the stomach (Dicksved et al.,
2007).

Streptococci are members of the normal intestinal flora of
healthy individuals which exert antagonistic activities against
many intestinal pathogens (Heczko et al., 2006). A strong
correlation was found between the presence of Streptococcus
salivarius and H. pylori where 83% of the S. salivarius positive
biopsies also harbored H. pylori. S. salivarius is known to
have urease activity which creates a less acidic environment
and could further enhance the survival and incidence of
H. pylori (Ryan et al., 2008). Hence, streptococci may potentially
survive and develop in an acidic gastric environment as an
indigenous microbiota of the gastric mucosa, which may in
turn inhibit the colonization by H. pylori (Adolfsson et al.,
2004; Johnson-Henry et al., 2004; Uziel et al., 2004). In
our previous studies, we have shown that Streptococcus mitis
can be isolated from human gastric tissue biopsies (Khosravi
et al., 2014a) and co-culturing S. mitis and H. pylori released
metabolites that induced H. pylori to transform into viable
but non-culturable (VBNC) coccoidal form in vitro (Khosravi
et al., 2014b). On the other hand, culturability of S. mitis
in the co-culture was enhanced. In this current paper, we
completed our analysis by analyzing the changing protein
profiles of H. pylori and S. mitis to understand the different
response of the two bacterial species in a multi-species
micro-environment. While it is not surprising that H. pylori
changes to coccoid in a multi-species micro-environment, the
enhancement of S. mitis survival capability deserve further
investigation to determine any potential pathogenic role of this
bacterium in the human gastric environment in the presence of
H. pylori.

MATERIALS AND METHODS

Bacterial Strains
S. mitis ATCC 6249 and H. pylori NCTC 11637 (ATCC 43504)
obtained from the American Type Culture Collection (ATCC,
USA) were selected as model microorganisms to simulate
interaction in a multispecies micro-environment. Culturing
of both organisms was performed on chocolate agar plates
supplemented with 7% horse blood and was incubated at 37◦C in
a humidified incubator with 10% CO2 for 3 days (Khosravi et al.,
2014b).

Co-culture Experiment
A bacterial co-culturing system was setup for this study in 12-
well plates with a cell culture insert of 0.4µm polyethylene
terephathalate (PET) membrane (BD Biosciences, USA) that
physically separate the two bacteria only allowing secreted
compounds to penetrate as previously described (Khosravi et al.,
2014b). Briefly, for the co-culture assay, 3 days old H. pylori
and 1 day old S. mitis from chocolate-agar plates were used
to make a suspension of OD600 ∼0.02 (106–107 cfu/ml) and
OD600 ∼0.008 (105–106 cfu/ml) respectively in an enrichment
medium of Brain heart infusion broth (BHI) supplemented with
0.4% yeast extract and 1% β-cyclodextrin. An aliquot of 2ml
suspension of H. pylori was distributed in each well of the 12-
well plates. An aliquot of 0.5ml suspension of S. mitis was added
to the insert. The cultures were incubated at 37◦C in a humidified
incubator with 10% CO2 for 1–4 days. Experiments were carried
out as independent biological triplicates.

Protein Extraction
The ProteoSpin detergent-free total protein isolation kit (Norgen
Biotek, Canada) with the Halt protease and phosphatase
inhibitors cocktail (Thermo Scientific, USA) was used for
the isolation and purification of total protein from bacteria
pellet according to the manufacturer’s instructions. The lysates
were subsequently treated with 10 mM dithiothreitol (DTT;
Bio-Rad, USA) at 37◦C for 10 min and alkylated with 55
mM iodoacetamide (IAA; Bio-Rad) for 30 min at room
temperature. The proteins in the sample were digested with
1:50 (trypsin: protein) of MS-grade Pierce trypsin protease
(Thermo Scientific, USA) at 37◦C overnight. The samples were
desalted using a Pierce C-18 spin column (Thermo Scientific,
USA) and dried to completeness in a refrigerated CentriVap
centrifugal vacuum concentrator (Labconco, USA) before mass
spectrometry analysis.

Protein Profiling by LC/Q-TOF MS System
Tryptic peptides were analyzed on the 1260 Infinity HPLC-
Chip System coupled with the 6540 UHD Accurate-Mass
Quadrupole Time-of-Flight (Q-TOF) LC/MS systems (Agilent,
USA). For analysis, the injection volume was 2µl of tryptic digest
(200 ng/µl). The HPLC-Chip was the Large Capacity C18 Chip
(G4240-6210), which comprised a 160 nL enrichment column
and a 150 mm analytical column. HPLC-grade water with 0.1%
formic acid and acetonitrile with 0.1% formic acid were used
as mobile phases A and B respectively. HPLC-grade acetonitrile
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and formic acid were procured from Friendemann Schmidt
(Australia) and Sigma (USA), respectively. Instrument settings
were as described in Chan et al. (2015).

Data Analysis
Mass spectrometric data were processed and analyzed using
the Peaks software, version 7.5 (Bioinformatics Solutions
Inc., Canada) for MS/MS-based identification and de novo
sequencing. De novo sequencing was carried out with the default
parameters, except that: (i) parent mass error tolerance was
1.5Da, (ii) fragment mass error tolerance was 0.5Da, (iii) trypsin
as digestion enzyme, (iv) carbamidomethylation (+57.02Da,
C) as fixed modification, (v) oxidation (+15.99Da, M) as
variable modification, (vi) maximum variable post-translation
modification allowed per peptide was three and (vii) H. pylori
(strain NCTC 11637/ATCC 43504; 1633 proteins) and S. mitis
(ATCC 6249; 1793 proteins) UniProtKB reference proteomes
databases were used for identifications. Peptides were identified
with PEAKS DB and filtered at 1% false discover rate (FDR).

Proteins were filtered at 1 minimum unique peptide. Label-free
quantification of protein abundances were estimated in each
sample by correlation the average of the feature intensities of the
three most highly responding peptides per protein.

Statistical Analysis
Statistical analyses were performed using the IBM SPSS version
21.0 software. One-way ANOVA and Two-tailed student’s t-test
were performed. P-value of <0.05 was considered significant.

RESULTS AND DISCUSSION

A total of 1514 H. pylori and 1414 S. mitis proteins - identified
based on −logP ≥20, ≥1 unique peptide(s) (FDR <1%) and
were detected in ≥2 of the triplicates - in both mono- and
co-cultures (day 1, 2, and 4) are presented as Venn diagrams
(Figure 1). Complete list of proteins identified can be found in
the Supplementary Materials with confidence of identification
and peptide data.

FIGURE 1 | Venn diagram of number of proteins H. pylori and S. mitis found in mono and co-cultures at day 1, 2, and 4.
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H. pylori proteins that were found to be significantly
different between mono-cultured and co-cultured H. pylori
were mapped to 12 and six biological pathways respectively
(Table 1). Proteins involve in RNA degradation, nucleotide
excision repair, mismatch repair, and lipopolysaccharide (LPS)
biosynthesis were relative more abundant in co-cultured
H. pylori. On the other hand, proteins involve in citrate
cycle, glycolysis/ gluconeogenesis, aminoacyl-tRNA biosynthesis,
translation, metabolism, and cell signaling were less abundant
in co-cultured H. pylori. This is consistent with the observation
that in the presence of S. mitis, H. pylori was transformed to
coccoid (Khosravi et al., 2014b). H. pylori coccoid has been
demonstrated to have low metabolic enzymes (FBA, EDD, AcnB,
FumC, OorA, and ICD as shown in Table 2B) but proteins
involved in DNA biosynthesis remained high (Loke et al., 2016).
Despite that H. pylori coccoid cannot be cultured in vitro, it
has been reported that the coccoid had a stronger inhibitory

effect on proliferation and weaker apoptotic effect than its spiral
counterpart (Li et al., 2013), which suggest that the coccoid
may be an important factor in gastric cancer progression.
However, contradictory to the earlier report (Loke et al., 2016),
proteins involve in epithelial cell signaling during H. pylori
infection were reduced and those involved in LPS biosynthesis
(Table 1) were increased in H. pylori coccoid induced by
co-culturing with S. mitis. These differences may highlight
differences between H. pylori coccoids induced by various
means (prolonged culturing vs. co-culturing with S. mitis) and
age of coccoids (3 months old vs. 4 days old). Furthermore,
the role of H. pylori coccoids in a multi-species environment
and its impact on gastric pathogenesis has not been fully
assessed.

Among proteins identified, 27 proteins satisfied the criteria
to be selected for label-free quantification analysis using
the Peaks software. In contrast to 23 proteins that were

TABLE 1 | KEGG pathway and GO enrichment analysis of H. pylori proteins in mono- and co-cultures using functional annotation tool of DAVID.

Sample

group

Pathway Count Percentage Proteins Total Pop

Hits

Pop

Total

Fold

Enrichment

P-value

Bonferroni Benjamini FDR

HP hpp00020:Citrate cycle (TCA

cycle)

9 6.02 AcnB, PorD, OorB, GltA, OorA,

OorC, PorB, FumC, ICD

67 15 2109 16.79 2.22E−05 2.22E−05 1.41E−04

HP hpj00970:Aminoacyl-tRNA

biosynthesis

7 5.26 LeuS, ArgS, AspS, MetG, GatA,

GLTX1, AlaS

67 25 2109 8.81 0.02 <0.01 0.10

HP hpj00010:Glycolysis /

Gluconeogenesis

6 4.51 PorD, FBA, PorB, GAP_2, ENO,

JHP_1030

67 16 2109 11.80 0.02 <0.01 0.11

HP hpj00230:Purine metabolism 6 3.76 JHP_1168, ADK, UreA, UreB,

GuaB, NDK

67 34 2109 4.63 0.98 0.36 22.35

HP hpj05120:Epithelial cell

signaling in Helicobacter pylori

infection

6 3.76 CagY, UreA, UreB, VacA, CagE,

ORF15

67 34 2109 4.63 0.98 0.36 22.35

HP hpp03010:Ribosome 5 3.76 RplI, RplN, RpsA, RplD, RplL 67 49 2109 3.21 0.10 0.67 56.63

HP hpj00240:Pyrimidine

metabolism

4 3.01 JHP_1168, NDK, TRXB_2, PyrF 67 35 2109 3.60 1 0.70 70.95

HP hpj00030:Pentose phosphate

pathway

3 2.26 FBA, EDD, TktA 67 13 2109 7.26 0.10 0.67 54.023

HP hpj00250:Alanine, aspartate

and glutamate metabolism

3 2.26 GlmS, AspB, AspA 67 13 2109 7.26 0.10 0.67 54.023

HP hpj00480:Glutathione

metabolism

3 2.26 PepA, GGT, ICD 67 6 2109 15.74 0.93 0.28 15.46

HP hpj00620:Pyruvate metabolism 3 2.26 PorD, PpsA, PorB 67 12 2109 7.87 0.10 0.65 48.72

HPc hpj00240:Pyrimidine

metabolism

6 13.95 PyrG, DnaN, TRXB_1, DnaX,

RpoB, PNP

24 35 2109 15.06 <0.01 <0.01 0.03

HPc hpj00230:Purine metabolism 5 11.63 GppA, DnaN, DnaX, RpoB, PNP 24 34 2109 12.92 0.03 <0.01 0.41

HPc hpj03018:RNA degradation 4 9.30 RNJ, PPK, RHO, PNP 24 10 2109 35.15 <0.01 <0.01 0.13

HPc hpj03430:Mismatch repair 3 6.98 JHP_0847, DnaN, DnaX 24 15 2109 17.58 0.51 0.11 10.59

HPc hpp00540:Lipopolysaccharide

biosynthesis

3 6.98 KdsB, LpxA, LpxD 24 19 2109 13.88 0.67 0.15 16.32

HPc hpj03420:Nucleotide excision

repair

2 4.65 JHP_0847, UvrB 24 9 2109 19.53 0.10 0.55 63.38

KEGG, Kyoto Encyclopedia of Genes and Genomes; HP, H. pylori mono-culture; HPc, H. pylori and S. mitis co-culture. Count, the number of genes associated with this gene set;

percentage, calculated by “gene associated with this gene set “/” total number of query genes;” total, the number of genes in query list mapped to any gene set in this ontology; pop

hits, the number of genes annotated to this gene set on the background list; pop total, the number of genes on the background list mapped to any gene set in this ontology; fold

enrichment, the ratio of the proportions on query genes and the background information which are associated with the gene set; Bonferroni, Bonferroni adjusted p-value; Benjamini,

Benjamini adjusted p-value; FDR, FDR adjusted p-value.
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TABLE 2A | List of S. mitis proteins with significant expression difference in mono- and co-cultures.

Protein KEGG Pathway Unique

peptide

Avg.

Mass

S. mitis monoculture S. mitis co-culture P-value

Day 1 Day 2 Day 4 Day 1 Day 2 Day 4 Day 1 Day 2 Day 4

50S ribosomal protein

L13 (RplM)

smb03010:Ribosome 2 16143 0 0 0 0 0 6.82E+03 >0.05 >0.05 2.62E−08

UPF0297 protein

RN80_02805

– 3 10227 5.15E+02 2.78E+02 0 1.73E+03 1.77E+03 8.30E+02 0.015 7.51E−04 >0.05

Phosphocarrier

protein HPr (PtsH)

– 7 8939 3.50E+04 9.07E+03 1.25E+05 4.52E+03 3.76E+04 1.91E+03 >0.05 0.029 0.029

Phosphoglycerate

kinase (Pgk)

smb00010:Glycolysis 3 41978 0 0 0 1.01E+03 8.57E+02 7.03E+01 0.028 >0.05 >0.05

/Gluconeogenesis

significantly different in expression level between mono-
and co-cultured H. pylori (Table 2B), only 4 proteins were
found to be significantly different between mono- and co-
cultured S. mitis (Table 2A). This suggests that multi-species
environment may have a greater impact on H. pylori than
S. mitis.

Among the differentially expressed proteins,
phosphoglycerate kinase (PGK), which is required for ATP
generation in both the glycolytic pathway of aerobes and the
fermentation process of anaerobes (Yoshida and Tani, 1983), was
only expressed by co-cultured S. mitis (Table 2A and Figure 2A).
In addition, PGK is one of the predominant surface-associated
proteins of streptococci, such as S. oralis (Wilkins et al., 2003)
and group B streptococci (Hughes et al., 2002). Interestingly,
sera directed against PGK was shown to protect neonatal animals
from S. agalactiae infection suggesting that this protein may be
essential for multiplication or adhesion of streptococci in vivo
(Hughes et al., 2002). The expression of S. mitis PGK in the
presence of H. pylori might have contributed to the enhanced
survival of S. mitis, which was demonstrated earlier by our group
(Khosravi et al., 2014b).

Consistent with the reduction in abundance of enzymes
involve in citrate cycle detected in the co-cultured H. pylori
(Table 1), the expression of citrate cycle enzymes (AcnB, FumC,
OorA, and ICD) were also found to be lower in co-cultured
H. pylori (Table 2B), The citrate cycle is most sensitive to reactive
oxygen species (ROS; Janero and Hreniuk, 1996). Thus, reduced
level of expression of citrate cycle enzyme may indicate reduced
oxidative stress response of H. pylori in the presence of S. mitis.
This viewpoint is further supported by reduced expression of
glutathione metabolism enzymes (ICD and PepA), thioredoxin
(TrxA), flavodoxin (FldA), and thiol peroxidases (TPX and TsaA)
in co-cultured H. pylori.

The expression of thioredoxin (TrxA), a small redox-
regulating protein that is involved in maintaining the thiol/
disulfide balance in both prokaryotes and eukaryotes (Holmgren,
1985), was significantly reduced in 4 days old co-cultured
H. pylori (Figure 2B). This protein is essential for protecting
bacteria, such as Bacillus subtilis (Scharf et al., 1998; Uziel et al.,
2004), Bacteroides fragilis (Tally et al., 1975; Rolfe et al., 1997)
and Salmonella species (Bjur et al., 2006), against oxidative
stress for survival and replication. Interestingly, TrxA is also
highly expressed in many cancers, including lung (Kim et al.,

2003), cervix (Hedley et al., 2004), pancreatic (Han et al., 2002),
colorectal (Raffel et al., 2003), hepatocellular carcinomas (Choi
et al., 2002), gastric carcinomas (Grogan et al., 2000) and
breast cancer (Cha et al., 2009). TrxA has been postulated to
contribute toward cancer progression by playing crucial roles
in maintaining cellular redox homeostasis and cell survival
(Trachootham et al., 2008). Up-regulation of TrxA and related
proteins has been postulated to present a dynamic redox change
to drive proliferation and malignant progression of tumors
(Karlenius and Tonissen, 2010). In the presence of S. mitis, the
expression ofH. pylori TrxA was reduced suggesting that S. mitis
may potentially reduce the risk of H. pylori-associated gastric
cancer development and/ or progression in the human stomach.

Alkylhydroperoxide reductase of H. pylori, which protects
the bacterium from a hyperoxidative environment by reduction
of toxic organic hydroperoxides, has been shown to function
as a molecular chaperone for prevention of protein misfolding
under oxidative stress (Chuang et al., 2006). This study highlights
the importance of translation (elongation factors) and protein
folding (chaperones) to H. pylori in response to oxidative stress.
Thus, low level of expression of chaperones, such as TrxA,
JHP_0216 and DnaK (aka 70 kDa chaperone; Table 2B), implies
relatively low oxidative stress level in co-culture H. pylori. It has
been shown that both bacterial factors and host inflammatory
response causes oxidative stress on the gastric epithelium during
H. pylori infection that may lead to apoptosis and tissue damage
(Ding et al., 2007). Thus, low oxidative stress confers byH. pylori
in a multi-species environment can be expected to be less
pathogenic.

In conclusion, using S. mitis andH. pylori as model organism,
data from this in vitro study suggest that in a multi-species
setting, S. mitis may be able to benefit from cross-talking
with H. pylori to enhancing its survival in the adverse gastric
environment. Simultaneously, S. mitis may protect H. pylori
from excessive oxidative stress. This in vitro co-culture model
emphasizes the possibility that inter-species interaction may
protect the host against bacterial-associated pathogenesis and
carcinogenesis. However, this study is preliminary and the
human gastric environment is highly complex and dynamic.
Therefore, more evidences are required in order to fully
understand the implication of H. pylori-gastric microbiota
crosstalk and its impact on the development of gastroduodenal
diseases in human.
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FIGURE 2 | Relative abundance of (A) PGK and (B) TrxA proteins in mono- and co-cultures. *Denote statistical significant differences with p-value = 0.028

(PGK) and <0.001 (TrxA) compared between mono- and co-cultures by 2-tailed one-way ANOVA.
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