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Phosphorus (P) is a limiting macronutrient for diatom growth and productivity in the
ocean. Much effort has been devoted to the physiological response of marine diatoms
to ambient P change, however, the whole-genome molecular mechanisms are poorly
understood. Here, we utilized RNA-Seq to compare the global gene expression patterns
of a marine diatom Skeletonema costatum grown in inorganic P-replete, P-deficient,
and inorganic- and organic-P resupplied conditions. In total 34,942 unique genes were
assembled and 20.8% of them altered significantly in abundance under different P
conditions. Genes encoding key enzymes/proteins involved in P utilization, nucleotide
metabolism, photosynthesis, glycolysis, and cell cycle regulation were significantly up-
regulated in P-deficient cells. Genes participating in circadian rhythm regulation, such as
circadian clock associated 1, were also up-regulated in P-deficient cells. The response
of S. costatum to ambient P deficiency shows several similarities to the well-described
responses of other marine diatom species, but also has its unique features. S. costatum
has evolved the ability to re-program its circadian clock and intracellular biological
processes in response to ambient P deficiency. This study provides new insights into
the adaptive mechanisms to ambient P deficiency in marine diatoms.

Keywords: marine diatom, Skeletonema costatum, phosphorus, transcriptomics, RNA-Seq, circadian rhythm

INTRODUCTION

Phosphorus (P) is an essential macronutrient for phytoplankton growth and proliferation in the
ocean (Dyhrman et al., 2007, 2012; White and Dyhrman, 2013; Feng et al., 2015), and its availability
is often limiting for primary production (Dyhrman et al., 2007, 2012; Lin et al., 2012; White and
Dyhrman, 2013; Feng et al., 2015). Dissolved inorganic phosphorus (DIP) and dissolved organic
phosphorus (DOP) are the two major available sources of P in the ocean (Ou et al., 2008; Dyhrman
et al,, 2012; Lin et al., 2012). DIP is considered to be the only form of P that can be used directly
by marine phytoplankton (Ou et al., 2008; Martin et al., 2014). However, its concentration is low,
usually less than 0.5 wmol L™ !, which cannot fulfill the needs of phytoplankton growth (Benitez-
Nelson, 2000; Cariellas et al., 2000; Ou, 2006; Ou et al., 2015). DOP, as another important dissolved
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P pool, comprises a significant portion of total P in both
oceanic and coastal waters (Orchard et al., 2009; Ruttenberg and
Dyhrman, 2012) and can be utilized by some phytoplankton
species (Dyhrman et al,, 2012; Feng et al., 2015; Ou et al,
2015). Thus, the capacity of phytoplankton to utilize DOP in a
DIP-deficient ambient is essential to their success in the ocean.

Diatoms, as the most abundant and diverse type of
phytoplankton, are the major primary producers and an essential
component of the food chain (web) in the ocean (Bowler et al.,
2010; Obata et al., 2013; Boller et al., 2015; Kim et al., 2015;
Zhang H. et al,, 2015). As the key player in the marine ecosystem,
diatoms play important roles in regulating biogeochemical cycles
of biogenic elements, i.e., carbon, silica, nitrogen, and P (Obata
etal., 2013; White and Dyhrman, 2013). Moreover, many diatom
species are also major causative agents of algal blooms in
the ocean (Shatwell et al, 2014; Ou et al, 2015; Zhang Y.J.
et al., 2015). Studies show that availability of P influences cell
growth, physiological function, and the metabolic activity of
diatoms (Dyhrman et al., 2012; Shatwell et al., 2014; Ou et al,,
2015). Variations of ambient P also alter the gene expressions
patterns of diatoms (Dyhrman et al., 2012; Obata et al., 2013).
Multiple response strategies to ambient P deficiency, such as
the reallocation of cellular P and the utilization of DOP, are
found in P-deficient diatoms (Dyhrman et al., 2006, 2007, 2012;
Diaz et al,, 2008; Lin et al., 2012; Feng et al., 2015). Recently,
the molecular mechanism in response to ambient P change in
diatoms has raised concern, and genes or proteins involved in
the response to P stress have been identified (Dyhrman et al.,
2012; Lin et al.,, 2012; Alexander et al., 2015; Feng et al., 2015; Ou
et al., 2015). However, these studies are focused on limited model
diatom species and little effort has been devoted to non-model
diatom species with ecological significance. Our molecular-
level understanding of diatom response to ambient P change
is still very inadequate. Therefore, an in-depth investigation of
global gene expression responses of different diatom species to
ambient P change may contribute to our understanding of the
adaptive mechanisms of diatoms to ambient P variation and
stress.

Skeletonema costatum is a widely distributed diatom species
in the ocean (Boller et al., 2015; Kim et al.,, 2015; Ou et al,,
2015; Zhang H. et al, 2015). Moreover, S. costatum often
forms intensive blooms, which not only influence biogeochemical
cycling but also the food chain (Boller et al., 2015; Zhang H.
et al., 2015). Much effort has been devoted to the physiological
response of S. costatum to ambient P stress. S. costatum is able to
utilize a wide range of P substrates for growth, including DIP and
DOP, and can accumulate polyphosphate in its cells (Miyata et al.,
19865 Diaz et al., 2008). It can also respond rapidly to ambient P
change (Ou, 2006; Ou et al., 2015), suggesting that it may possess
specific adaptive response mechanisms to ambient P deficiency.
The molecular mechanisms underpinning these physiological
responses are poorly understood. Here, we used RNA-Seq
to characterize expression patterns in the transcriptomes of
S. costatum grown under inorganic P-replete, P-deficient, and
inorganic- and organic P-resupplied conditions. The goal of this
study was to gain insights into the global regulation of various
biological processes in response to P deficiency and resupply.

MATERIALS AND METHODS

Organism and Culture Conditions

The S. costatum strain was kindly provided by the Culture
Collection Center of Marine Algae, Xiamen University, China.
S. costatum cells were maintained in K-medium with 48 uM
silicon at 20°C under a 14 h:10 h light:dark photoperiod at a
light intensity of approximately 100 pmol m~2 s~! provided by
fluorescent lamps (Keller et al., 1987). Before the experiment,
a mixture of antibiotics containing penicillin G (1 g L™!),
neomycin (250 mg L™, gentamicin (1 g L™1), and kanamycin
(0.5 g L7!) was added to the culture media to eliminate
bacterial contamination, and the culture was checked periodically
for contamination with 4',6-diamidino-2-phenylindole stain by
microscopic inspection (Cottrell and Suttle, 1993; Ou et al., 2008).

Experimental Design

The experiment included four treatments: inorganic P-replete,
P-deficient, DIP-resupplied, and DOP-resupplied. Each group
had triplicate biological repeats. S. costatum cells in the
exponential growth phase were collected using centrifugation
(2,500 g for 15 min at 20°C), then washed twice with sterile
seawater, and finally cultured in K-medium without P for
2 days to exhaust intracellular P. Then the cultures were
inoculated into 12 bottles each with 5 L of culture medium to
yield an initial density of 9.0 x 10° cells mL™!. In P-replete
cultures, 10 WM Na,HPO, was added to the culture media
at the beginning of the experiment. For P-deficient cultures,
0.2 uM was added to the culture media to maintain cell
activity. At day 4, three P-deficient cultures were resupplied
with phosphate to the final concentration of 10 wM as the
DIP-resupplied group, and another three P-deficient cultures
were resupplied with glucose-6-phosphate (G-6-P) to the final
concentration of 10 pM as the DOP-resupplied group. The
remaining three bottles were maintained as the P-deficient

group.

Physiological Parameter Analysis

Physiological ~parameters including cell density, the
photochemical efficiency of photosystem II (Fv/Fm), DIP,
DOP, particulate P (PP), and bulk alkaline phosphatase
activity (APA) were monitored daily. In addition, samples
were collected 4 h and 28 h after the resupply of DIP and
DOP.

Three 1 mL aliquots of each bottle were collected every day
and fixed in 2% Lugol’s solution for subsequent cell counting
under a light microscope (Zhang et al, 2014). The specific
growth rate of S. costatum was calculated using the following
equation: . = (In N, - In Nj)/(t; - t;), where N; and N
were the cell densities at time t; and t; (Ou et al., 2014). Three
5 mL aliquots of each bottle collected at 11:00 am each day
were dark acclimated for 15 min and the Fv/Fm was measured
using PHYTO-PAM (Pulse Amplitude Modulation, ED, Walz,
Effeltrich, Germany; Zhang et al, 2007). The bulk APA of
S. costatum was measured using the method reported by Ou
et al. (2015). Cells were collected on pre-combusted GF/F filters
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(450°C, 2 h) for PP analysis using the method of Solérzano
and Sharp (1980), which employs magnesium sulfate (MgSO4)
and digested for 2 h. The filtrates were used for DIP and DOP
analyses; the concentration of DIP was measured using the
molybdenum blue method described by Murhpy and Riley (1962)
and the concentration of DOP was analyzed using the methods
reported by Jeffries et al. (1979). DOP was calculated from the
difference between DIP and total dissolved phosphorus (TDP)
which employs acid potassium persulfate (K,S,0g; Ou et al.,
2015).

RNA Isolation and Sequencing

Skeletonema costatum cells were collected for transcriptomic
analyses during exponential growth phase in the P-replete
cultures (day 3). The P-deficient cells were harvested on
day 4 as well as 4 h and 28 h after the resupply of DIP
and DOP. For each sample, cells were collected onto the
polycarbonate membrane filter (pore-size 3.0 um, Millipore) and
resuspended in 1 mL Trizol Reagent (Invitrogen, Carlsbad,
CA, USA), immediately frozen in liquid nitrogen and
subsequently stored at —80°C for RNA isolation (Zhang
etal., 2014).

Total RNA was isolated using TRI-Reagent (MRC, Cincinnati,
OH, USA) and dissolved in RNase-free water as previously
reported by Zhang et al. (2014). For each sample, equal
amounts of total RNA from three replicates were mixed
together for transcriptome sequencing (Xia et al, 2011; Yu
et al, 2016). RNA-Seq libraries were constructed using the
llumina TruSeq™ RNA Sample Preparation Kit (Illumina,
San Diego, CA, USA) following the Illumina TruSeq RNA-
Seq library protocol. Poly(A) mRNA was enriched using
poly-T oligo-attached magnetic beads. First-strand cDNA was
synthesized using random oligonucleotides and SuperScript II
(Life Technologies, Carlsbad, CA, USA). Second-strand cDNA
synthesis was subsequently performed using DNA polymerase
1 (DNAP I; New England BioLabs) and RNase H (Invitrogen;
Zhang et al., 2014). In total, one individual paired-end cDNA
library was constructed for each set of samples. The cDNA
library quality was checked using an Agilent high sensitivity DNA
assay on an Agilent Bioanalyzer 2100 system (Santa Clara, CA,
USA). Subsequently, the libraries were sequenced on the Illumina
Hiseq™ 2000 platform (Expression Analysis Inc., San Diego, CA,
USA).

De novo Assembly and Gene Function
Annotation

Before assembling, raw reads with adapter contamination, low
quality reads, and reads with unknown nucleotides (>5%) were
removed. On average, the Q20 percentage of clean reads from all
six samples was ~98. All the downstream analyses were based on
clean reads. Next, all the clean reads were assembled as contigs
based on the overlap of short reads using the software Trinity de
novo assembler (Release-20130225"') with the min_kmer_cov_set
to 1 and all other parameters set to default (Grabherr et al., 2011;
Cheng et al., 2014; Zhang et al., 2014).

Uhttp://trinityrnaseq.sourceforge.net/

The unigenes extracted with in-house Perl scripts were aligned
against the NCBI-NR database (Release-20130408), NCBI-NT
database (Release-20130408), COG (Release-20090331), Swiss-
Prot database (Release-63.0), and KEGG database (Release-
63.0) using BLAST (v2.2.26 + x64-linux) with a threshold
e-value < le™ as in Zhang et al. (2014).

Analysis of Differential Expression Genes
The RNA-Seq clean reads of each sample were mapped back
to the transcript reference database assembled with Trinity,
and the expression levels of unigenes were calculated using
the number of mapped reads as EdgeR inputs’, followed by
normalization of read count number to fragments per kilobase
of transcript per million mapped reads (Mortazavi et al., 2008;
Cheng et al.,, 2014; Zhang et al.,, 2014). Differentially expressed
genes (DEGs) were identified through 13 pair-wise comparisons
with different physiological/ecological relevance (Supplementary
Table S1). According to the comparison method developed by the
Beijing Genomics Institute (BGI, China), the probability of one
gene being expressed equally between two samples was judged
according to the p-value corresponding to the differential gene
expression test and false discovery rate (FDR; Audic and Claverie,
1997; Benjamini and Yekutieli, 2001; Li et al., 2014). A FDR
of 1% or less and a fold change >4 were set as the threshold
for significant differential expression. DEGs were identified as
enriched in GO terms (p < 0.05) and metabolic pathways
(g < 0.05) by searching against GO and KEGG, respectively
(Kanehisa et al., 2006, 2008; Sun et al., 2014).

Validation of the DEGs Using qRT-PCR

The total RNA of each sample used for quantitative RT-PCR
(qQRT-PCR) analysis was extracted as described above. The
expression levels of alkaline phosphatase (scoap), inorganic
phosphate transporter (PiT), phospholipase D (PLD),
cryptochrome 1 (cry 1), and phytochrome B (phy B) were
examined using qRT-PCR. First-strand cDNA was synthesized
using the FastQuant cDNA RT Kit with gDNase (TTANGEN,
Beijing, China). qRT-PCR was performed on an ABI 7500
System (Applied Biosystems) using a SuperReal PreMix Plus
(SYBR Green) Kit (TTANGEN, Beijing, China). Thermocycling
was conducted as follows: 50°C for 2 min, 95°C for 10 min,
40 temperature cycles at 95°C for 30 s, and 60°C for 60 s.
The primers designed for qRT-PCR in this study are listed in
Supplementary Table S2. Calmodulin (calm), a commonly used
housekeeping gene (Shi et al,, 2013; Zhang et al.,, 2014), was
chosen as the reference gene to normalize the expression of
scoap, PiT, PLD, cry 1, and phy B. Relative expressions of DEGs
were calculated based on the 2744t relative response method
(Zhang et al., 2014).

Statistical Analyses

A Student’s t-test was performed to compare the differences
between the control (P-replete) and each treatment group for cell
density, Fv/Fm, DIP, DOP, PP, and bulk APA; a P-value < 0.05
was regarded as a significant difference. Prior to analysis, data

Zhttp://www.bioconductor.org/packages/release/bioc/html/edgeR.html
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were tested for the equality of variances. All tests were performed
using SPSS 17.0 (SPSS Inc., Chicago, IL, USA).

RESULTS

Physiological Responses of S. costatum

to P Nutrient Variations

Physiological responses of S. costatum to P-depletion and -
resupply are shown in Figure 1. For the P-replete cultures,
cell density increased rapidly and reached a peak (6.5 x 10°
cells mL~!) at day 4, and then entered into stationary phase
(Figure 1A). In the other three groups with 0.2 pM P, the
growth trends were similar to the P-replete group in the first
3 days with low cell density. From day 4, cells in the P-deficient
group maintained a stable level with a cell density ~4.0 x 10°
cells mL~!. However, growth of P-deficiency cultures recovered

rapidly after P resupply, and cell densities reached high levels of
9.0 x 10° cells mL~! at day 6 (Figure 1A).

In the P-replete group, Fv/Fm reached a peak (~0.5) at day 3
and then declined gradually to a low value (less than 0.1). Fv/Fm
of the P-deficient group decreased from day 3 to the end of the
experiment. For the P-resupplied group, Fv/Fm began to recover
after DIP or DOP resupply at day 4. However, Fv/Fm of both
groups did not reach the maximum value (~0.5) as that obtained
in the P-replete group (Figure 1B).

The concentration of soluble reactive P decreased rapidly
in all cultures. In the P-replete group, P concentration
decreased to 6.0 pM at day 1, and was undetectable at day
2 (Figure 1C). However, bulk APA varied a little from day
1 to 6 with a slight increase in the last 2 days (Figure 1D).
In the other three treatment groups, APA increased from
day 1 to day 4 before the resupply of DIP or DOP
(Figures 1C,D). After resupplement of P, both DIP and DOP

2045

Fv/Fm

P (umol L)

v plied
—— DOP-respplid

PP (pmol L' cell”)

FIGURE 1 | Physiological parameter variations of Skeletonema costatum grown in different P conditions. (A) Cell density, (B) Fv/Fm, (C) P concentration,
(D) Bulk APA, (E) PP content. The red arrow indicates the time point of resupply with Na,HPO,4 or G-6-P. Each data point is the average of three biological
replicates, and error bars represent the standard deviation. Fv/Fm, maximum chlorophyll fluorescence; Bulk APA, bulk alkaline phosphatase activity; P, including
inorganic phosphorus and organic phosphorus in the culture media; PP, particulate organic phosphorus.

APA (10" mol cell'L"'n")
&
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TABLE 1 | Summary of Skeletonema costatum transcriptome under P-replete, P-deficient, and P-resupplied conditions.

Items P-replete P-deficient DIP-resupplied-4 h DOP-resupplied-4 h DIP-resupplied-28 h DOP-resupplied-28 h
Number of raw reads 55,267,270 54,821,068 54,889,210 57,018,990 56,436,568 55,267,270
Number of clean reads 53,219,614 51,734,734 51,781,332 54,213,018 53,574,486 52,359,168

Q20 percentage (%) 98.35 98.30 98.05 98.39 98.42 98.36

GC percentage (%) 47.97 47.20 47.58 47.22 47.68 47.21

Number of contigs 52,863 58,590 53,809 57,291 54,308 56.456
Number of unigenes 31,959 34,590 31,530 34,679 31,562 34,253

concentrations decreased rapidly and DIP was exhausted after
28 h of P-resupply. APA decreased rapidly in both DIP
and DOP-resupplied groups until the end of the experiment
(Figures 1C,D).

Variations of PP contents are shown in Figure 1E. PP contents
decreased rapidly in the first 3 days in all groups, and then
maintained stable levels in both the P-replete and P-deficient
groups at day 4, but PP contents in P-deficient cells were much
less than those in P-replete cells (Figure 1E). After resupply
of P, PP contents increased rapidly in P-resupplied-4 h cells
but decreased in P-resupplied-28 h cells until the end of the
experiment (Figure 1E).

There were no significant differences between DIP- and DOP-
resupplied groups, indicating that S. costatum could utilize both
inorganic and organic P as the P source for cell growth.

RNA-Seq and De novo Assembly

In this study, six samples were sequenced with an average
read length of 90 bp (Table 1), and all clean reads have been
deposited in the SRA database of GenBank® with the BioProject
accession number PRJNA313486. After removing low quality
reads and trimming, poly-N and adapter sequences, the Q20
of the clean reads data ranged from 98.05 to 98.42% and the
GC content of either left end or right end read was constant at
approximately 47% for each sample. Using Trinity software, these
clean reads were de novo assembled to 34,942 unique unigenes
(transcripts): 31,959 unigenes were obtained from P-replete;
34,590 from P-deficient; 31,530 from DIP-resupplied-4 h; 31,562
from DOP-resupplied-4 h; 34,679 from DIP-resupplied-28 h;
and 34,253 from DOP-resupplied-28 h (Table 1). The average
length of unigenes was 1,430 bp with an N50 length of 2,157 bp
(Supplementary Figure S1).

Shttp://www.ncbi.nlm.nih.gov/sra

TABLE 2 | Results of unigene annotation against public databases.

Database Number of unigenes
NR 26,102
NT 7,260
Swiss-Prot 10,782
KEGG 12,090
COG 11,063
GO 8,289
At least in one database 26,374

Gene Function Annotation

Overall, 26,374 unigenes were successfully annotated in at
least one database (Table 2). A total of 26,102 unigenes
presented significant similarity to known proteins in the NCBI-
NR database. Among them, 44.6% of the annotated unigenes
were matched with sequences from the diatom Thalassiosira
pseudonana CCMP 1335 and 38.6% with sequences from the
diatom T. oceanica (Supplementary Figure S2).

Functional classification of all unigenes was conducted using
the COG and GO databases. 11,063 unigenes were annotated
against the COG database and classified into 25 categories based
on sequence homology (Figure 2A). Among these categories,
the largest group was the most common and the non-specific
category of general function prediction only (41.5%), followed by
transcription (19.6%), cell wall/membrane/envelope biogenesis
(17.7%), and carbohydrate transport and metabolism (17.6%).

Of the 26,102 unigenes, 8,289 unigenes were classified into
three ontologies and 49 sub-categories (Figure 2B). Among the
ontology of biological processes, metabolic process (54.4%) and
cellular process (52.2%) were the two dominant groups, followed
by single-organism process (25.7%), response to stimulus
(13.6%), localization (12.1%), and establishment of localization
(11.9 %).

KEGG annotation revealed that 12,090 unigenes were
annotated against the KEGG database (Table 2). In the
second level, all annotated unigenes were classified into 18
categories (Supplementary Figure S3B), and most of the
unigenes were associated with translation (16.5%), carbohydrate
metabolism (14.4%), and lipid metabolism (12.6%), followed
by nucleotide metabolism (6.3%), environmental adaption
(3.1%), and membrane transport (1.0%). The top 25 abundant
biochemical pathways with numbers of assigned unigenes are
shown in Supplementary Figure S3A.

Differentially Expressed Genes

Differentially expressed gene were identified through 13 pair-wise
comparisons and approximately 20.8% of the unigenes presented
significant differential expressions (Figure 3). Among them,
16.8% were significantly up-regulated and 4.0% were significantly
down-regulated in P-deficient cells compared with P-replete cells.
Compared with the P-deficient cells, 14.0% (~5.0% up-regulated
and ~9.0% down-regulated) and 9.8% (~4.5% up-regulated and
~5.3% down-regulated) of the unigenes exhibited significant
differences in the DIP-resupplied-4 h and DOP-resupplied-4 h
cells while 19.1% of DEGs shared between these two groups
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FIGURE 2 | COG and GO functional classification of all unigenes. (A) COG annotation of unigenes, (B) GO categorization of unigenes.

molecular_function

and 8.46% of DEGs shared among P-replete, DIP-resupplied-
4 h, and DOP-resupplied-4 h (Figure 3A). After P-resupply
for 28 h, 14.1% of the unigenes (~3.4% up-regulated and
~10.7% down-regulated) in the DIP-resupplied-28h cells and
20.4% of the unigenes (4.4% up-regulated and 16.0% down-
regulated) in the DOP-resupplied-28 h cells presented significant
differences compared with the P-deficient cells, and 12.5%
(~7.9% up-regulated and ~4.6% down-regulated) and 17.2%
(~7.5% up-regulated and ~9.7% down-regulated) of unigenes
showed significant difference in expression compared with the

P-replete cells, indicating that cells had not recovered to normal
homeostasis. Compared with the P-deficient cells, 21.36% of
DEGs were shared among P-replete, DIP-resupplied-28 h, and
DOP-resupplied-28 h, and 38.64% of DEGs were shared between
DIP-resupplied-28 h and DOP-resupplied-28 h cells (Figure 3A).
Comparison of the DIP-resupplied-28 h and DOP-resupplied-
28 h cells showed that only a small number of the unigenes
presented significant differential expressions (Figure 3B).

KEGG pathway analysis revealed that all DEGs were assigned
to 124 specific pathways. Among the 15 most frequently
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B. (B) Statistical analysis of differential expression gene number in each

represented pathways, the majority of the DEGs were enriched
in those pathways which needed P or which were related
to cell growth, such as RNA transport, glycerophospholipid
metabolism, ether lipid metabolism, nucleotide metabolism, and
ribosome biogenesis (Supplementary Table S3; Supplementary
Figure $4).

Transcriptional Regulation of Genes

Related to P Utilization

Phosphate Transport

Transcripts of three putative phosphate transporters, PiT (major
facilitator super-family transporter, phosphate: HT symporter

family), solute carrier family 20 (SLC20 family) and solute carrier
family 25, member 3 (SLC25A3) were significantly up-regulated
in P-deficient S. costatum cells by 22-, 5-, and 17-fold, but
down-regulated in P-resupplied-4 h cells by 9-, 3-, and 5.0-fold
(Supplementary Table S4). After P-resupply for 28 h, transcripts
of these phosphate transporters began to increase owing to the
exhaustion of ambient P (Figure 1C; Supplementary Table S4).

P Reallocation

The expression of SPX domain-containing protein involved
in vacuolar polyphosphate accumulation increased 23-fold in
P-deficient cells and decreased 13-fold in P-resupplied-4 h cells
(Supplementary Table S4). However, no significant difference was
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responses to ambient P changing.

observed between P-resupplied-4 h cells and P-resupplied-28 h
cells.

Organic P Utilization

The gene encoding phosphomonoesterase alkaline phosphatase
(AP) was up-regulated threefold in P-deficient cells, and
down-regulated 39- and 3-fold in DIP- and DOP-resupplied-
4 h cells, respectively. Moreover, the transcript of AP was
significantly up-regulated 27- and 2-fold when ambient P
was almost exhausted after DIP- and DOP-resupply for 28 h,
respectively (Supplementary Table S4). In addition, transcripts of
several other phosphomonoesterases, such as acid phosphatase,
phospholipase A1, and phospholipase B, were all significantly up-
regulated in P-deficient cells and down-regulated after P-resupply
(Supplementary Table S4). Forty-four unigenes encoding
phosphodiesterase of the PLD type were significantly up-
regulated in P-deficient cells, and down-regulated significantly
in P-resupplied-28 h cells. Transcripts of phosphodiesterase
phosphatidylinositol phospholipase C-delta isoform, tyrosyl-
DNA phosphodiesterase 1, and glycerophosphoryl diester
phosphodiesterase were also up-regulated in P-deficient cells
(Supplementary Table S4).

Non-P Lipid Utilization

Transcripts of genes involved in sulfolipid biosynthesis,
including  sulfoquinovosyltransferase, UDP-sulfoquinovose,
UDP-sulfoquinovose  synthase, and desulfoglucosinolate
sulfotransferase, were significantly up-regulated in P-deficient
cells and down-regulated after P-resupply (Supplementary Table
S4). Moreover, genes encoding betaine lipid synthase involved
in betaine biosynthesis presented high expressions in P-deficient
cells and low expressions in P-resupplied cells (Supplementary
Table S4).

Transcriptional Regulation of Genes Related to
Circadian Rhythm

Expression of circadian clock associated 1 (CCAl), a gene
involved in the circadian control of gene expression, was
significantly up-regulated in P-deficient cells and down-
regulated after P resupplied (Figure 4; Supplementary Table
S5). Transcripts of phy B and cry 1 participating in the input
pathway of the circadian clock were significantly up-regulated
in P-deficient cells and down-regulated in P-resupplied cells
(Supplementary Table S5). Moreover, transcripts of casein
kinase IT (CK2) subunit alpha and beta, ribonuclease P/MRP
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protein subunit RPP1 (RNase MRPI1), and pseudo-response
regulator 5 (PRR5) were also up-regulated in P-deficient cells
(Supplementary Table S5).

Transcriptional Regulation of Genes Related to Other
Biological Processes

In the present study, differential expression was detected
in genes involved in nucleotide metabolism, glycolysis,
photosynthesis, and other important metabolic processes
altered with ambient P change. Overall, 77, 46, and 18 DEGs
involved in nucleotide metabolism, photosynthesis, and
glycolysis were significantly up-regulated in P-deficient cells
and down-regulated in P-resupplied cells (Supplementary
Table S6). Moreover, transcripts of key proteins regulating
the cell cycle, such as cyclin B and cyclin-dependent kinase
(CDK), were up-regulated significantly in P-deficient cells
and down-regulated in P-resupplied cells (Supplementary
Table S6).

qRT-PCR Validation of DEGs

Five DEGs of S. costatum identified in the P-deficient,
P-resupplied-4 h, and P-resupplied-28 h groups were selected
for qRT-PCR analysis: scoap, PiT, PLD, cry I, and phy B.
In the P-deficient cells, expression of scoap was up-regulated
compared with P-replete cells, down-regulated in P-resupplied-
4 h cells, and then up-regulated again in P-resupplied-28 h cells
(Figure 5). Expressions of the other four genes were up-regulated
in P-deficient cells and down-regulated in P-resupplied cells
(Figure 5). It should be pointed out that the correlation between

qPCR and RNA-Seq results of all genes were not high owning to
the inherent difference between the two methods (Figure 5).

DISCUSSION

Phytoplankton acclimation to ambient P deficiency has been a
topic of considerable research and several response strategies
have been found in diverse phytoplankton species including
diatoms (Dyhrman et al, 2012; Lin et al, 2012; Feng
et al., 2015; Ou et al,, 2015). We comprehensively compared
the transcriptomic responses of S. costatum under different
P conditions. Though there are no significant differences
between DIP-resupplied and DOP-resupplied groups according
to physiological responses of S. costatum to ambient P variations
(Figure 1), a considerable number of different DEGs are
identified between DOP-resupplied and DIP-resupplied groups
(Figure 3). These DEGs are significantly enriched in peroxisome,
fatty acid metabolism, biosynthesis of secondary metabolites,
oxidative phosphorylation, nitrogen metabolism, etc. Here, we
focus on key genes involved in adaptation to P deficiency and
describe previously unrecognized transcriptional response to
ambient P deficiency in S. costatum.

P Utilization in P-deficient Cells

Cells can increase the competitive advantage for phosphate
by inducing higher affinity transporters and/or synthesizing
more transporters under P-deficient conditions (Dyhrman et al.,
2012). In the diatom T. pseudonana, a phosphate transporter
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(PID: 24435) and a high-affinity phosphate transporter are
up-regulated at transcription and/or protein level in response
to P deficiency (Dyhrman et al, 2012; Fu et al, 2013). The
phosphate transporter gene expression pattern of P-deficient
S. costatum is also consistent with its homolog in Skeletonema
spp. and T. rotula to P-limitation in the field (Alexander
et al., 2015). High and low transport systems have also been
identified in S. costatum (Ou, 2006). In our study, transcripts of
phosphate transporters PiT (major facilitator super-family), the
SLC20 family and SLC25A3 were significantly up-regulated in
P-deficient cells (Supplementary Table S4), and their expression
patterns were consistent with the homologs in Skeletonema
spp. and T. rotula in the field (Alexander et al, 2015). As a
cell surface transporter, the SLC20 family plays a fundamental
housekeeping role in phosphate transport, such as absorbing
phosphate from interstitial fluid (Ravera et al., 2007). In plants
and fungi, essential transporters for phosphate uptake are
proton-coupled transporters of the major facilitator super-family,
which also function as transceptors to signal external phosphate
concentration (Popova et al, 2010; Nussaume et al, 2011;
Pedersen et al., 2013). However, we did not detect any genes
encoding high-affinity phosphate transporters in our study. Thus,
S. costatum might produce different transporters in response to
ambient P deficiency, and PiT might play an important role in
extracellular P sensing.

In the ocean, polyphosphate is thought to be the product
of luxury uptake and storage of phosphate in phytoplankton
(Diaz et al., 2008; Dyhrman et al, 2012; Martin et al,
2014). Proteins containing the SPX domain play an important
role in maintaining intracellular phosphate homeostasis, and
three polyphosphate synthase subunits (vacuolar transporter
chaperone 2 (Vtc2), Vtc 3, and Vtc 4) all harbor the SPX domain
in yeast (Secco et al., 2012). In our study, the transcript of the SPX
domain-containing protein involved in vacuolar polyphosphate
accumulation was significantly up-regulated in P-deficient cells
(Supplementary Table S4), suggesting that S. costatum might have
the ability to store P. Our results on intracellular P contents
and other physiological responses in P-replete and P-resupplied
cells supported this speculation (Figure 1). S. costatum might
increase P allocation to polyphosphate under P deficient
conditions, which was consistent with the findings in P-limited
T. pseudonana (Dyhrman et al., 2012). Our result also supported
the view that not all diatom polyphosphate allocation is driven by
luxury uptake of phosphate (Dyhrman et al., 2012).

Phytoplankton are able to utilize organic P, and hydrolysis of
cell surface P esters by AP is considered to be the most common
DOP utilization mechanism (Beszteri et al., 2012; Dyhrman
et al,, 2012; Lin et al,, 2012). In our study, both the activity
and the transcript of AP was up-regulated in P-deficient cells
(Supplementary Table S4), which was consistent with the findings
in T. pseudonana and Karenia brevis (Dyhrman et al., 2012; Lin
et al., 2012). Phosphomonoester can be hydrolyzed directly by a
phosphomonoesterase, such as AP, whereas the hydrolysis of high
molecular weight phosphodiesters requires phosphodiesterase
and polyphosphatase (Cembella et al., 1984; Ou et al,, 2015).
Genes for several phosphodiesterases were significantly up-
regulated in P-deficient cells, especially the PLD (Supplementary

Table S4). PLD is a key regulator of cytoskeletal organization
and can hydrolyze structural phospholipids (such as membrane
lipids), regulating a diverse range of cellular processes, such as
membrane transport and cell migration (Pleskot et al.,, 2013;
Frohman, 2015). Its transcription and activity increase upon
exposure to various stresses, such as cold, drought, and salinity
(Pleskot et al., 2013). Our results indicated that S. costatum
could utilize both simple organic P (i.e., G-6-P) (Figure 1;
Supplementary Table S4) and complex organic P (i.e., membrane
lipids) as a P source under P-deficient conditions.

Eukaryotic phytoplankton and cyanobacteria are able to
replace phospholipid with non-P containing sulfolipids (sulfur
containing) and betaine lipids (nitrogen containing) in a P scarce
environment to decrease the requirement of cells for P (Yu et al.,
2002; Van Mooy et al., 2009; Dyhrman et al., 2012). In our study,
transcripts of sulfoquinovosyltransferase, UDP-sulfoquinovose
synthase, and desulfoglucosinolate sulfotransferase which are
involved in sulfolipid biosynthesis were significantly up-
regulated in P-deficient cells (Supplementary Table S4) (Sanda
et al., 2001; Yu et al, 2002). Moreover, genes encoding the
betaine lipid synthase involved in betaine biosynthesis were also
significantly up-regulated in P-deficient cells (Supplementary
Table S4). These results indicated that S. costatum could utilize
non-P containing lipids to reduce the demand for P, which
might be an adaptive response of cells to ambient P deficiency.
This finding, coupled with a similar response in the diatoms,
T. pseudonana and Chaetoceros affinis, suggests diatoms can
utilize non-P containing lipids to reduce their cellular P demand
(Van Mooy et al., 2009; Dyhrman et al., 2012).

Circadian Responses to Ambient P
Change

A circadian rhythm occurs ubiquitously in both prokaryotes
and eukaryotes driven by a circadian clock, which is entrained
by light, temperature, iron, and nitrogen signals in plants
(Gutiérrez et al., 2008; Bednarova et al, 2013; Hong et al,
2013; Salomé et al, 2013; Larrondo et al., 2015). Light is
regarded as the most important environmental factor involved
in resetting the circadian clock (McClung, 2006; Roy and Morse,
2013; Hurley et al., 2014). Studies show that photoreceptors
play a significant role in light energy capture and the circadian
oscillator mechanism (Bognar et al., 1999). Phytochromes and
cryptochromes are the two important photoreceptor families
transducting light signal input to the circadian clock (Millar,
2004; McClung, 2006). Furthermore, many light-dependent
processes controlled by phytochrome and cryptochrome are also
regulated by a circadian rhythm (Millar et al., 1995; Bognar
et al,, 1999; Millar, 1999). In our study, transcripts of phy B
and cry 1 were significantly up-regulated in P-deficient cells and
declined rapidly after P resupply (Supplementary Table S5). In
Arabidopsis, the light period of the phy B-deficient mutant is
1.5-2 h longer than that of the wild type; overexpression (15-
fold) of phy B shortens the light period length; cry 1 also plays
a similar role as phy B in regulating clock length (Somers et al.,
1998). Phy B is the primary high-intensity red light photoreceptor
for circadian control, while cry 1 mediates high-intensity blue
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light signals for the control of period length (Somers et al,
1998). Hence, the light period length might be shortened and
the input pathway of the circadian clock influenced in P-deficient
S. costatum (Figure 4).

The core oscillator of the circadian clock is composed of three
interlocked feedback loops, and CCA1 is one of the two domain
transcription factors (the other is Late Elongated Hypocotyl,
LHY) and participates in each loop (Figure 4) (McClung, 2006).
Furthermore, CCA1 plays a central role in the circadian control
of gene expression, and is involved directly in light regulation
of the gene expression in plants, providing a molecular link
between phytochrome and the circadian oscillator in plant
cells (Green and Tobin, 1999). Lack of the CCAl can cause
a shortened circadian period, but its overexpression results in
severe disruption of the normal circadian function in plants
(Wang and Tobin, 1998; Green and Tobin, 1999; Fujimori et al,,
2005; Scaglioni et al., 2008). In our study, the CCAI gene was
up-regulated approximately 1.66-fold in P-deficient cells and
down-regulated 1.9-fold after P resupply (Supplementary Table
S5). Moreover, genes encoding CK2 subunit alpha and beta
and PRR5 were also significantly up-regulated in P-deficient
cells, and down-regulated in P-resupplied cells (Supplementary
Table S5). CK2 can phosphorylate two components of the
central oscillator in Arabidopsis, CCAl, and LHY (Sugano
et al, 1998; Green and Tobin, 1999; Mulekar et al., 2012).
CCA1 phosphorylation by CK2 is necessary for maintaining
the normal function of the central oscillator in Arabidopsis
(Daniel et al., 2004). PRR5 belongs to the PRR family, which
is a negative regulator mediating the expressions of CCAl
and LHY genes (Fujimori et al., 2005; Nakamichi et al., 2010;
Salomé et al., 2010). It is interesting that overexpression of the
PRR5 gene is also related to circadian-associated phenotypes,
such as regulation of flowering time (Fujimori et al., 2005).
Our results indicated that the phosphorylation of CCAl was
affected by P deficiency, and the core oscillator of the circadian
clock was re-programed in response to ambient P change
(Figure 4).

In our study, transcripts of RNase MRP1 were significantly
up-regulated in P-deficient cells, and down-regulated in
P-resupplied-28 h cells (Supplementary Table S5). RNase
P/MRP, being localized in the nucleolus and cytoplasm, plays
an important role in regulating the cell cycle of yeasts (Esakova
and Krasilnikov, 2010). RNase MRP mutation occurring in
Saccharomyces cerevisiae can delay the cell cycle at the end of
mitosis (Cai et al., 2002; Esakova and Krasilnikov, 2010). In some
unicellular organisms, such as the green alga Chlamydomonas
reinhardtii, the flagellate Euglena gracilis, the cyanobacterium
Synechococcus elongata, and the dinoflagellate Gonyaulax
polyedra, cell division is timed by a circadian mechanism
(Hunt and Sassone-Corsi, 2007). However, the role of RNase
P/MRP in regulating the circadian clock is poorly understood.
In general, the circadian rhythm of S. costatum was disturbed
by ambient P deficiency which might subsequently initiate
adaptive mechanisms to the ambient P change in accordance
with the signals released by the new circadian clock (Figure 4).
However, the detailed regulation mechanism still needs further
study.

Other Important Metabolic Processes
Responding to Ambient P Change

Nucleotide Metabolism

In our study, 33 DNA-directed RNA polymerase (RNAP) I,
II, and III genes were up-regulated in P-deficient cells and
down-regulated in P-resupplied cells (Supplementary Table S6).
DNA-directed RNAPs are complex enzymes containing multiple
subunits, i.e., RNAP I, II, III, IV, and V, and are necessary
for constructing RNA chains using DNA genes as templates
(Jones et al., 1987; Ishihama, 2000; Iyer et al., 2003; Kwapisz
et al., 2008). RNAPs regulate the process of gene transcription
which allows a cell to acclimate to a changing environment
(Ishihama, 2000). However, RNAP genes varied insignificantly in
nitrogen-, iron-, or silicon-deficient T. pseudonana cells (Mock
et al, 2008). These results suggest that variation of RNAP
gene expression might be a specific response of diatoms to
ambient P-deficiency. In addition, three genes encoding DNAP,
including DNAP eta subunit, DNAP alpha subunit A, and
DNAP I, were also up-regulated in P-deficient cells and down-
regulated in P-resupplied cells (Supplemenatry Table S6). DNAP
is an enzyme responsible for DNA replication by assembling
nucleotides during cell division. DNAP eta can correct common
defects in DNA, particularly important for accurate translesion
synthesis of DNA damage resulting from ultraviolet radiation
(Goodsell, 2004). Xanthine oxidase and urate oxidase are two
key enzymes involved in the degradation of purine bases
(Andersen et al., 2006; Abooali et al., 2014). Moreover, transcripts
of enzymes involved in the synthesis of nucleotides, such as
xanthine oxidase, urate oxidase, GTP synthase, UMP-CMP
kinase, phosphoribosylamine-glycine ligase, IMP dehydrogenase,
and adenine phosphoribosyltransferase (Van Rompay et al,
1999; Ingerson-Mahar et al., 2010; Sampei et al., 2010), were
all up-regulated significantly in P-deficient cells (Supplementary
Table S6). These results indicated that P deficiency increased
expressions of genes related to DNA damage and RNA
biosynthesis, thus the mechanism protecting the nucleotide
from damage and maintaining its normal functioning might be
initiated.

Photosynthesis

Phosphorus participates in the co-ordinated regulation of
photosynthesis in cyanobacteria (Marcus and Gurevitz, 2000).
In our study, expressions of ribulose-bisphosphate carboxylase
(RuBisco) large subunit genes increased in P-deficient cells
and decreased in P-resupplied-4 h cells (Supplementary Table
S6). RuBisco catalyzes the first step of the Calvin cycle of
photosynthesis and the oxidation of ribulose bisphosphate in
the first step of photorespiration (Miziorko and Lorimer, 1983;
Zhang Y.J. et al., 2015). RuBisco usually consists of two types of
protein subunit, the large and the small subunits in plants, algae,
and cyanobacteria, and the substrate binding sites located in the
large subunit. In cyanobacteria, P binds to the RuBisco active site
and to another site on the large subunit where it can influence
transitions between active and less active conformations of the
enzyme (Marcus and Gurevitz, 2000). Transcripts of LHC I, LHC
11, P680, and P700 were up-regulated significantly in P-deficient
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cells, and down-regulated in P-resupplied cells (Supplementary
Table S6). The LHC plays an important role in absorbing light
and transferring energy to the center of the photosystem (Hiller
et al., 1993, 1995; Boldt et al., 2012; Zhang Y.J. et al, 2015).
P700 and P680 are the central pigment proteins of photosynthetic
system I and II of eukaryotic cells. Furthermore, the expression of
genes encoding key photosynthetic proteins, such as photosystem
II CP43, photosystem II cytochrome c¢550 and cytochrome
b559, cytochrome b6-f complex iron-sulfur subunit and F-type
HT-transporting ATPase, were all up-regulated significantly in
P-deficient cells and down-regulated in both P-resupplied-4 h
and P-resupplied-28 h cells (Supplementary Table S6). These
results indicated that P-deficiency enhanced light harvesting
and photosynthesis which might be an adaptive mechanism
of S. costatum to ambient P deficiency. However, diatom
photosynthesis is suppressed by ambient nitrate (Bender et al.,
2014) or iron limitation (Allen et al, 2008), indicating that
photosynthetic responses of diatoms to different nutrients are
complicated.

Glycolysis

In the glycolysis pathway, triosephosphate isomerase is essential
for efficient energy production, PGK is a major enzyme in the
first ATP-generating step, and phosphofructokinase-1 is also one
of the most important regulatory enzymes in glycolysis (van
der Kamp, 2013). In our study, genes encoding these enzymes
were up-regulated significantly in P-deficient cells. Moreover,
genes encoding other important enzymes, such as fructose-
1,6-bisphosphatase I, fructose-bisphosphate aldolase, pyruvate
kinase, pyruvate dehydrogenase, and aldose 1-epimerase were
also up-regulated in P-deficient cells (Supplementary Table S6).
However, several genes related to glycolysis are down-regulated
in nitrate-limited T. pseudonana, Fragilariopsis Cylindrus, and
Pseudo-nitzschia multiseries (Mock et al., 2008; Bender et al.,
2014). These results indicate that responses of diatoms to ambient
N or P deficiency are different, which might be caused by their
different storage capacity for N and P. In general, glycolysis was
significantly enhanced in P-deficient cells in order to produce
more energy for cells to acclimate to ambient P deficiency.

Cell Cycle

Many genes related to cell cycle regulation were identified in the
transcriptome of S. costatum (Supplementary Table S6). Among
them, genes encoding cyclin B and CDK were significantly up-
regulated in P-deficient cells and down-regulated in P-resupplied
cells (Supplementary Table S6). Cyclin B is a regulatory protein
involved in mitosis and contributes to the switch-like all or none
behavior of the cell in deciding to commit to mitosis (Zhuang
et al,, 2013). CDK-cyclin complexes are present in all eukaryotic
lineages and play important roles in regulating the cell cycle and
ensuring cell division (Robbens et al., 2005; Wang et al., 2013;

Zhuang et al., 2013). Overexpression of both genes in P-deficient
S. costatum suggested that ambient P deficiency disturbed the
normal functions of cyclin B and CDK, and subsequently cell
division ceased (Figure 1A).

CONCLUSION

In conclusion, we have shown that S. costatum cells initiated
multiple adaptive strategies including enhancement of P
transport and cellular P reallocation, and utilization of organic P
and non-P containing sulfolipids and betaine lipids, in response
to ambient P deficiency. Moreover, S. costatum cells could re-
program the circadian rhythm by up-regulation of the genes
involved in the circadian clock, which subsequently triggered the
adaptive mechanisms toward ambient P deficiency (Figure 4).
Opverall, this study, to our knowledge, is the first to identify
circadian rhythm genes in marine diatoms and to demonstrate
that ambient P deficiency could affect cell circadian rhythm.
However, whether this type of response to ambient P deficiency
is a specific feature of S. costatum or is common among a diverse
marine algal taxa remains to be elucidated in future.
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