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Digestive-tract microbiota exert tremendous influence over host health. Host-symbiont
model systems are studied to investigate how symbioses are initiated and maintained,
as well as to identify host processes affected by resident microbiota. The medicinal
leech, Hirudo verbana, is an excellent model to address such questions owing to a
microbiome that is consistently dominated by two species, Aeromonas veronii and
Mucinivorans hirudinis, both of which are cultivable and have sequenced genomes. This
review outlines current knowledge about the dynamics of the H. verbana microbiome.
We discuss in depth the factors required for A. veronii colonization and proliferation
in the leech crop and summarize the current understanding of interactions between
A. veronii and its annelid host. Lastly, we discuss leech usage in modern medicine and
highlight how leech-therapy associated infections, often attributable to Aeromonas spp.,
are of growing clinical concern due in part to an increased prevalence of fluoroquinolone
resistant strains.

Keywords: Aeromonas, Hirudo, digestive-tract symbiosis, bacteroidetes, leech therapy, mucinivorans, beneficial
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INTRODUCTION

The human digestive-tract microbiota is implicated in affecting circadian rhythms, cancer,
obesity, pharmacokinetics, and even mental health (Spanogiannopoulos et al., 2016). Investigating
naturally occurring, simple, tractable model symbioses allows the identification of molecular
mechanisms that through comparative studies can be generalized (Ruby, 2008) and applied to
humans. One such model is the medicinal leech. The leech has a number of aspects making it
suitable for molecular studies, including the presence of a simple microbial community whose
dominant members can be cultured (Graf et al., 2006; Nelson and Graf, 2012).

Leeches are fascinating animals whose ability to consume blood from vertebrate hosts has been
used to treat a wide range of diseases for millennia (Graf, 2000; Müller, 2000). Since the 1980’s,
medicinal leech use in Western Europe and the United States has made a resurgence, especially in
the treatment of vascular congestion after reconstructive surgery (de Chalain, 1996; Whitaker et al.,
2004a, 2011). However, clinical use of leeches in many cases leads to wound infections that are
presumably caused by digestive-tract symbiont(s) (Whitlock et al., 1983; Lineaweaver et al., 1992;
Bauters et al., 2007; Whitaker et al., 2011). Historically, Pseudomonas hirudinis (now reclassified as
Aeromonas hydrophila) was reported to be the only culturable bacterium from the crop (Büsing,
1951). More recent studies reveal a moderately complex community dominated by Aeromonas
veronii and Mucinivorans hirudinis (Graf, 1999; Worthen et al., 2006; Maltz et al., 2014).
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Studies of microbe–host interactions are aided by an ability to
culture the symbionts, manipulate associations, perform genetics
on the partners, and have access to the partners’ genome
sequences (Ruby, 2008; Graf, 2016). H. verbana and its symbionts
meet many of these criteria (Nelson and Graf, 2012): dominant
symbionts are culturable (Graf, 1999; Bomar et al., 2011); genetic
tools are available for A. veronii (Rio et al., 2007; Silver et al.,
2007b; Maltz et al., 2015); the microbe–host association can
be manipulated through antibiotic treatment and feeding of
microbial species of interest (Graf, 1999; Mumcuoglu et al.,
2010); genomes, metagenomes, and metatranscriptomes for the
symbionts are available (Bomar et al., 2011, 2013; Bomar and
Graf, 2012; Maltz et al., 2014; Nelson et al., 2015a); and an
EST library for the host is also available (Macagno et al., 2010).
The successful application of these tools has made the leech
an amenable and powerful model for studying digestive-tract
symbioses. In this review we outline current knowledge regarding
microbial symbioses within the leech digestive tract, summarize
known colonization factors of the dominant symbiont, A. veronii,
and discuss current practices and precautions associated with
medicinal leech treatment.

THE MEDICINAL LEECH

The most commonly available medicinal leech in the United
States is H. verbana, although it is often mislabeled as
H. medicinalis by medical suppliers (Siddall et al., 2007a). This
confusion stems from a recent clarification of Hirudo taxonomy
and the challenge of differentiating species solely based on
pigmentation patterns. Hirudo species are native to Africa, Asia
and Europe: H. orientalis (Transcaucasia and Iran), H. nipponia
(East Asia), H. troctina (North Africa), H. verbana (Southeastern
Europe and Turkey), and H. medicinalis (continental Europe
and Britain) (Sawyer, 1986; Siddall et al., 2007a; Trontelj and
Utevsky, 2012). In order to accurately identify a given species,
DNA barcoding using the cytochrome C oxidase subunit 1 gene
is recommended (Siddall et al., 2007a). Although leech species
differ in salivary protein (Baskova et al., 2008; Siddall et al., 2011)
and gut microbiota composition (Graf, 1999; Siddall et al., 2007b;
Laufer et al., 2008; Whitaker et al., 2014), it remains unknown
whether or not the efficacy of leech therapy is dependent on the
leech species used.

The leech digestive tract is comprised of three major regions,
the pharynx, crop, and intestinum, with each region performing
distinct functions (Figure 1) (Sawyer, 1986). The pharynx is a
muscular region located immediately downstream of the jaws
and adjacent to the salivary glands. The largest compartment
of the digestive tract is the crop, where ingested blood meals
are stored and from which water and osmolytes are removed
(Wenning et al., 1980). The removal of water concentrates the
blood meal and forms a highly viscous intraluminal fluid (ILF).
Pairs of bladders flank each cecum in the crop, facilitate the
removal of water, and are themselves colonized by a distinct
microbial community (Wenning and Cahill, 1989; Kikuchi et al.,
2009). Digestion occurs over several weeks and is thought to
occur mostly in the intestinum. The leech’s anatomy allows it

FIGURE 1 | Hirudo verbana Digestive Tract. Schematic of the leech
digestive tract (modified from Nelson and Graf, 2012 and Maltz et al., 2014).
The ingested blood meal is stored in the crop where it forms a highly viscous
intraluminal fluid (ILF) consisting of densely packed erythrocytes (dark circles
surrounded by autofluorescence, examples indicated with arrow heads in
insets). Fluorescence in situ hybridization micrographs of the leech crop
describe (A) thick layers of mucus (red arrows) near the crop epithelium
(dashed line) that develop after feeding and (B) circulating hemocytes (blue
arrows) within the ILF that contain bacterial cells (green arrows). DAPI (blue),
sWGA (red), and EUB338 (green). Scale bars = 10 µm.

to ingest a sizeable blood meal upon encountering its prey,
accommodating up to five times its body weight of blood in
a single meal (Wenning et al., 1980). Ingested erythrocytes are
stored in the crop, remaining visually intact over prolonged time
periods despite the presence of bacteria capable of β-hemolysis
(Figure 1). Due to effective storage and slow digestion, the leech
can go for 6 months between feedings (Sawyer, 1986).

THE LEECH CROP MICROBIOTA

To date, the composition of the gut microbiota from H. verbana,
H. medicinalis, and H. orientalis have been studied. In each host
species, the microbial community is dominated by Aeromonas
and Bacteroidetes spp. (Worthen et al., 2006; Siddall et al.,
2007b, 2011; Laufer et al., 2008; Whitaker et al., 2014). In
H. verbana, the predominant Bacteroidetes species was initially
termed Rikenella-like and was recently renamed as Mucinivorans
hirudinis, a member of the Rickenellaceae (Worthen et al.,
2006; Nelson et al., 2015b). Phylogenetic analysis of 16S rRNA
gene sequences of Bacteroidetes isolates from hirudiniform
leeches suggests close evolutionary relationships between the
leech species and their Bacteroidetes symbionts (Siddall et al.,
2011).
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M. hirudinis is a member of the family Rikenellaceae
along with Alistipes, Anaerocella, and Rikenella (Graf, 2014).
These bacteria are capable of anaerobic metabolism and utilize
carbohydrates as carbon and energy sources. M. hirudinis
can ferment glucose, lactose, mannose, and melibiose and the
metabolic endproducts include alcohols, acetic acid, proprionic
acid, and succinic acid (Nelson et al., 2015b). In addition,
M. hirudinis can metabolize mucus (Bomar et al., 2011), which
likely provides it with an advantage in colonizing digestive tracts.

In contrast to highly specialized symbiotic bacteria that
must live in close association with their host, Aeromonas spp.
can succeed in a wide range of habitats (Martin-Carnahan
and Joseph, 2005). A. veronii is capable of proliferating as a
symbiont in digestive tracts of leeches and zebrafish (Bates et al.,
2007; Roeselers et al., 2011; Nelson and Graf, 2012), subsisting
as free-living cells within aquatic environments, and causing
diseases in fish and mammals (Janda and Abbott, 2010; Beaz-
Hidalgo and Figueras, 2013; Hossain et al., 2014). This ability to
associate with different hosts provides an excellent opportunity
to compare mechanistic aspects of bacterial virulence and
mutualistic associations (Hentschel et al., 2000; Silver et al.,
2007a).

The origin of bacterial symbionts in the leech crop has been
evaluated using diagnostic PCR-based to determine whether
symbionts are transmitted vertically from parent leech to
offspring. The results suggested that Aeromonas is already
associated with leech embryos inside the cocoon and that
Mucinivorans reached detectable levels after hatching (Rio et al.,
2009). Two additional studies using GFP-labeled A. veronii
indicated that bacteria present on the mucosal castings could
enter the digestive tract of antibiotic-cured adult leeches (Ott
et al., 2014, 2016). These findings suggest that multiple modes of
transmission of Aeromonas to juveniles may exist.

Because H. verbana has been studied in the greatest detail,
this review will focus specifically on the symbionts of this
host. In addition to the two dominant symbionts, A. veronii
and M. hirudinis, other reported genera include: Morganella,
Clostridium, Erysipelothrix, Desulfovibrio, and Fusobacterium
(Worthen et al., 2006; Maltz et al., 2014). Of these bacteria,
Aeromonas, Mucinivorans, Morganella, Clostridium, and
Desulfovibrio were also found in H. orientalis (Whitaker et al.,
2014). The prevalence of these bacteria in hirudiniform leeches
immediately after being captured in the wild needs to be
evaluated to gather a better understanding of naturally occurring
microbial diversity.

NUTRIENT ACQUISITION AND
METABOLISM

Bacteria capable of occupying multiple habitats must generally
be able to acquire and metabolize diverse nutrients. One of the
most basic colonization barriers to symbionts and non-symbionts
alike is the need to compete for and utilize available food sources
(Graf, 2016). One approach to identify these resources is to screen
for mutants with a reduced ability to colonize. Using signature-
tagged mutagenesis (STM), one can screen multiple mutants in

one animal. A mixture of mutants is introduced and they compete
for nutrients and other resources inside the host (Hensel et al.,
1995). For verifying the colonization capability of mutants, an
individual mutant and a competitor strain are fed to the leech and
forced to compete against each other and the native microbiota.
The output and input ratios are used to calculate a competitive
index (CI) where a ratio of less than one indicates a colonization
defect of the mutant. The metabolic capacity of the organism
and the resulting ability to outcompete other organisms inside
the host niche are an important determinant of successful host
colonization.

Mucus
The digestive tracts of many animals are lined with mucus,
which protects the underlying epithelium and serves as a nutrient
source for some digestive-tract symbionts, (e.g., Bacteroides
thetaiotaomicron and Akkermansia muciniphila) (Tailford et al.,
2015). The epithelium of the leech crop is also covered with
mucus, which increases in thickness after feeding (Bomar et al.,
2011) (Figure 1A). Fluorescence in situ hybridization (FISH)
imaging shows that M. hirudinis associates with mucus lining the
leech crop epithelial wall and the abundance of surface-associated
cells increases after the leech consumes a blood meal (Kikuchi and
Graf, 2007). A metatranscriptomic analysis of the H. verbana ILF
revealed that M. hirudinis expresses genes involved in mucin and
glycan utilization at a level exceeding that of ribosomal protein
coding genes. This information was exploited to design media
containing mucin as the sole carbon source in order to propagate
this bacterium. This optimized media was successfully used to
culture the bacterium, which had previously proven recalcitrant
to cultivation (Bomar et al., 2011). It is hypothesized that acetate,
a fermentation product released by M. hirudinis is used as an
energy source by A. veronii (Bomar et al., 2011). It is unknown
whether increased mucus expression is driven by the utilization
of mucin by M. hirudinis, as was shown for B. thetaiotaomicron
inducing the biosynthesis of fucose in the mouse gut (Hooper
et al., 1999), or if the leech simply produces mucus after feeding
to protect its epithelium.

Proteins
Blood is a rich nutrient source high in proteins, particularly
albumin. Two lines of evidence suggest that A. veronii catabolizes
the highly concentrated proteins in the leech crop. Firstly, a STM
screen identified a mutant with a significantly lower CI in the
crop (Table 1). This mutant had a disruption of tdcC, a conserved,
anaerobically induced, threonine/serine transporter (Silver et al.,
2007b), suggesting an increased competition for these amino
acids in the leech crop. The second line of evidence for proteins
being utilized as a nutrient in the leech crop is based on an
analysis of metatranscriptome data. In this study high expression
levels of genes associated with arginine catabolism, arcABCD,
were detected during colonization (Bomar et al., 2011). These
genes encode proteins whose products have roles in catabolism
of arginine, a poor energy source, via the arginine deiminase
pathway (Bomar et al., 2011). Collectively these data suggest that
the proteins present in blood are an important nutrient for the
digestive–tract symbionts.
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TABLE 1 | Aeromonas veronii colonization mutants.

Functional category Strain(s) Predicted function of disrupted or identified locus Competition Defect Reference

Complement resistance > 30 isolates Multiple loci +, ++, +++ Silver et al., 2007b

Oxidative stress response JG186 (KatA) – Rio et al., 2007

Surface modification JG535 Glycosyltransferase, type 1 capsular polysaccharide synthesis +++ Silver et al., 2007b

JG730 JG736 Murein lipoprotein (lpp) +++ Silver et al., 2007b

JG735 3-deoxy-D-manno-octulosonic-acid transferase +++ Silver et al., 2007b

JG738 Polysaccharide synthesis protein/Glycosyltransferase (WbbB) ++ Silver et al., 2007b

Regulatory JG547 Ribosomal operon + Silver et al., 2007b

JG697 GTPase (YchF) ++ Silver et al., 2007b

JG741 RNase II + Silver et al., 2007b

Nutrition JG537 Phosphate ABC transporter (PstC) ++ Silver et al., 2007b

JG698 ZIP family metal transporter (ZupT) + Silver et al., 2007b

JG750 Threonine/serine transporter (TdcC) ++ Silver et al., 2007b

Host interaction JG752 T3SS apparatus (AscU) ++ Silver et al., 2007a

JG573 T6SS effector, Rearrangement hotspot protein (Rhs) +++ Silver et al., 2007b

HE-1095 T2SS apparatus (ExeM) + Maltz and Graf, 2011

Unknown JG521 JG523 JG538 Hypothetical proteins + Silver et al., 2007b

JG532 MBL-fold metallo-hydrolase domain containing protein + Silver et al., 2007b

JG533 KAP family P-loop NTPase protein + Silver et al., 2007b

JG751 Intergenic region; upstream of predicted GTPase + Silver et al., 2007b

JG753 Intergenic region; upstream of hypothetical protein + Silver et al., 2007b

Competition defect of Aeromonas isolates in the leech crop relative to the parent strain is indicated as follows: –, no colonization deficiency; +, 2–10 fold deficiency; ++,
10–100 fold deficiency; +++, >100 fold deficiency.

Erythrocytes
A major source of nutrients in the blood meal is erythrocytes.
Interestingly the erythrocytes in the leech crop are maintained
intact for months after feeding despite the presence of bacteria
capable of lysing blood cells (Sawyer, 1986; Lent et al.,
1988; Maltz and Graf, 2011). Insight into maintenance of
erythrocyte integrity was provided by a transposon mutant
screen, which generated a single Aeromonas mutant unable to
perform β-hemolysis (Maltz and Graf, 2011). The mutation
mapped to exeM, a type 2 secretion system (T2SS) component,
and resulted in a significantly reduced ability to colonize the
leech crop (Table 1). The colonization defect was alleviated
by feeding leeches partially lysed blood. A likely explanation
of this phenotypic complementation is that the loss of
β-hemolysis was responsible for the colonization defect due to
the lack of liberated protein, lipids, and heme from the lysed
erythrocytes.

Lipids
The lysis of ingested erythrocytes likely provides an ample
source of lipids. A. veronii colonizing the leech crop
show elevated expression of malate synthase and isocitrate
lyase. These enzymes are critical in the glyoxylate shunt,
responsible for lipid metabolism (Bomar et al., 2011), and
their expression suggests that in the leech crop A. veronii
utilizes short-chained fatty acids (SCFA), such as acetate,
and/or β-oxidation of fatty acids (Bomar et al., 2011). These
nutrients are likely by-products of glycan fermentation by
M. hirudinis or obtained from erythrocyte membranes,
respectively.

B-vitamins
Although blood is a high-energy nutrient source it is notably
deficient in B-vitamins (Lehane, 1991). Biosynthesis of these
vitamins by symbiotic bacteria is thought to supplement the
dietary requirements of exclusively sanguivorous organisms. In
order to foster this association, some leeches possess a specialized
organ, a mycetome, which houses highly adapted intracellular
bacteria (Kikuchi and Fukatsu, 2002; Siddall et al., 2004). An
example of such a highly adapted symbiont is Providencia
siddallii, an endosymbiont of Haementeria officinalis, with a
reduced genome lacking canonical synthesis pathways for all
essential amino acids while maintaining those which produce
most cofactors and B-vitamins (Manzano-Marin et al., 2015).
The capacity for biosynthesis of B-vitamins is observed in the
endosymbionts of many obligate blood-feeders (Manzano-Marin
et al., 2015) and is believed to be possessed by the digestive-
tract symbionts in H. verbana, which lacks a mycetome (Maltz
et al., 2014; Nelson et al., 2015a). For instance, the genome of
M. hirudinis suggests a capability of producing cobinamide, a
precursor of the vitamin B12 coenzyme (Nelson et al., 2015a).
Without its microbial symbionts, subsisting exclusively on a
blood diet would probably be impossible for H. verbana.

Heme/Iron
As blood contains very high levels of heme, organisms that
feed on blood must have mechanisms to counter heme toxicity
(Graça-Souza et al., 2006). One aspect of this damage is Fenton
reaction-mediated oxidative stress due to the release of iron
from the heme moieties. In some hemipterans, haemoxisomes in
epithelial cells lining the gut protect the animal by sequestering
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heme (Silva et al., 2006). In the North American leech,
Macrobdella decora, this is accomplished with His-rich proteins
(Min et al., 2010), though whether H. verbana possesses
homologs has yet to be ascertained. Sequestration of iron
by transferrin in plasma and by hemoglobin in erythrocytes
not only prevents oxidative damage to the host, but also
restricts an essential nutrient for bacterial growth (Schaible and
Kaufmann, 2004). Bacteria can acquire protein-bound iron either
by producing high affinity siderophores or proteins that bind
iron-containing host proteins and mediate their uptake (Byers
et al., 1991).

The ability to lyse erythrocytes in order to acquire iron from
the released heme is critical for allowing rapid proliferation of
Aeromonas during leech colonization (Maltz and Graf, 2011;
Maltz et al., 2015). Disruption of hgpB, an outer membrane
heme receptor, or an associated transcriptional activator, hgpR,
prevents Aeromonas from obtaining heme-associated iron and
colonizing the leech digestive tract (Maltz et al., 2015). In
contrast, disrupting viuB (vibrobactin utilization protein), which
mediates transport of siderophore acquired iron, did not affect
colonization of the crop (Maltz et al., 2015). These data suggest
that attaining iron from heme is crucial for the ability of
A. veronii to colonize the leech. Interestingly, heme utilization
genes are widely distributed among Aeromonas species and
isolates obtained from different sources, suggesting that they
may play an additional role outside of symbiosis (Maltz et al.,
2015).

Other Nutrients
In addition to carbon and energy sources, sufficient amounts
of minor nutrients and metals can also be important for
rapid growth inside the host. The STM screen identified two
additional strains with nutrient-acquistion related genes that
were disrupted (Silver et al., 2007b). JG537 is mutated in a
pstC homolog, encoding a phosphate specific ABC transporter
permease (Table 1). While the observed competition defect
may be attributable to phosphate starvation, an alternative
explanation of decreased membrane stability cannot be ruled out
since both phenotypes are linked to disruption of this apparatus
(Rao and Torriani, 1990; Daigle et al., 1995; Aguena et al., 2002;
Lamarche et al., 2005). The other mutant, JG698, has a transposon
within a gene encoding a ZupT ZIP protein family permease
(Table 1). ZupT from Escherichia coli has been shown to have
broad specificity for diverse cations, with an overall preference
for zinc (Grass et al., 2002, 2005; Taudte and Grass, 2010). The
reduced CI in both the leech and blood control of this mutant
indicate that this transporter has a more general growth defect
rather than being leech-specific (Silver et al., 2007b). However,
if the leech locally restricts cation availability in the crop in
response to colonization, the ZupT homolog may have a role in
overcoming that response.

COLONIZATION DYNAMICS

The growth of symbionts in vivo is affected by the ability to
utilize nutrients, evade the host immune response, and compete

with resident microbes. In the leech, the infrequent consumption
of blood meals leads to particular bacterial growth dynamics
inside the crop. After feeding, A. veronii and M. hirudinis rapidly
proliferate for ∼3 days before entering a quiescent state marked
by an increase in expression of stress-response related genes
and a gradual decrease in population size of A. veronii while
M. hirudinis continues to increase more gradually, peaking at
∼7 days (Kikuchi and Graf, 2007; Bomar and Graf, 2012). After
the initial rapid proliferation, the populations of both symbionts
gradually decrease in abundance and return to levels found in the
starved state. For A. veronii this decline occurs within 14 days
while the abundance of M. hirudinis drops at a slower rate
(Kikuchi and Graf, 2007).

A major hallmark of the A. veronii transition into a
quiescent state is the upregulation of the ncRNAs CsrB and
CsrC (carbon starvation response). Both ncRNAs negatively
regulate the mRNA binding translational regulator CsrA.
CsrA/B/C homologs are found in diverse bacteria and control
numerous processes such as metabolism, biofilm formation, and
virulence factor production (Vakulskas et al., 2015). CsrA binds
and regulates translation of target mRNA transcripts, but is
antagonized by CsrB/C, which contain high affinity CsrA binding
sites. A comparative in vitro and in vivo RNAseq transcriptome
analysis revealed dramatically higher levels of CsrB and CsrC
(>50 fold) inside the leech crop than when cultured to stationary
phase in a rich medium (Bomar and Graf, 2012). This observation
illustrates that the global control over mRNA and protein
production is a vital aspect of the processes by which Aeromonas
adapts to growth inside the leech crop.

IMMUNITY

In persistent symbiotic relationships between bacteria and
animals, the symbionts are in a stalemate or a détente
(McFall-Ngai, 2000). The host shapes the bacterial population
by providing nutrients to allow proliferation while affecting
immune responses to limit population size and restrict areas of
colonization (Silver and Graf, 2011; Nyholm and Graf, 2012;
Graf, 2016). Bacteria modify the host’s response by inducing
or limiting the expression of proteins, surface structures and
signaling molecules. In leeches, different components of the
innate immune system and ingested blood meal act in concert to
limit microbe colonization and expansion (Indergand and Graf,
2000; Silver and Graf, 2011; Tasiemski et al., 2015).

Many innate immune system components likely to play a
role in dominant symbiont selection have been identified in
Hirudo spp. (Nyholm and Graf, 2012). In the crop, bacteria are
phagocytosed by circulating hemocytes (Figure 1B). A. veronii
expresses a type 3 secretion system (T3SS) that is critical for
avoiding this phagocytosis (Silver et al., 2007a). In addition,
a number of antimicrobial peptides have been identified in
H. medicinalis and related hirudiniform leeches (Tasiemski et al.,
2004, 2015; Schikorski et al., 2008) including salivary lectins (Min
et al., 2010), theromyzin (TMZ), theromacin (TMC), allograft
inflammatory factor-1 (AIF-1), neuromacin (NMC), lumbricin
(LUMB). TMC and NMC are active against both Gram-positive
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and -negative bacteria through pore-forming and aggregate-
forming mechanisms respectively (Jung et al., 2012). TMZ is
active against Gram-positive bacteria while LUMB is active
against a broad range of microorganisms (Cho et al., 1998).
NMC, TMZ, and LUMB are all repressed in the leech crop when
A. veronii is present (Tasiemski et al., 2015), suggesting that their
expression may be partially regulated by this bacterium.

Putative lipopolysaccharide binding/bactericidal perme-
ability increasing proteins (LBP/BPI) have been identified that
may be involved in signaling or bacteriolysis. Four putative
toll-like receptors (TLRs) have also been identified in the host
transcriptome and may be important in recognizing microbe-
associated molecular patterns (Schikorski et al., 2008; Macagno
et al., 2010; Hibsh et al., 2015). A number of anti-human CD
antibodies indicative of macrophages and natural killer cells
also cross-react with leech hemocytes, suggesting the ability of
self/non-self recognition (de Eguileor et al., 2000a,b).

In addition to leech-produced compounds, factors present in
the ingested blood meal and those produced by symbionts help to
shape the microbiome. The complement from ingested blood is
active inside the leech gut and restricts the proliferation of certain
non-symbiotic species and serum-sensitive Aeromonas mutants
(Indergand and Graf, 2000; Braschler et al., 2003). A recent study
by Tasiemski et al. (2015) suggested that antimicrobial peptides
produced by A. veronii also contribute to restricting the species
diversity of the leech microbiome. This observation confirms
early findings by Büsing et al. (1953) who suggested that the leech
digestive-tract symbionts prevent other bacteria from colonizing
the leech digestive tract.

The combination of host-derived innate immune response,
blood-meal-derived innate immune components, and symbiont-
produced compounds suggests that a complicated network of
factors controls the composition and density of symbionts.
While the involvement of most factors remains to be verified,
these data suggest that even in the absence of the canonical
adaptive immune system there are many layers of antimicrobial
compounds that a successful symbiont must overcome.

REGULATION

Bacteria continually monitor and respond to environmental cues
in order to adapt to changing conditions. The ability of A. veronii
isolates to beneficially associate with leeches and zebrafish (Graf,
1999; Roeselers et al., 2011), persist as free-living bacteria in
freshwater aquatic environments, and exhibit virulence toward
various vertebrates (Janda and Abbott, 2010) suggests the need
for regulatory systems which detect different environments and
regulate gene expression accordingly. Three predicted A. veronii
Hm21 regulatory elements are implicated in colonization of the
leech crop through mini-Tn5 STM (Table 1) (Silver et al., 2007b).

An encoded RNase II disrupted in JG574 is a member of the
RNase II/RNB-family of 3′-5′ exoribonucleases, which function
in mRNA turnover (Table 1). Several enzymes from this group,
particularly RNase R homologs, are implicated as virulence
factors in various pathogens (Matos et al., 2014). Interestingly, an
RNAse II from the nematode symbiont Photorhabdus temperata

is needed for full insect virulence but not symbiosis (Hurst et al.,
2015). While the specific role for RNase II in A. veronii symbiosis
is unknown, it may act through a mechanistic pathway similar to
that occurring in other bacterial pathogens.

Another factor with a somewhat ambiguous function is a
YchF-GTPase homolog disrupted in JG697, a member of a group
of highly conserved GTPases having unique substrate specificity
for ATP over GTP (Table 1). YchF associates with ribosomes
in E. coli, though the importance of this interaction is unclear
(Verstraeten et al., 2011). Interestingly, the ATPase activity of
this enzyme was recently shown to be redox regulated, and a
wider role for YchF in inhibition of the oxidative stress response
has been proposed (Wenk et al., 2012; Hannemann et al., 2016).
Although the function and impact of the A. veronii Hm21
YchF homolog on leech colonization remains unexplored, since
the mutant displayed similarly reduced CI values in both the
leech and blood a general defect may be present (Silver et al.,
2007b).

HOST-SYMBIONT
COLONIZATION/VIRULENCE FACTORS

The ability of A. veronii to proliferate as a symbiont in digestive
tracts of leeches and zebrafish (Bates et al., 2007; Roeselers
et al., 2011; Nelson and Graf, 2012) and cause diseases in
fish and mammals (Janda and Abbott, 2010; Beaz-Hidalgo and
Figueras, 2013; Hossain et al., 2014) provides an opportunity
to identify colonization factors for beneficial associations as
well as pathogenic ones (Hentschel et al., 2000; Silver et al.,
2007a). A. veronii Hm21, a strain isolated from H. verbana,
displays virulence in multiple model systems including Galleria
mellonella (wax-worms), intraperitoneal mouse injections, and
an in vitro mammalian cell cytotoxicity model (Silver et al.,
2007a, 2011). Unlike other pathogens that are highly host-
specific, there is strong phylogenetic evidence for host-switching
and virulence factor horizontal transmission between Aeromonas
species (Silver et al., 2011; Martino et al., 2013). This high
frequency of horizontal gene transfer makes ascribing clear
‘species-edge’ delineations very difficult when using a single or
few housekeeping genes (Martino et al., 2013; Colston et al., 2014;
Beaz-Hidalgo et al., 2015).

Several secretion systems have been identified as being
necessary for virulence and symbiosis, including the T2SS
and T3SS. The importance of the T2SS in colonization with
regards to erythrocyte lysis was discussed earlier. Another
STM mutant (JG752) was disrupted in a T3SS structural
component and was unable to colonize the leech (Table 1).
Unlike wild-type cells, JG752 was phagocytosed by leech
hemocytes, indicating a specific role for the T3SS in Aeromonas
evasion of the host immune system (Silver et al., 2007a).
JG752 also exhibited decreased lysis of murine macrophage
cells and decreased virulence in mice relative to the wild-type
strain (Silver et al., 2007a), illustrating the dual importance of
this factor in both symbiosis and pathogenesis. Identification
and characterization of the complement of T3SS effectors
will be crucial for understanding how A. veronii specifically
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utilizes this colonization/virulence factor to either promote
persistence in the leech or opportunistic virulence in other
organisms.

An additional secretion system, the T6SS, is an important
factor used by bacteria to attack both prokaryotic and eukaryotic
cells. New and diverse effector/immunity proteins for the T6SS
are routinely being discovered (Cianfanelli et al., 2016). A re-
evaluation of the sequence surrounding the disrupted locus of
JG573 identified a rearrangement hotspot protein (Rhs) encoding
gene located within a cluster of T6SS genes which include an
encoded hemolysin co-regulated protein (Hcp), a valine-glycine
repeat protein G (VgrG), and a PAAR-repeat protein (Table 1).
These are all integral components of the T6SS delivery apparatus
and can associate with T6SS effectors. Rhs proteins typically
contain multiple domains and may possess a range of effector
domains, which disrupt target cell processes (Koskiniemi et al.,
2013). In A. hydrophila, the T6SS has been shown to be important
in virulence (Suarez et al., 2010). The severe competition defect
(>100-fold) displayed by the JG573 mutant indicates that the
T6SS is an important Aeromonas colonization factor in the
leech, though whether it is required for interaction with other
bacterial cells or those of the host immune system remains to be
seen.

LEECH THERAPY AND Aeromonas
INFECTIONS

Leech use as a medical practice dates back to ancient
Egypt (Whitaker et al., 2004b). Since then, blood-letting has

transformed from a religious experience to rid the body of disease
and ‘ill humors’ to the contemporary practice of hirudotherapy.
H. medicinalis leeches gained FDA-approval in 2004 and today
leeches are widely used in US hospitals for treatment of
compromised vasculature. Leeches are especially used after free-
tissue transfer such as replanted digits, ears, facial and breast
tissue (Whitaker et al., 2004a,b, 2012; Nelson and Graf, 2012).
Leech therapy provides great therapeutic benefits during post-
operative remediation, with studies demonstrating an associated
decrease in the rate of graft failures and risk of amputation
(Whitaker et al., 2011, 2012). Leeches are applied to the venous-
congested sites and bite the tissue to withdraw obstructive
blood while simultaneously secreting an anticoagulating agent
and vasodilators to further reduce circulatory obstruction and
facilitate blood flow through the area (Michalsen et al., 2008;
Whitaker et al., 2011, 2012). One survey analyzed 277 case reports
to quantify the efficacy of leech therapy and found that 78% of
cases resulted in success, where transferred tissue was salvaged
and no complications occurred (Whitaker et al., 2012). However,
the advantages of leech therapy are confounded by more recent
and widely reported occurrences of leech-borne infections at the
bite wound, which may cause septicemia in the patient when left
untreated.

Complications of leech therapy occur in part due to bacterial
infections, which are thought to originate from the microbial
community of the H. verbana crop. The incidence of infections
in the literature ranges from 2 to 36% of cases (Whitaker et al.,
2011). Prophylactic antibiotics reduce incidence of infections to
the lower end of this range, though in some clinical settings
no prophylactics are used at all (Whitaker et al., 2011). The

TABLE 2 | Recently published case reports of CiprofloxacinR Aeromonas spp. cultured in association with medicinal leech therapy.

Reference No. of case
reports

Patient case conditions Prophylaxis
used

Treatment that
cleared infection

Isolate(s)
cultured

Geographic
location

Year
published

Wang et al.,
2011

1 Mandibulectomy with
planned tissue flap
reconstruction, infection
and necrosis of the flap

Ciprofloxacin Cefepime A. hydrophila Missouri, USA 2011

Sartor et al.,
2013

1 Infection of skin flap of
hand crush injury

Ciprofloxacin Cotrimoxazole A. hydrophila Marseille, France 2013

Giltner et al.,
2013

1 Mandibular osteotomy,
necrosis of mandibular flap
and wound surrounding the
distraction arm device

Ciprofloxacin Vancomycin A. hydrophila,
Morganella
morganii

California, USA 2013

Wilmer et al.,
2013

1 Amputation of three digits
and necrosis of amputation
sites

Ciprofloxacin Co-trimoxazole A. hydrophila British Columbia,
Canada

2013

Patel et al.,
2013

1 Breast reconstruction,
infection of the implant

Ciprofloxacin,
vancomycin

Aztreonam A. hydrophila Washington D.C.,
USA

2013

van Alphen
et al., 2014

2 Replantation of four fingers
resulting in flap necrosis
after leech therapy,
followed by amputation

Ertapenem Ceftriaxone and
co-trimoxazole

A. hydrophila Minnesota, USA 2014

Replantation of two fingers
failed following leech
therapy, amputation

Ciprofloxacin Cefepime,
metronidazole,
vancomycin; followed
by ceftriaxone

A. hydrophila,
Proteus
vulgaris,
Morganella
morganii
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occurrence of infections dramatically reduces the ability to
salvage new tissue and thus jeopardizes the successful outcome
of the surgery (Whitaker et al., 2011). Even with prophylactic
antibiotic use, recent case reports describe severe infection of the
tissue graft, which in some cases resulted in amputation of the
limb or digit (Table 2).

CLINICAL REPORTS OF Aeromonas
INFECTIONS

The most commonly isolated bacteria from infected leech bite
wounds belong to the Aeromonas genus, including the fish
and human pathogen A. hydrophila (Whitaker et al., 2012).
A. hydrophila was reported in 88% of case reports involving
infections, followed by A. veronii and A. sobria (Whitaker
et al., 2012). These numbers may be affected by species-
misidentifications resulting from inadequate characterization
methods of the strains within this genus (Silver et al., 2011;
Colston et al., 2014). Surprisingly, a recent Aeromonas infection
following a pharyngectomy was reported to cause pneumonia in
addition to tissue flap infection (Van Derick and Dasgupta, 2016).
The risks associated with leech-borne Aeromonas infections have
led many hospitals to adopt the use of ciprofloxacin (Cp),
for prophylactic treatment as a standard practice before leech
application. Cp is a widely used broad-spectrum fluoroquinolone
and has been shown to inhibit Aeromonas, making it very useful
in leech therapy prophylaxis (Whitaker et al., 2011). Until the
2000s, Aeromonas resistance to Cp was largely unreported, and
to our knowledge, no CpR (Cp resistance) cases associated with
leech therapy were published until 2011.

From 2011 to 2016, infections by CpR A. hydrophila were
reported in eight patients following leech therapy where Cp
was used as prophylaxis in the United States, Canada, and
France (Wang et al., 2011; Giltner et al., 2013; Patel et al.,
2013; Sartor et al., 2013; Wilmer et al., 2013; van Alphen et al.,
2014), contributing to concerns of a rise in antibiotic resistant-
Aeromonas infections (Table 2). These infections occurred at a
range of body sites and to date have been successfully controlled
by administering either individual antibiotics or combinations
(see Table 2 for details). However, serious consequences of
CpR Aeromonas infections following leech therapy can occur,
including complete graft necrosis and amputation. For example,
in 2013 a patient receiving leech therapy after mandibular surgery
acquired an infection that resulted in tissue necrosis and required
immediate treatment with more effective antibiotics (Van Derick
and Dasgupta, 2016). In light of these nosocomial infections
caused by Aeromonas strains, some research has been done to
determine the genetic factors underlying an increase in CpR.
Several studies suggested the importance of point mutations in
gyrA and parC as well as the acquisition of plasmid encoded
resistance genes such as qnrS in CpR (Giraud et al., 2004; Arias

et al., 2010). Sartor et al. (2013) hypothesize a rise in resistance
could originate from exposure to fluoroquinolones present in
the blood of poultry used to feed leeches at the raising facility.
However, further work needs to be performed to directly link
clinical isolates to leeches and the genetic basis of the CpR in these
strains remains to be determined.

CONCLUSION

A microbiome that is consistently dominated by two species,
access to the genome sequences, culturability of dominant
symbionts, and an ability to genetically manipulate Aeromonas
are reasons for which the medicinal leech is an excellent model
for studying the microbe–host interactions in digestive-tract
symbioses. Owing in part to ease of culturing and genetic
manipulation of Aeromonas, the nutrition, colonization, and
persistence factor requirements of this symbiont are much better
understood than others, such as M. hirudinis.

Global interrogative methods such as metagenomic and
metatranscriptomic analyses have proven invaluable in
identifying host and symbiont responses relating to altered gut
microbiome composition and physiology. Future elucidation of
more complex interactions and interrelations amongst symbionts
and the leech host, such as nutrient metabolic cascades and
specific immune responses, will require increased application
of biochemical, molecular and genetic tools. We now have a
substantial understanding and appreciation of the diversity of
the leech microbiome. Future research should aim to identify
parameters that contribute to the establishment of the leech gut
microbiome.

Lastly, despite the proven medical benefits of leech therapy,
recognition of the leech as a vector for wound infections
following reconstructive surgery has led to a greater appreciation
for a need to proactively minimize this undesired outcome. To
this end, prophylactic administration of ciprofloxacin is common
practice in leech therapy. However, since we now know medicinal
leech associated Aeromonad fluoroquinolone resistance is on
the rise, medical practices will need to be modified to prevent
avoidable infections.
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