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Acetogens are obligate anaerobic bacteria capable of reducing carbon dioxide (CO2)
to multicarbon compounds coupled to the oxidation of inorganic substrates, such as
hydrogen (H2) or carbon monoxide (CO), via the Wood-Ljungdahl pathway. Owing to the
metabolic capability of CO2 fixation, much attention has been focused on understanding
the unique pathways associated with acetogens, particularly their metabolic coupling
of CO2 fixation to energy conservation. Most known acetogens are phylogenetically
and metabolically diverse bacteria present in 23 different bacterial genera. With the
increased volume of available genome information, acetogenic bacterial genomes
can be analyzed by comparative genome analysis. Even with the genetic diversity
that exists among acetogens, the Wood-Ljungdahl pathway, a central metabolic
pathway, and cofactor biosynthetic pathways are highly conserved for autotrophic
growth. Additionally, comparative genome analysis revealed that most genes in the
acetogen-specific core genome were associated with the Wood-Ljungdahl pathway.
The conserved enzymes and those predicted as missing can provide insight into
biological differences between acetogens and allow for the discovery of promising
candidates for industrial applications.

Keywords: acetogens, comparative genomics, conserved pathway, CO2 fixation, Wood-Ljungdahl pathway

INTRODUCTION

In recent decades, demands for fossil fuel-derived chemicals and energy have rapidly increased,
along with concerns about climate change. Currently,∼80% of world energy is generated via fossil
fuel processing, which is responsible for 40% of CO2 emissions and global warming (Spigarelli and
Kawatra, 2013; Saeidi et al., 2014). Although several methods for replacing fossil fuels have been
proposed (Naik et al., 2010), lack of environmental and economic sustainability have demonstrated
the technological inability to derive a solution to the climate and energy crisis. As an alternative
approach, the gas fermentation process has received attention; it utilizes a unique metabolism in
acetogenic bacteria (acetogens), which convert CO2 to biofuels (Henstra et al., 2007; Bengelsdorf
et al., 2013; Latif et al., 2014).

Acetogens are a physiologically defined group of bacteria that synthesize acetyl-CoA as a central
metabolic intermediate from chemolithoautotrophic substrates, such as CO/CO2 or H2/CO2,
through acetogenesis (Drake, 1994). Acetogenesis constitutes an appropriate type of microbial
metabolism for the substitution of fossil fuels owing to its ability to convert single carbon (C1)
compounds, such as CO and CO2, via the reductive acetyl-CoA pathway to acetyl-CoA, which is
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referred to as the Wood-Ljungdahl pathway. Owing to this
physiological trait, acetogens play key roles in the global
carbon cycle (McInerney and Bryant, 1981) by performing the
production of large volumes of acetic acid (>1012 kg annually;
Wood and Ljungdahl, 1991). Moreover, acetogens have been
engineered as a novel platform for conversion of waste gasses,
such as industrial synthesis gas or syngas, from gasification of
biomass into useful multicarbon chemicals (Schiel-Bengelsdorf
and Dürre, 2012). This strategy has many advantages over
traditional thermochemical processes, such as Fischer-Tropsch
synthesis, including operation at lower temperature, lower
pressure, higher tolerance of impurities, and flexible syngas-
composition utilization (Spigarelli and Kawatra, 2013).

Though acetogens are present in at least 23 different genera
(Drake et al., 2006), comprehensive analysis of genes and proteins
involved in acetogenesis indicated that acetogens contain
conserved physiological properties. The most important shared
feature is the conversion of CO2 to formate via fixation and to
acetyl-CoA, which can be used as a metabolic intermediate for
biomass and byproduct synthesis. To elucidate these properties,
the biochemistry of the Wood-Ljungdahl pathway and energy
conservation systems has been extensively studied (Drake
et al., 2008; Ragsdale and Pierce, 2008). In recent years, the
enzymatic reactions associated with acetogenesis have been well
characterized, especially in Clostridium autoethanogenum (Wang
et al., 2013; Mock et al., 2015), Moorella thermoacetica (Huang
et al., 2012; Mock et al., 2014), and Acetobacterium woodii
(Schuchmann and Müller, 2012; Schuchmann and Muller, 2013;
Bertsch et al., 2015).

In addition to the understanding of acetogenesis, elucidation
of the molecular mechanisms associated with acetogens
has undergone tremendous progress as a result of genome
sequencing. The genome sequences of acetogens represent useful
information to aid the search for novel enzymes/pathways,
generating hypotheses related to energy conservation systems,
and accessing evolutionary relationships between species that
have not previously been characterized biochemically. For
example, studies focusing on construction of in silico genome-
scale mathematical models, as well as transcriptomics and
proteomics investigation of the Wood-Ljungdahl pathway and
related energy conservation systems, were undertaken primarily
owing to the availability of genome-sequence information
(Nagarajan et al., 2013; Islam et al., 2015; Marcellin et al.,
2016).

Given the increased volume of genomic information,
comparative genomic analysis of acetogens is possible. Among
currently available comparative genomic approaches, pan-
genome analysis is widely used to construct a framework for
estimating genomic diversity of entire repertoires and identifying
core genomes (shared by all strains), dispensable genomes
(existing in two or more strains), and specific (unique to single
strain) gene pools for a species (Tettelin et al., 2005). Conserved
and alternative pathways across species provide insight into
the biological differences between species (Kelley et al., 2003),
allow the discovery of promising target proteins for industrial
applications, and create hypotheses regarding missing genes or
possible alternatives to current metabolic pathways. Moreover,

these findings increase the understanding of genetic differences
and related reactions.

In this review, we specifically addressed recent studies on the
complete genomes and conserved genes associated with CO/CO2
utilization in diverse acetogens. We focused on pathways
essential for autotrophic growth, discussed the main features and
conservation of metabolic pathways, and addressed the structural
differences and relationships between acetogens.

THE CORE GENOME OF ACETOGENS:
WHICH GENETIC CHARACTERISTICS
ARE SHARED AMONG ACETOGENS?

Currently, >100 acetogens have been isolated from diverse
habitats (Drake et al., 2006). With advances in sequencing
technology along with increased biotechnological interest in
acetogens, the number of sequenced acetogen genomes has
increased every year since the first genome was sequenced.
Recently, eight complete genomes (34.7%) were published in
2015, containing five de novo sequencing and three resequencing
genomes (Table 1). In response to the diversely isolated
environments and culture conditions, the features of the genomes
vary. The length of acetogen genomes range from ∼2.4 to
∼5.7 Mb, with an average length of 3.8 Mb and having GC
content between 29.1% and 55.8% (average: 38.5%; Table 1).
Analysis of sequence annotations revealed that on average, 85.6%
of the genomes consist of coding sequences, with approximately
1.1 coding sequence per kb.

Based on these complete acetogen genomes, comprehensive
genome analysis is possible to understand the functionality and
specificity conserved among autotrophic acetogenic bacteria
(Hayashi et al., 2001; Ohnishi et al., 2001). For this purpose,
we selected 14 strains that have been experimentally confirmed
as capable of converting acetyl-CoA from CO/CO2 and, thus,
from inorganic carbon through the Wood-Ljungdahl pathway
(Table 1). Although Carboxydothermus hydrogenoformans
and Thermacetogenium phaeum are carboxydotrophic
hydrogenogenic and syntrophic acetate-oxidizing bacteria,
respectively, unlike model acetogens, their acetogenic growth
has been reported (Hattori et al., 2000, 2005; Henstra and Stams,
2011; Haddad et al., 2013). On the other hand, the capability of
Clostridium sticklandii DSM 519 for autotrophic growth on C1
substrates via the Wood-Ljungdahl pathway was not confirmed
(Fonknechten et al., 2010); therefore, this strain was excluded in
this analysis.

For downstream analysis, 14 complete acetogen genome
sequences were obtained from the National Center for
Biotechnology Information database1 (Table 1). Pan-Genomes
Analysis Pipeline (PGAP-1.12; Zhao et al., 2012) identified
functional genes presented in all strains (core genome), two
or more strains (dispensable genomes), and unique strains
(specific genomes; Tettelin et al., 2005). For comparative
analysis, the MultiParanoid method was used to analyze cluster
orthologs and inparalogs shared by multiple genomes based

1ftp://ftp.ncbi.nih.gov/genomes/genbank/bacteria
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on sequence similarity (Alexeyenko et al., 2006; Zhao et al.,
2012). Additionally, BLASTP was used to determine similarities
between protein sequences and filter results by setting minimum
scores at 50 and E-values to 10−10. The obtained result was
clustered using the Markov cluster algorithm (Enright et al.,
2002). To understand the evolutionary relationships among these
acetogens, a pan-genome tree was constructed (Figure 1) based
on the pan-genome dataset and neighbor-joining method (Zhao
et al., 2012). All sister groups were clustered by the same genera
or optimal temperature conditions. In contrast to the 16S-based
phylogenetic tree (Bengelsdorf et al., 2013), the strain exhibiting
the least amount of evolutionary change from a common
ancestor was Clostridium difficile. M. thermoacetica (strain
AMP) was previously reported to show atypical hydrogenogenic
metabolism (Jiang et al., 2009), and the pan-genome tree also
showed evolutionary closeness among Ca. hydrogenoformans,
T. phaeum, and M. thermoacetica (Figure 1). These results
suggested that functional gene composition of M. thermoacetica
is similar to Ca. hydrogenoformans.

According to comparative genome analysis, a total of 15,079
orthologous groups with 50,178 genes were identified, consisting
of 474 core gene groups with 12,457 genes, 4710 dispensable
gene groups with 27,825 genes, and 9896 specific genes identified
(Figure 2A; Supplementary Table S6). Core genes were well
annotated, with 92.9% of genes. However, the number of
specific genes in each organism varied from 206 to 1657, with
64.0% of the specific genes identified as having hypothetical
functions (Figure 2B). Additionally, the number of specific
genes did not correlate with the size of the genome, which
is in contrast to the correlation between the number of genes
and the size of the genome. For example, the genome of
Clostridium ljungdahlii is the third largest (4.6 Mb), but its
number of specific genes is 206, which is the least number
of genes in the set. Additionally, 266 specific genes, which
was the second least number of genes in the set, were found
in C. autoethanogenum, having the fourth largest (4.3 Mb)
genome.

To decipher the 474 core genes of the 14 acetogenic
bacteria, functionally grouped networks of enriched categories
were generated for the biological interpretation of core genes
using ClueGo version 2.2.4 (Saito et al., 2012), which is a
widely used Cytoscape version 3.3.0 (Shannon et al., 2003)
plugin. For this analysis, C. autoethanogenum data was used
as the standard, because C. autoethanogenum was recently
confirmed systematically by transcriptome and proteome analysis
of the Wood-Ljungdahl pathway (Marcellin et al., 2016). Gene
Ontology (GO) terms (GO:0030634; Biological Process, carbon
fixation by acetyl-CoA pathway) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways (M00377; Pathway
module, Wood-Ljungdahl pathway) were manually added along
with the published experimental evidence (Marcellin et al., 2016)
(Supplementary Table S1).

As a result, 95 GO terms were significantly enriched and
categorized into 10 groups according to their kappa scores
(Figure 3A). Overall, highly connected groups were assigned
to adenosine triphosphate (ATP) binding, macromolecule
modification and sulfate transport, cellular macromolecule
metabolic process, and regulation of cellular process as group-
leading terms (Figure 3A). Additionally, five sub-groups
were involved in membrane component, monocarboxylic acid
binding, transcription-factor binding, and transport and plasma
membrane (Figure 3A; Supplementary Table S2). Therefore,
GO analysis showed that the core genome was significantly
correlated with a number of essential cellular functions, similar
to most bacteria (Gil et al., 2004). To examine the acetogenic
characteristics, core genome was trimmed by non-acetogenic
core genome, which contains five non-acetogens phylogenetically
close to 14 selected acetogenic bacteria (Supplementary Figure
S1). Based on enrichment p-values, 27 GO terms and 8
KEGG pathways were enriched (Supplementary Table S3) and
functionally categorized into 12 groups (Supplementary Figure
S2). The most linked functional groups were assigned to
cysteine and methionine metabolism, monobactam biosynthesis,
small molecule biosynthetic process, Mo-molybdopterin cofactor

FIGURE 1 | Pan-genome tree consisting of 14 acetogens. A pan-genome tree consisting of 14 acetogens was constructed using the neighbor-joining method
core-genome-determined values.
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FIGURE 2 | Pan-genome analysis of acetogens. (A) The number of core, dispensable, and specific genomes of each strain. Abbreviations: A, Acetobacterium;
Ac, Acetohalobium; Ca, Carboxydothermus; C, Clostridium; E, Eubacterium; M, Moorella; T, Thermoacetogenium; Tr, Treponema; Th, Thermoanaerobacter.
(B) Proportion of hypothetical and uncharacterized proteins in the groups of core, dispensable, and specific genes was calculated and displayed as follows:
hypothetical proteins, light gray; unknown proteins, dark gray.

biosynthetic process, iron chelate transport, and the Wood-
Ljungdahl pathway. This result is in agreement with related
acetogenesis and cofactor biosynthetic pathways involved in the
Wood-Ljungdahl pathway.

To further investigate unique core genes found in acetogens,
the core genome was filtered using genomes of non-acetogenic
anaerobic bacteria. In this analysis, the complete genome of
Clostridium butyricum KNU-L09 was used, which is a strictly
anaerobic, non-acetogenic bacteria that is phylogenetically
similar to C. difficile 630 (Supplementary Figure S1). According
to the functional annotation network of the acetogen-specific
core genome, five KEGG pathways and five GO terms were
specifically enriched (Figure 3B; Supplementary Table S4).
Acetogen-specific functional networks consisted of 13 genes
annotated as methionine synthase, CO dehydrogenase/acetyl-
CoA synthase (CODH/ACS), ferredoxins, and a subunit of
formylmethanofuran dehydrogenase. Thus, acetogen-specific
functional networks were involved in specific molecular
functions, such as iron-sulfur cluster-binding transferase
activity and dihydropteroate-synthase activity, and biological
processes, such as carbon fixation by the acetyl-CoA pathway
and the pteridine-containing compound metabolic process.
Interestingly, 12 of the 13 genes (92.3%) were highly associated
with the Wood-Ljungdahl pathway. Of the 12 genes, six
were located in a single gene cluster encoding the Wood-
Ljungdahl pathway (CAETHG_1606-CAETHG_1621), while
the other six genes were additional copies of those genes.
Another gene specifically conserved in acetogens was the
tungsten-containing formylmethanofuran dehydrogenase
subunit E (fwdE), which catalyzes the first reduction of CO2
in methanogens (Hochheimer et al., 1998). However, the other
genes encoding tungsten formylmethanofuran dehydrogenase
(fwdABCD), which often form an operon with fwdE, were
absent in all 14 acetogen genomes. This protein encoded by
fwdE contains a zinc-β-ribbon domain, suggesting that it

plays a role in transcriptional regulation as a DNA-binding
protein; however, its exact role in acetogenesis remains
unclear.

BIOSYNTHESIS OF ACETATE FROM
CO/CO2: THE WOOD-LJUNGDAHL
PATHWAY

Based upon the analysis of the acetogen-specific core genome,
the genes related to the Wood-Ljungdahl pathway were highly
conserved as hallmarks of acetogens. This pathway involves
the reduction of two CO2 molecules into one acetyl-CoA with
several coenzymes and electron carriers (Drake and Daniel, 2004;
Ragsdale, 2008), and it is highly interconnected with energy
conservation systems to overcome the same thermodynamically
unfavorable reaction. Nevertheless, the pathway is the most
efficient of the all CO2-fixation pathways, including the
Calvin cycle, the reductive tricarboxylic acid cycle, and the
hydroxypropionate cycle (Fast and Papoutsakis, 2012). Moreover,
the arrangement of genes related to the Wood-Ljungdahl
pathway was well conserved with phylogenetic correlation in
their genomes (Poehlein et al., 2015c). In this review, the Wood-
Ljungdahl pathway was functionally separated into three core
groups. The first core group encodes enzymes responsible for
reducing CO2 to formate. The second core group consists of the
methyl- and the carbonyl-branch enzymes. The last core group is
composed of acetate-producing genes.

THE WOOD-LJUNGDAHL PATHWAY
CORE GROUP I: CO2 TO FORMATE

The first reaction of acetogenesis is the reduction of CO2
to formate by two-electron reduction, which is catalyzed
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FIGURE 3 | Enrichment map of GO (Gene Ontology) terms and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways in the core acetogen
genome. (A) Annotation-term network of core acetogen genomes. (B) Acetogen-specific core genomes using functional enrichment analysis. KEGG and GO terms,
including biological process, molecular function, and cellular component, were represented together as nodes, and node sizes represent the genes percentage
association with each term. Significantly related terms were highly contacted, and functionally related nodes were partially overlapped. The most significant terms
were only annotated in groups. A Bonferroni corrected p < 0.05 was considered the cut-off criterion. Term enrichment significance was represented by color.

by selenocysteine- or non-selenocysteine-containing formate
dehydrogenase (FDH) in a ferredoxin- or NADH-dependent
reaction (Ljungdahl and Andreesen, 1978; Gollin et al.,
1998; Schuchmann and Muller, 2013; Wang et al., 2013).
Genes associated with the reaction are well conserved in
all acetogens. According to genome-comparison analysis, two
genes encoding selenocysteine-containing FDH (fdhF) and FDH-
accessory protein (fdhD) are well conserved in core group I
(Figure 4A). Despite conservation of fdhF and fdhD, a number
of fdh gene copies are different in all of the genomes. For
instance, fdhF and fdhD were located as a single gene cluster
in the C. difficile genome. However, three copies of fdhF were
found in C. ljungdahlii and C. autoethanogenum. Similar to the
genes encoding seleno-containing FDH, the genes encoding non-
selenocysteine residues containing FDH are also well conserved
in the acetogen genomes. Although the selenoproteins are mutant
forms of FDH that differ only in the presence of selenium instead
of sulfur at the active site, seleno-containing FDHs exhibit higher
catalytic rates relative to non-selenocysteine FDHs (Stadtman,
1991; Matson et al., 2010). However, non-selenocysteine FDH
may be useful for acetogenesis in selenium-free environments.

Although the fdh genes are highly conserved, electron-delivery
systems involved in this reaction differ, owing to the diversity
of electron acceptors associated with FDH (Schuchmann and
Müller, 2014). For example, A. woodii and Clostridium aceticum
have four or three hydrogenase modules, respectively, which are
located in a gene cluster with the selenocysteine-containing fdh
genes (Poehlein et al., 2012, 2015c; Schuchmann and Muller,
2013). In this process, A. woodii uses H2 as an electron donor
for CO2 reduction, referred to as hydrogen-dependent CO2
reductase, which can be energetically more advantageous as
compared with utilizing energy intermediates by not expending

a substrate for the chemiosmotic gradient (Schuchmann and
Muller, 2013). C. autoethanogenum and C. ljungdahlii also
have complexes of ferredoxin and NAD-dependent [FeFe]-
hydrogenases for CO2 reduction, which are located near
an fdh gene cluster encoding selenocysteine-containing FDH
(Nagarajan et al., 2013; Wang et al., 2013).

THE WOOD-LJUNGDAHL PATHWAY
CORE GROUP II: FORMATION OF
ACETYL-CoA

Formate is subsequently converted to acetyl-CoA by a series
of reactions catalyzed by the enzymes of the methyl branch
of the Wood-Ljungdahl pathway. Core group II was composed
of all key enzymes in the methyl and carbonyl branches
(Figure 4A). In the methyl branch, formyl-tetrahydrofolate
(THF) synthase (FHS) converts formate to formyl-THF by
investing one molecule of ATP. For the next two steps, formyl-
THF cyclohydrolase (FCH) and methylene-THF dehydrogenase
(MDH) consecutively catalyze the converted THF into methenyl-
THF, then to methylene-THF, which is then converted to methyl-
THF and methyl-CoFeSP by using methylene-THF reductase
(MR, two subunits of methylene-THF reductase; metV and
metF) and methyltransferase (MT, two subunits of corrinoid/Fe-
S protein; acsC and acsD, methyltransferase: acsE), respectively.
For the carbonyl branch, CO2 becomes CO via catalysis by the
CODH/ACS complex (CODH: acsA, acsF, and cooC; ACS: acsB).
Using the same enzyme, the two molecules, methyl-CoFeSP and
CO, combine into acetyl-CoA.

Nine genes encoding FHS, MDH, MT, CODH, and ACS
were well conserved in all 14 acetogens. However, two genes
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FIGURE 4 | The Wood-Ljungdahl pathway. (A) The methyl- and the carbonyl-branches in the Wood-Ljungdahl pathway. The Wood-Ljungdahl pathway is shown
with genes that are represented as core genes (blue circles) and dispensable genes (dark gray circles). The numbers within the circles represent the number of
strains that have corresponding genes in other strains. Abbreviations: THF, tetrahydrofolate; CoFeS-P, corrinoid [Fe-S] protein; FDH, formate dehydrogenase; FHS,
formyl-tetrahydrofolate synthase; FCH, formyl-cyclohydrolase; MDH, methylene-THF dehydrogenase; MR, methylene-THF reductase; MT, methyltransferase;
ACS/CODH, carbon monoxide dehydrogenase/acetyl-CoA synthase; PTA, phosphotransacetylase; ACK, acetate kinase. (B) Comparison of the Wood-Ljungdahl
pathway genes between Clostridium difficile 630 and 13 other acetogenic bacteria used in pan-genome analysis. Track 1 (the outermost) represents boundaries of
each bacterium. The clockwise order of the genera is based on the phylogenetic tree in Figure 1. Track 2 represents the Wood-Ljungdahl pathway genes, the colors
of which are indicated in the upper panel. Orange lines link the genes that have e-values <10−6. Abbreviations: A, Acetobacterium; Ac, Acetohalobium; Ca,
Carboxydothermus; C, Clostridium; E, Eubacterium; M, Moorella; T, Thermoacetogenium; Tr, Treponema; Th, Thermoanaerobacter.

that encode FCH and two MR subunits were determined to
be dispensable genes. One of the four dispensable genes, fchA,
is responsible for converting formyl-THF into methyl-THF. In
order to perform a similarity search of fchA throughout the
other genomes, the fchA sequence from C. difficile was used,
and it was determined that fchA from 13 acetogen genomes was
highly conserved, although the enzyme was only absent in the
M. thermoacetica genome (Pierce et al., 2008). According to a
previous study, in M. thermoacetica, the cyclization of formyl-
THF and the reduction of methenyl-THF were observed being
catalyzed by MDH by substituting FCH (O’Brien et al., 1973;

Pierce et al., 2008), which is not a core gene in the Wood-
Ljungdahl pathway. Although the fchA gene is not a core gene set,
the biochemical reaction associated with conversion of formyl-
THF to methylene-THF is a conserved step in all acetogens for
acetogenesis.

Other dispensable genes included metF and metV that encode
MR. These redox enzymes contain iron-sulfur clusters and utilize
reduced forms of electron carriers (ferredoxin or NADH) as
electron donors. They reduce methylene-THF to methyl-THF
using different enzyme complexes (Clark and Ljungdahl, 1984;
Park et al., 1991). In this step, enzymatic diversity denoted
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by related-subunit compositions was reported among acetogens
(Mock et al., 2014; Bertsch et al., 2015; Jeong et al., 2015). In
A. woodii, a trimeric enzyme-complex system was detected for
methyl-THF conversion, consisting of metF, metV, and rnfC2
(Bertsch et al., 2015). In the gene cluster, RnfC2 accepts an
electron from the reduced form of NADH and then transfers
the electron to reduce methylene-THF. However, the MR gene
cluster consists of a heterohexameric complex with electron-
bifurcating heterodisulfide reductase (hdrA, hdrB, and hdrC),
metV, and mvhD in M. thermoacetica (Mock et al., 2014).
Additionally, the heterohexameric complex does not catalyze
NADH-dependent methylene-THF reduction, but utilizes some
form of second-electron acceptor. Although genes of redox
enzymes were highly conserved, a configuration of actual
enzymatic reactions will be quite different. According to the
results of the comparative analysis, only metV is absent in
Acetohalobium arabaticum, and both genes encoding MR are
missing in Treponema primitia. In other bacteria, Thermus
thermophilus HB8 and Escherichia coli K12 utilize only metF
to catalyze the methylene tetrahydrofolate reductase reaction
(Guenther et al., 1999; Igari et al., 2011). Perhaps the conversion
of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate in
Ac. arabaticum may function as an MR reaction in Escherichia coli
and T. thermophiles containing only metF. The Ac. arabaticum
metF gene consists of methylenetetrahydrofolate reductase and
methylene-tetrahydrofolate reductase C-terminal domains and is
663 base pairs longer than the A. woodii metF gene. Given the
presence of the metV domains, the metF gene in Ac. arabaticum
is capable of solely catalyzing MR reactions to reduce methylene-
THF. However, alternative pathways for the missing subunits
involved in the MR reaction in Tr. primitia remain unknown.

The last dispensable gene in core group II is gcvH,
encoding glycine-cleavage system H protein in the glycine
cleavage/synthesis pathway, whose functional role in the
Wood-Ljungdahl pathway remains unclear. The glycine
cleavage/synthesis pathway consists of four proteins; however,
only gcvH and lpdA, which encodes dihydrolipoamide
dehydrogenase, are acetogens. All of the genes encoding this
pathway are found in C. sticklandii (Fonknechten et al., 2010).
Although the genes encoding the complete Wood-Ljugdahl
pathway are present in the genome, C. sticklandii is unable to
utilize CO2 as a substrate. One proposed hypothesis is that due
to the presence of all glycine cleavage/synthesis complexes, an
efficient electron acceptor substitutes for the role of CO2, which
leads to shutdown of the methyl-branch of the Wood-Ljungdahl
pathway (Fonknechten et al., 2010). Although lpdA is conserved
in 14 acetogens, gcvH is absent in core group II due to the risk of
shutting down the Wood-Ljungdahl pathway.

Aside from enzymatic diversity, conserved genes from core
group II showed a tendency to co-localize in the genomes
(Figure 4B). Although acetogens are phylogenetically diverse,
conserved genes encoding FHS or CODH/ACS complexes are co-
localized in acetogen genomes (Bruant et al., 2010; Poehlein et al.,
2015c). In the least evolutionarily changed C. difficile genome
(Figure 1), the Wood-Ljungdahl pathway enzymes are located in
one gene cluster (Figure 4B), which has been reported (Bruant
et al., 2010; Köpke et al., 2013). Although two copies of lpdA

were found, only one copy of each core gene was detected. In all
Clostridium genera of acetogenic bacteria, the Wood-Ljungdahl
pathway gene cluster with the same order of genes was conserved
(Figure 4B). Beside the Clostridium genera, the methyl- and
carbonyl-branch-encoding genes presented as multiple copies.
A. woodii and Eubacterium limosum are phylogenetically related
and contain two gene clusters encoding the Wood-Ljungdahl
pathway, which is composed of both the methyl and the carbonyl
branches. Additionally, duplication of acsE explains the rapid
growth rate under autotrophic conditions in both strains (Blach
et al., 1977; Tschech and Pfennig, 1984; Sharak Genthner and
Bryant, 1987). Interestingly, throughout all 14 acetogens, acsB,
acsC, acsD, acsE, and acsF genes were always located as a gene
cluster (Figure 4B). Thus, the highly conserved CODH/ACS
complex indicated that the complex functions most efficiently
when the genes form a gene cluster. Under such circumstances,
gene clusters reflect evolutionary changes in pathways and
associated taxonomy, while the phylogenetic tree describes the
evolution of acetogenic bacteria.

THE WOOD-LJUNGDAHL PATHWAY
CORE GROUP III: ACETYL-CoA TO
ACETATE

All acetogens have an ability to produce acetate via acetogenesis
as a core feature (Drake et al., 2008). In many acetogenic
bacteria, phosphotransacetylase (pta) and acetate kinase (ack)
genes were found as a single operon, similar to that observed
in C. ljungdahlii, and C. autoethanogenum (Köpke et al., 2010;
Brown et al., 2014). In the 14 acetogen genomes, the ack
gene was categorized as a core gene, but the pta gene was
classified as a dispensable gene. The acetate-production operon,
which consisted of the pta and ack genes, was found in
C. autoethanogenum, C. ljungdahlii, Clostridium scatologenes,
Clostridium carboxidivorans, Thermoanaerobacter kivui, Ca.
hydrogenoformans, and T. phaeum. However, in A. woodii and
Tr. primitia, the ack and pta genes were scattered in the genomes
and not located as a gene cluster. Additionally, the pta gene was
unidentified in four acetogen genomes: C. difficile, C. aceticum,
E. limosum, and M. thermoacetica. It was suggested that an
alternative protein for pta is phosphotransbutyrylase (ptb; Köpke
et al., 2013; Poehlein et al., 2015b) and butyrate kinase (buk),
which are located on a single operon and can bind to both acetyl-
CoA and butyryl-CoA, or propanediol utilization protein (pduL),
which exhibits transacetylase function (Pierce et al., 2008; Köpke
et al., 2010; Poehlein et al., 2015b). In contrast to pta, the ack gene
was found as a single copy and exhibited high similarity in all
strains, except Ac. arabaticum, which has two ack genes.

CENTRAL INTERMEDIATES OF
AUTOTROPHIC GROWTH: ACETYL-CoA
AND PYRUVATE

As an essential cellular function in all bacteria, biomass and
byproducts must be derived from acetyl-CoA. For bacterial
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FIGURE 5 | Pathway map of central carbon metabolism. Starting from Acetyl-CoA, the pathway includes 52 biochemical steps catalyzed by enzymes (see
Supplementary Table S5 to see the complete enzyme name). The total pathway is shown with genes that are represented as core genes (blue circles), lesser
conserved dispensable genes (<50%, light gray circles), and highly conserved dispensable genes (>50%, dark gray circles). The numbers within the circles
represent the number of strains that have corresponding genes in other strains. The following metabolites are represented by number: (1) Acetyl phosphate, (2)
Acetaldehyde, (3) Malonyl-CoA, (4) Malonyl-[acyl-carrier protein], (5) Acetoacetyl-[acyl-carrier protein], (6) (R)-3-Hydroxybutanoyl-[acyl-carrier protein], (7)
But-2-enoyl-[acyl-carrier protein], (8) Butanoyl-[acp], (9) Acetyl-[acyl-carrier protein], (10) Homocitrate, (11) Oxaloacetate, (12) Citrate, (13) Isocitrate and aconitate,
(14) 2-Oxoglutarate, (15) Malate, (16) Fumarate, (17) Succinyl-CoA, (18) Succinate, (19) Phosphoenol-pyruvate, (20) 2-Phospho-D-glycerate (21)
3-Phospho-D-glycerate, (22) 1,3-Bisphospho-D-glycerate, (23) D-Glyceraldehyde 3-phosphate, (24) D-Xylulose-5P, (25) D-Erythrose-4P, (26) D-Ribulose
5-phosphate, (27) D-Sedoheptulose 7-phosphate (28) dihydroxyacetone phosphate (DHAP), (29) D-Fructose-1,6-bis, (30) D-Fructofuranose 6-phosphate, (31)
D-Ribose-5P, (32) 5-Phospho-alpha-D-ribose 1-diphosphate, (33) 3-Deoxy-D-arabino-hept-2-ulosonate 7-phosphate, (34) 3-Dehydroquinate, (35)
3-Dehydroshikimate, (36) Shikimate 3-phosphate, (37) 5-Enolpyruvyl-shikimate 3-phosphate, (38) 3-Methyl-2-oxobutanoate, (39) 2-Oxoburanoate, (40)
(S)-2-Acetolactate, (41) (S)-2-Aceto-2-hydroxybutanoate, (42) 3-Hydroxy-3-methyl-2-oxobutanoic acid, (43) (R)-3-Hydroxy-3-methyl-2-oxopentanoate, (44)
(R)-2,3-Dihydroxy-3-methylbutanoate, (45) (R)-2,3-Dihydroxy-3-methylpentanoate, (46) 3-Methyl-2-oxobutanoic acid, (47) (S)-3-Methyl-2-oxopentanoic acid.

growth under autotrophic conditions, the central precursor can
only be synthesized from C1 compounds via the Wood-Ljungdahl
pathway, which plays an important role in cell proliferation.
According to a previous study, the proportion of carbon flux
toward biomass was predicted as 5% of total carbon flux during
autotrophic fermentation (Fast and Papoutsakis, 2012).

Acetate and ethanol are common products generated by
acetogenic fermentation, and the production of acetate coupled
to ATP synthesis is associated with the Wood-Ljungdahl
pathway. Following acetate production, acetate is reduced
to acetaldehyde via an aldehyde:ferredoxin oxidoreductase
reaction with reduced ferredoxin, and the corresponding gene
is categorized as a dispensable gene. Acetyl-CoA can also
be converted to acetaldehyde by bifunctional aldehyde/alcohol
dehydrogenase (Leang et al., 2013), which was conserved in
all 14 acetogens. Additional reduction of acetaldehyde can
generate ethanol by the same aldehyde/alcohol dehydrogenase
or alcohol dehydrogenase (Figure 5; Supplementary Table
S5). Although the alcohol dehydrogenase or aldehyde/alcohol
dehydrogenase enzymes responsible for ethanol production are
encoded in their genomes, ethanol production was reported in
only four strains under autotrophic conditions. Three strains,
C. autoethanogenum (Köpke et al., 2011), C. ljungdahlii (Köpke
et al., 2010), and C. carboxidivorans (Liou et al., 2005; Bruant
et al., 2010), are capable of producing ethanol as the main
product, and C. scatologenes (Liou et al., 2005) is able to

produce ethanol at low levels. Although genetic mechanisms
for ethanol production are present, ethanol production by other
strains was not reported under autotrophic conditions. Possible
explanations are that these strains lack functional efficiency
of the aldehyde:ferredoxin oxidoreductase reaction (putative
formaldehyde:Fd oxidoreductase) or presence of bioenergetic
constraints (Bertsch and Müller, 2015; Mock et al., 2015).

In addition to alcohol production, acetyl-CoA can be used
for fatty acid, leucine, and lysine biosynthesis in one of the
most conserved pathways in bacteria. Acetyl-CoA can be utilized
directly for fatty acid biosynthesis by seven conserved genes.
Although six of the genes were classified as core genes, enoyl-
acyl carrier-protein reductase (fabK, EC 1.3.1.9) was identified
as being dispensable due to its being absent in Tr. primitia
(Figure 5).

To biosynthesize nucleic acids, amino acids, and essential
cofactors, three-carbon pyruvate was used as a central metabolite
in several pathways for autotrophic growth (Bar-Even et al.,
2012). For this, pyruvate was interconverted from acetyl-CoA
by pyruvate:ferredoxin oxidoreductase (Charon et al., 1999).
Although highly important, pyruvate:ferredoxin oxidoreductase
gene was not classified as a core gene. In the cases of Ca.
hydrogenoformans Z-2901 and T. phaeum DSM 12270, the
pyruvate:ferredoxin oxidoreductase gene was not identified in the
genomes. For the alternate reaction, formate C-acetyltransferase
gene (pyruvate formate lyase, tph_c09600 and CHY_0877)
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FIGURE 6 | Conserved pathway of cofactor biosynthesis in acetogens. Pathways for tetrahydrofolate (A) and molybdenum cofactor (B) biosynthesis are
shown with genes that are represented as core genes (blue circles), lesser conserved dispensable gene (<50%, light gray circles), and highly conserved dispensable
genes (>50%, dark gray circles).

present in the genome can be utilized for converting one acetyl-
CoA with one formate to one pyruvate (Oehler et al., 2012).

To supply carbon skeletons, pyruvate reacts through reductive
or oxidative branches of the incomplete tricarboxylic acid
cycle, similar to most anaerobic bacteria. Specifically, the
reductive branch was highly conserved throughout the acetogens
(Figure 5). Initially, oxaloacetate, which is derived from pyruvate,
was converted to fumarate via the reductive branch. Following
this reaction, fumarate reductase, which was conserved in eight
strains, synthesizes succinate from fumarate. However, all genes
encoding the oxidative branch were classified as dispensable
genes. The citrate synthase gene was located in only seven strains
(Figure 5; Supplementary Table S5), while other enzymes, such
as isocitrate dehydrogenase and 2-oxoglutarate synthase, were
conserved, except in Tr. primitia, Th. kivui, C. ljungdahlii, and
C. autoethanogenum. Among the acetogens, the least conserved
enzyme associated with the tricarboxylic acid cycle was succinyl-
CoA synthetase. In all acetogens, succinyl-CoA synthetases were
located with the incomplete tricarboxylic acid cycles, which
were composes of formations, with one direction leading to the
formation of 2-oxoglutarate or succinyl-CoA from citrate and the
other direction leading to the formation of fumarate or succinate
from acetyl-CoA.

Central metabolic pathways, such as the glycolysis pathway,
the pentose phosphate pathway, and the shikimate biosynthetic
pathway, were highly conserved in all acetogens for nucleotide
and amino acid biosynthesis (Figure 5). To produce the
pentose phosphate for RNA and DNA precursors, the pentose
phosphate pathway and gluconeogenesis must be utilized
with related core genes. The shikimate pathway was also
used in early steps for biosynthetic production of cofactors

(folate), electron-transfer components (quinones), and aromatic
amino acids (phenylalanine, trypsin, and tryptophan). All parts
of these pathways were conserved, except for aroD genes,
which were absent in the Tr. primitia genome (Figure 5;
Supplementary Table S5). For the production of valine, leucine,
and isoleucine from acetyl-CoA, acetolactate synthase, ketol-
acid reductoisomerase (IlvC), and dihydroxy-acid dehydratase
(IlvD) are required, which were conserved in all 14 acetogens
(Figure 5). Following acetyl-CoA conversion, these conserved
enzymes convert pyruvate into branched-chain amino acids.

COFACTOR BIOSYNTHETIC PATHWAYS

Several enzyme-cofactor interactions are heavily involved in the
Wood-Ljungdahl pathway, including THF, corrinoid iron-sulfur
protein, and molybdopterin cofactor, which play key roles in
one-carbon transfer for synthesizing acetyl-CoA from CO2/H2
(Drake, 1994; Ragsdale, 2008; Ragsdale and Pierce, 2008). Under
the circumstances, genes encoding enzymes involved in the
biosynthesis of cofactors should be present in the genome for
pure cultures of CO/CO2-dependent chemolithotrophs without
supplementation of the required cofactors.

First, THF is important for the transformation of methyl-
tetrahydrofolate following reduction of CO2. For THF synthesis,
the de novo synthesis pathway begins with chorismate and
guanosine triphosphate from the shikimate pathway and purine
metabolism, respectively. All required genes were present in the
core-gene set, except for two genes (Figure 6A): dihydrofolate
reductase (DHR) and alkaline phosphate. Specifically, DHR was
missing in most of the acetogens. A possible alternative enzyme
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is an oxygen-insensitive nitroreductase (Tph_c13060) for DHR
(Oehler et al., 2012). The nitroreductase genes are core genes
in acetogens, and studies of oxygen-insensitive nitroreductase
reported evidence of DHR activity (Vasudevan et al., 1992).

In the steps of formate synthesis, selenocysteine FDH requires
the molybdopterin cofactor to catalyze the reduction of CO2
to formate (Ragsdale and Pierce, 2008). The biosynthetic
pathway associated with the molybdopterin cofactor is shown
in Figure 6B. The first steps, catalyzed by MoaA and MoaC,
use guanosine triphosphate to synthesize the precursor Z,
followed by molybdopterin synthesis by MoaD, MoeB, and
MoaE (Figure 6B). Interestingly, the gene encoding MoaE
was not reported in any acetogens, including M. thermoacetica
(Pierce et al., 2008). A predicted alternative enzyme is
cysteine desulfurase (EC 2.8.1.7), which was located in all 14
acetogen genomes and uses a sulfur donor, such as MoaD, for
molybdopterin synthesis (Mihara et al., 2002).

Cobalamin is a central cofactor in the Wood-Ljungdahl
pathway, given that acetyl-CoA synthase reactions are cobalamin
dependent. Although pathways for cobalamin biosynthesis were
reported in M. thermoacetica (Pierce et al., 2008), the pathway
has not been fully elucidated. The genes encoding cobalamin
biosynthesis are located as a large gene cluster in the genome
(Köpke et al., 2010; Oehler et al., 2012; Poehlein et al., 2012).
Two distinct cobalamin-biosynthesis pathways were reported as
an anaerobic and an aerobic pathway (Rodionov et al., 2003).
Comparative genome analysis indicated that the aerobic pathway
was absent in all acetogen genomes; however, the cobJ, cobM,
cobH, and cobB genes were highly conserved. Nevertheless, the
anaerobic cobalt-insertion pathway was conserved in six strains
(A. woodii, E. limosum, C. autoethanogenum, C. ljungdahlii,
C. scatologenes, and Th. kivui). Previously, the ability to the
produce vitamin B12 under autotrophic or methylotrophic
conditions was evaluated in two strains (Stupperich et al., 1988;
Lebloas et al., 1994). However, sirohydrochlorin cobaltochelatase
(cbiK) and precorrin-3 synthase (cbiL) genes were missing in two
strains (C. aceticum and C. difficile). In the case of the others,
two more genes were missing from the anaerobic cobalt-insertion
pathway (Oehler et al., 2012). Such genes only found in individual
strains may exist due to the dependency on vitamin B12 during
autotrophic growth.

PERSPECTIVES AND CONCLUSION

Acetogens inhabit diverse environments, temperatures, and pH
conditions (Drake et al., 2006). Correspondingly, the genomes
of acetogens comprise highly diverse metabolic and energy
conservation systems (Schuchmann and Müller, 2014; Poehlein
et al., 2015b). For example, an F0F1-type ATP synthase,
a conserved energy generating component, was conserved
with seven subunits in 13 strains, except for E. limosum
(Supplementary Table S5). However, ion specificity for gradient-
driven phosphorylation is quite different between the strains due
to the sequence motif present in the gamma subunit (Krah et al.,
2010). Normally, the gamma subunit binds H+ at a site between
the carboxyl oxygen of a carboxylate and a backbone carbonyl

of another amino acid (Pogoryelov et al., 2009). For Na+, four
amino acid residues are conserved: Gln32, Val63, Ser66, and
Thr 67 (Murata et al., 2005). Although subunit α and β were
well conserved with high similarity, the ion-binding subunit
gamma was diverse, with relatively low similarity throughout
the acetogens, possibly due to the variations in environmental
conditions.

Despite this genetic diversity, the Wood-Ljungdahl pathway,
a central metabolic pathway, and cofactor-biosynthetic
pathways are highly conserved to promote autotrophic
growth. Together, these data and previously reported
results (Becerra et al., 2014) suggested that the ability to
perform acetogenesis was obtained by genetic transfer of
core genes associated with the Wood-Ljungdahl pathway and
remains interconnected with its own inherent metabolic and
energy conservation systems. Similarly, gene-set enrichment
analysis revealed that acetogens do not share special gene
sets, with the exception of the Wood-Ljungdahl pathway and
fwdE.

Additionally, we predicted missing enzymes and suggested
possible alternative enzymes based on the information from
each genome. This information can aid in understanding
the basic model of acetogens. Although we predicted the
conserved pathways associated with individual strains,
several key pathways remain unclear and require biochemical
confirmation. Furthermore, the mechanisms involved in
chemolithoautotrophic growth, systematic energy conservation,
and precisely regulating carbon and energy flux also remain
unknown. Also, the reconstruction of genome-scale models
will be also required for the prediction of phenotypes and
biosynthesis of value-added products of interest from syngas. In
order for this to happen, the small differences found in conserved
and alternative biochemical pathways can be used to optimize
the genetic network to efficiently utilize the optimal enzymes or
to convert optimal non-acetogenic microorganisms into novel
acetogens.
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