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Epstein–Barr virus (EBV) was first discovered in 1964, and was the first known human
tumor virus now shown to be associated with a vast number of human diseases.
Numerous studies have been conducted to understand infection, propagation,
and transformation in various cell types linked to human diseases. However, a
comprehensive lens through which virus infection, reactivation and transformation of
infected host cells can be visualized is yet to be formally established and will need
much further investigation. Several human cell types infected by EBV have been linked
to associated diseases. However, whether these are a direct result of EBV infection
or indirectly due to contributions by additional infectious agents will need to be fully
investigated. Therefore, a thorough examination of infection, reactivation, and cell
transformation induced by EBV will provide a more detailed view of its contributions
that drive pathogenesis. This undoubtedly expand our knowledge of the biology of EBV
infection and the signaling activities of targeted cellular factors dysregulated on infection.
Furthermore, these insights may lead to identification of therapeutic targets and agents
for clinical interventions. Here, we review the spectrum of EBV-associated diseases, the
role of the encoded latent antigens, and the switch to latency or lytic replication which
occurs in EBV infected cells. Furthermore, we describe the cellular processes and critical
factors which contribute to cell transformation. We also describe the fate of B-cells and
epithelial cells after EBV infection and the expected consequences which contribute to
establishment of viral-associated pathologies.
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INTRODUCTION

Viral Infections in Cancer
Worldwide cancer is one of the leading causes of death (de Martel et al., 2012). In 1990, studies
suggested that approximately 16% of all cancers are associated with infectious agents (Pisani et al.,
1997). However, less developed regions range greater than 20% compared to the more developed
regions which shows that approximately 9% of all cancers in the population are associated with
infectious agents (de Martel et al., 2012). Interestingly, reports from 2002 estimates suggest that
infectious agents are linked to 18% of the global burden of cancer (Parkin, 2006). In the same year,
the share of infection associated cancers in less developed regions were more than 26% compared
to 8% in more developed regions (Parkin, 2006). Further a study in 2008 suggested that these
infection-associated cancers attributed to 33% of cancers in sub-Saharan Africa (de Martel et al.,
2012). This study also showed that 30% of cancers associated with infections occurred in people
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younger than 50 years of age (de Martel et al., 2012), and strongly
suggested that they are causative or major drivers in the process.
In 2010, approximately 8 million deaths were linked to cancer.
Surprisingly, and worrisome the rate of death due to cancer
has continued to increase by 2% per year (Lozano et al., 2012).
Thus, assessing the risk factors or causative agents of cancer is of
extreme importance for future prevention strategies.

EBV Types and Infection
Epstein–Barr virus (EBV) was first discovered in cultured tumor
cells derived from a biopsy of a Burkitt’s lymphoma (BL) patient
in 1964 (Burkitt, 1969). Alone, EBV accounts for 0.5–2% cancers
based on geographical regions (Epstein et al., 1964; Khan and
Hashim, 2014), and recent analysis indicates that 1.8% of all
cancer deaths in 2010 were associated with EBV (Khan and
Hashim, 2014). EBV was identified as the first human tumor
virus as it was involved initially linked to BL, and since then
several other types of cancers (Thompson and Kurzrock, 2004).
There are two different EBV types which are commonly known
as types 1 and 2 (Cho et al., 1999). It has been shown that
the genomes of these two EBV types are very similar except
for regions of the EBNA genes (Dambaugh et al., 1984). Tzellos
et al. (2014) demonstrated that the greater ability of type 1
EBV infection to induce B cell proliferation is likely due to
superior expression of EBNA2 which consequently leads to
the upregulation of LMP1 and cellular CXCR7. Notably, the
percent association of EBV varies in different diseases and may
have consequences toward the aggressivity of the associated
cancers.

EBV ASSOCIATED DISEASES

B-Cell Associated Diseases
Burkitt’s Lymphoma
Geographic regions like equatorial Africa and Papua New Guinea
have holoendemic malaria and those are 100% EBV positive
(Kelly and Rickinson, 2007). This is classified as endemic BL as
typically represents as a jaw or abdominal tumor in children’s
(Valenzuela-Salas et al., 2010). However, western countries
have lower incidence rates and lower association with EBV.
Approximately, 15–20% BL tumors were EBV positive (Kelly
and Rickinson, 2007). Hence, it is possible that chronic immune
stimulation from the burden of pathogenic agents may increase
the incidence of BL (Engels, 2007). Interestingly, AIDS-BL, was
shown to be very common among HIV-infected individuals
with a wide range of CD4 counts, and usually appears as one
of the symptoms of AIDS with 30–40% of these BL-tumors
are positive for EBV. Typically, the majority of BLs carry a
reciprocal translocation that places the c-myc gene under the
control of either the heavy- or light-chain immunoglobulin (IgH
or IgL) loci (Brady et al., 2007). Therefore, c-myc deregulation
represents an essential defining feature of BL pathogenesis (Kelly
and Rickinson, 2007). Interestingly, EBV genomes are found in
neoplastic cells of endemic Burkitt’s lymphoma (eBL) patients
(Wright, 1971; Tao et al., 1998). Endemic BL has been associated
with endemic malaria (de-The, 1985). However, further studies

are needed to effectively determine the contributions of malaria
infection to development of EBV associated endemic BLs.

Post-transplant Lymphoproliferative Disease (PTLD)
and Central Nervous System Lymphoma (CNS
Lymphoma)
More than 90% of B-cells in early onset and 60–80% in late
onset of post-transplant lymphoproliferative disease (PTLD)
are EBV positive (Petrara et al., 2015). Moreover, early onset
PTLDs are either polyclonal or oligoclonal, while most of late
onset PTLDs are truly monoclonal (Carbone et al., 2008).
PTLD occurs after transplantation or primary EBV infection,
acquired from the donor following transplantation (Allen et al.,
2002). As all the major EBV latent antigens are extensively
expressed in PTLD, this strengthens the contributory role for
EBV infection and viral gene expression in PTLD pathogenesis
(Odumade et al., 2011). Interestingly, 50% of PTLD’s are
deficient in a functional B-cell receptor (BCR), which is essential
for B-cell survival (Bechtel et al., 2005). Therefore, EBV can
protect these cells from death by blocking apoptosis even
in the absence of antigen stimulation (Spender and Inman,
2011).

MicroRNAs refer to a group of small non-coding RNA
molecules with crucial influences on specific cancers (Macfarlane
and Murphy, 2010). By detecting the EBV and cellular
microRNAome in PTLD (Forte et al., 2012; Harris-Arnold et al.,
2015), studies showed that there are two different microRNA
profiles identified in primary central nervous system post-
transplant lymphoproliferative disorders (pCNS PTLD). First,
EBV microRNAs interacts with the cellular microRNAome
similarly to that of EBV-associated systemic PTLD and the second
could be limited to the immunological functions associated with
the central nervous system (Moscato et al., 2013; Fink et al., 2014).
Although, a limited expression of latency genes is also seen in
EBV associated systemic PTLD, based on promoter utilization it
is still considered to be latency III (Fink et al., 2014). A higher
frequency of EBV in pCNS PTLD compared to systematic PTLD
may result in pathological differences (Cavaliere et al., 2010).
Also, AIDS-related CNS lymphomas are derived from germinal
center B-cells and are always EBV positive (Bibas and Antinori,
2009). These CNS lymphomas contain immunoblastic and large
non-cleaved lymphomas (Taylor et al., 1978). EBV infection in
PTLD exploits several strategies to ensure persistent infection,
namely, prevention from death of infected cells, enhancement of
their proliferation to maintain the infected reservoir, and escape
from host immune system (Hsieh et al., 1999; Tanner and Alfieri,
2001).

Hodgkin Lymphoma (HD)
In 1966, MacMahon suggested that Hodgkin’s disease might be
due to an infectious agent (Flavell and Murray, 2000). Later,
the infectious agent EBV has been detected by high antibody
titers in patients with Hodgkin’s disease when compared with
other lymphomas patients (Alexander et al., 2003). EBV positivity
in HD is extremely high in some geographical areas (Flavell
and Murray, 2000). There are several critical factors on which
association of EBV with Hodgkin’s disease seems to depend,
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which include geography, histological subtype, sex, ethnicity, and
age (Flavell and Murray, 2000). Reports have suggested that in
less developed regions, 90% of childhood Hodgkin lymphoma
(HD) and approximately 60% of adult HDs are EBV positive
(Oh and Weiderpass, 2014). Earlier Weniger and Kuppers (2016),
reviewed that LMP1 and LMP2A are expressed at high levels
in the Reed-Sternberg cells, and activate pathways, namely NF-
kB and PI3K which are also highly activated in EBV-negative
HL. However, the role that EBV plays in their pathogenesis
is still not fully understood. Contrary to this, gastrointestinal
involvement is an exceptionally rare incident in HD and might
occur as infiltration from mesenteric lymph nodes (Issa and
Baydoun, 2009). Few cases have been described that demonstrate
EBV positive primary gastrointestinal HD (Cardona et al.,
2012). Initial symptoms are restricted to extranodal tissue and
are more uncommon in HD compared to NHLs. Few cases
have been described which demonstrate EBV positive primary
gastrointestinal HD (Cardona et al., 2012). The majority of these
cases were linked to Crohn‘s disease and immunosuppression
(Lewis, 2012). A probable hypothesis given for EBV infected HL
in children and older individuals was primary infection and a
weak immune response toward EBV latent genes, respectively
(Grywalska and Rolinski, 2015). Furthermore, delayed primary
infection can contribute to EBV associated HL in young adults
(Grywalska and Rolinski, 2015).

Non-Hodgkin Lymphoma (NHL)
Eighty five to ninety percentage of Non-Hodgkin’s lymphomas
(NHLs) arises from B lymphocytes followed by T lymphocytes
and natural killer (NK) lymphocytes (Diaz et al., 1993).
Lymph nodes are the primary site for NHL, however, it can
occur in almost any tissue (Krol et al., 2003). NHL attributed
approximately 5.1% of all cancer cases and 2.7% of all cancer
deaths worldwide (Sharma et al., 2014). Geographically,
NHL presence is predominantly observed in North America,
Europe, Oceania, and several African countries (Hossain et al.,
2014). There are several risk factors for NHL including
sex, age, HIV/AIDS, familial aggregation, autoimmune
conditions, rheumatoid arthritis, celiac disease, systemic
lupus erythematosus (Ekstrom Smedby et al., 2008). There are
also several microbial agents shown to be associated with NHL
with one of the prominent one being EBV (Carbone et al., 2008).

EBV-Associated Lymphomas in Congenital
Immunodeficient Individuals
First, these disorders are a result of an inherited immuno-
deficiency known as X-linked lymphoproliferative disorder
(Marsh and Filipovich, 2011). Second, some lymphomas are
related to use of immunosuppressive drugs given to transplant
recipients. Third, they are due to immunosuppression from HIV
infection and referred to as AIDS-related lymphoproliferative
disorders (Kanakry and Ambinder, 2013). Typically the gene
expression patterns in these disorders show EBV latency
III (Thompson and Kurzrock, 2004). Furthermore, EBV-
associated lymphomas in the immunocompromised hosts are
very aggressive in nature and extremely difficult to treat (Cohen
et al., 2009).

Oral Hairy Leukoplakia
Oral hairy leukoplakia (OHL) presents as white patches, which
are observed normally on the lateral surfaces of the tongue
(Komatsu et al., 2005). The presence of EBV is detected in the
tissues and blood due to chronic immunosuppression like HIV
infection (De Paschale and Clerici, 2012). Additionally, patients
who receive organ and bone marrow transplant have also been
shown to develop these symptoms (Allen et al., 2002). Therefore
ORL correlates with ongoing immune suppression due to HIV
infection or treatment post-transplantation to prevent rejection.

Epithelial Cells Related Cancers
Nasopharyngeal Carcinoma (NPC)
Nasopharyngeal cancer (NPC) is an invasive malignancy rarely
found in western countries, however, high prevalence is observed
in populations like, South-Eastern Asia and Northern Africa,
mainly in Southern China, Singapore, Malaysia, and North-
Eastern India (Torre et al., 2015). The majority of NPC tumors
are found to be positive for EBV infection (Niedobitek, 2000).
Establishment of a latent and transforming infection in epithelial
cells are potentially an important causative factor for the
development of NPC (Tsao et al., 2015). Studies suggest that
about two thirds of NPC cases present as type II EBV latency, in
which viral latency antigens are less immunogenic, but could still
be targeted by specific cytotoxic T-lymphocytes (Rooney et al.,
2014). Predominantly, EBNA1 and LMP1 are expressed in the
majority of EBV-positive NPCs (Brooks et al., 1992).

There are three types of NPC as classified by World
Health Organization (WHO). Type one is characterized as
keratinizing squamous cell carcinoma (SCC), type two is
non-keratinizing carcinoma, and type three is undifferentiated
carcinoma (Pathmanathan et al., 1995). Usually, types 1 and
2 have been associated with western population (Cao et al.,
2011). Type three which is predominantly associated with EBV
latent infection have been associated with China and some other
Asian countries (Cao et al., 2011). Due to unusual lymphocytic
infiltration, type three NPC is referred as lymphoepithelioma of
the nasopharynx, and reports have suggested that EBV particles
through cell–cell contact can be transferred from lymphoid cells
to nasopharynglial epithelial cells (Chang et al., 1999). A very
high-grade dysplastic lesions of the nasopharynx and invasive
NPC combined can suggest that EBV may have the potential to
drive neoplastic transformation of nasopharyngeal epithelial cells
and facilitate the clonal expansion of malignant cells (Young and
Dawson, 2014; Tsao et al., 2015).

Gastric Carcinoma (GC)
Recently various studies reported the presence of EBV in lympho-
epigastric adenocarcinomas (Shibata et al., 1991). However,
EBV contribution to pathogenesis in these tumors are still in
question. Moreover, there are morphological similarities found
between lympho-epithelioma-like gastric carcinoma (GC) and
undifferentiated NPC (Young and Dawson, 2014). Hence, it
has been hypothesized that in lympho-epithelioma-GC, EBV
spreads from the nasopharynx to the stomach (Iizasa et al., 2012).
While, in gastric adenocarcinomas EBV may perhaps enter the
gastric epithelium without the use of a receptor (Thompson
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and Kurzrock, 2004). Recently, Chen et al. (2015) showed that
all gastric mucosa samples from healthy populations were EBV
RNA-negative, but interestingly EBV-positivity was found in 46%
of patient tissues with gastritis. These patterns demonstrates that
EBV infection may lead to induction of persistent gastric mucosa
inflammation and subsequent carcinogenesis (Chen et al., 2015).
Cancer Genome Atlas Research Network (2014), the cancer
genome atlas research network characterized the genetics of
EBV- vs. EBV+ GC, and interestingly found distinct mutations
and epigenetic profiles in EBV+ GC cases. They demonstrated
that EBV+ GC have recurrent PIK3CA mutations, high DNA
hypermethylation, and also amplification of JAK2, CD274, and
PDCD1LG2 (Cancer Genome Atlas Research, 2014).

EBV LATENT INFECTION OF B-CELLS

Epstein–Barr virus is perhaps best known for its ability
to immortalize human primary B-lymphocytes in culture.
A number of B-cell malignancies are associated with EBV
infection, including eBL, classical Hodgkin lymphoma (cHL),
diffuse large B-cell lymphoma (DLBCL), and AIDS-related
lymphoma (Vockerodt et al., 2015). EBV is also found in NK/T-
cell lymphoma and several epithelial malignancies like GC and
NPC, and has potent B-cell transforming activity in vitro (Pope
et al., 1968). Also, mimics B cell proliferative and survival
signaling, which allows it to replicate its genome while remaining
latent and immune-silent in the host B-cells, thus establishing
lifelong persistence (Young and Rickinson, 2004; Cesarman and
Mesri, 2007). Most EBV infection is asymptomatic, but EBV

manipulation of host cell systems for latent persistence can lead to
oncogenesis. Primary infection is usually asymptomatic or causes
infectious mononucleosis (IM; Figure 1; Henle et al., 1968). After
primary infection, EBV resides mainly in the long-lived memory
B cells of infected individuals (Figure 1), but how EBV gets there
is still a major unanswered question.

Different transcription programs are established in different
tissues which maintains lifelong EBV infection. Since similar
transcriptional programs are found in EBV cancers, the pattern
of latency which determines the EBV genes expressed is a key
component of the puzzle to understanding the role of EBV
antigens in inducing cancers (Kutok and Wang, 2006; Cesarman
and Mesri, 2007). The B-cell malignancies express the established
latent gene transcription patterns during EBV infection and the
related EBV antigens which contribute to the oncogenic process.
This is likely linked to the agrressivity of the cancer, the response
and recurrance of the malignancies suggesting that these viral
antigens are important in driving these viral associated cancers.

Latency I (Lat I) program is characterized by the expression
of EBNA1, EBERs, BARTs, and BART microRNAs (Marquitz
et al., 2014). EBNA1, the only expressed viral protein in latent
infection, tags the EBV episome to the host chromosome,
thus allowing it to be segregated and retained during cell
division (Frappier, 2012b). Furthermore, EBNA1 is essential for
lymphoma survival by preventing cell death (Kirchmaier and
Sugden, 1997). Characteristically, in Burkitt’s lymphoma (BL),
none of the growth-promoting latent genes are expressed except
the latent protein EBNA1 (Gregory et al., 1990). Although, the
involvement of EBV in BL is supported by high frequency of
tumors that carry the virus in endemic areas (98%), and the

FIGURE 1 | (Left) Represents B-lymphocytes infection and (Right) epithelial cell infection. Epstein–Barr virus (EBV) infected B-lymphocytes and epithelial cells have
pools of uninfected and infected cells. Further, some cells produce infectious virus which can infect new cells. The remaining cells will die through apoptosis and
necrosis. A portion of the infected cells are transformed and leads to tumorigenesis through cell transformation. Some infected cells are also switched to a dormant
stage and can be activated or reactivated when conditions are favorable for lytic replication.
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presence of clonal EBV in all the tumor cells (de-The, 1985;
Gulley et al., 1992), it is still not completely understood how
EBNA1 participates in tumorigenesis, a multistep process that
occurs over a long period of time.

Latency II (Lat II) is characteristic of NPC, HD, Reed-
Sternberg (RS) tumor cells, and EBV-infected T and NK
lymphoma cells (Mesri et al., 2014). In addition to EBNA1,
LMP1, and LMP2A are also viral antigens expressed in this
latency program (Mesri et al., 2014). These two EBV oncogenes
mimic key survival and proliferative signals in B-cells (Mosialos
et al., 1995). To be specific, LMP1 mimics a constitutively active
CD40 receptor (Mosialos et al., 1995), while LMP2A is able
to mimic signaling via activated B cell Ig receptors depending
on its tyrosine-based activation motif (ITAM; Merchant et al.,
2000). The first recognition of an association between EBV
and Hodgkin’s disease came from the observation that IM is
a risk factor for this form of lymphoma (Flavell and Murray,
2000). Subsequently, immunoglobulin mutations and the data
on viral gene expression independently support the idea that
Hodgkin’s disease arises from an EBV-infected germinal-center
B cell (Kuppers and Rajewsky, 1998).

The associated interaction between EBV and epithelial cells
is poorly understood compared to B-cells. It has been shown
that infection and replication of the virus usually happens in
epithelial cells prior to infection of B cells (Shannon-Lowe
et al., 2009). Recently, EBV replication was shown in tongue
epithelium, hypothesizing that tongue could be the source of
EBV and secreted into saliva (Herrmann et al., 2002). Although,
OHL is well-known for productive EBV replication in upper-
layer epithelial cells which undergoing terminal differentiation,
apoptosis, and desquamation (Walling et al., 2001). All these
activities clearly demonstrated that EBV replication in vivo is
derived upon the differentiation state of the epithelial cells (Pegtel
et al., 2004). Moreover, proper latency in EBV infected epithelial
cells is mainly described in NPC and GC (Iizasa et al., 2012). NPC
has been reported to be the expression of EBERs, BARTs RNA,
EBNA1, LMP2, and LMP1 (Iizasa et al., 2012).

Latency III (Lat III) or growth program is characteristic
of EBV-infected B-lymphocytes proliferating as long-term
lymphoblastoid cell lines (LCLs) in cell culture. In this pattern,
EBV expresses six nuclear antigen proteins (EBNA1, 2, 3A, 3B,
3C, and LP), two latent infection integral membrane proteins
(LMP1 and LMP2A, 2B) in addition to the BARTs, EBERs, and
miRNAs (Middeldorp et al., 2003; Thompson and Kurzrock,
2004; Bajaj et al., 2007; Hislop et al., 2007; Saha and Robertson,
2011). The expressed latent proteins play important roles by
regulating cell cycle, cell proliferation and contribute to the
oncogenic process and both latency II and III patterns drive
oncogenesis in B- and epithelial cells (Cesarman and Mesri,
2007). Lymphomas expressing EBV latency III program typically
develop in immunodeficient individuals including AIDS and
transplant patients, while EBV lymphomas and other cancers
in immunocompetent hosts will typically display latency I or
II patterns (Kutok and Wang, 2006; Cesarman and Mesri,
2007).

A Latency 0 (Lat 0) pattern has also been described where
only the EBV-encoded ncRNAs which include EBERs and BARTs

are transcribed, and no viral proteins are expressed (Thorley-
Lawson, 2001; Shaknovich et al., 2006). The infection status was
observed in resting memory B cells. Therefore, the lack of EBV
protein expression helps these cells to evade T cells recognition,
but it is still unknown how viral proteins are regulated in
this pattern, and what kind of cellular transcription factors are
involved in the truly latent cells.

EBV NUCLEAR ANTIGENS AND THEIR
CONTRIBUTION TO ONCOGENESIS

EBNA1
Epstein–Barr virus nuclear antigen 1 (EBNA1) was the first
EBV protein detected and is expressed during both EBV latent
and lytic infection (Reedman and Klein, 1973). EBNA1 is the
only protein required for the persistence of EBV genomes
through contribution to both the replication and mitotic
segregation of the viral genome (Frappier, 2012b). Additional
evidence suggests that EBNA1 is involved in regulation of
viral and cellular gene expression (Pfeffer et al., 2004). For
example, it is essential for lymphoma survival by preventing cell
death (Kirchmaier and Sugden, 1997). EBNA1 induces survivin
protein expression and activates its transcription activity by
its Sp1 site at the promoter. The up-regulation of survivin
expression will suppress cell apoptosis by inhibiting the caspase
pathways in EBV-positive cells (Lu et al., 2011). EBNA1
can also induce genomic instability, including DNA damage
response (DDR), chromosomal aberrations and DNA double-
strand breaks (DSBs), by regulating RAG-1 and RAG-2 and
increasing reactive oxygen species (ROS) through activating the
transcription activity of NOX2/gp91phox, a catalytic subunit of
NADPH oxidase (Tsimbouri et al., 2002; Gruhne et al., 2009;
Maynard et al., 2009). A recent study shows that phosphorylation
of EBNA1 serine 383 by ERK2 is crucial for EBNA1-mediated
transactivation (Noh et al., 2016). In addition, EBNA1 inhibits
the expression of the protein tyrosine phosphatase receptor kappa
(PTPRK), a TGF-β target gene, and helps the survival and growth
of HD cells (Flavell et al., 2008). In NPC, EBNA1 could regulate
cell metastasis and migration by increasing the expression
and nuclear localization of Nm23-H1 which is involved in
metastases (Murakami et al., 2005; Cao et al., 2012). EBNA1 also
activates transcription activity of AP-1, and further enhances the
expression of its target protein vascular endothelial growth factor
(VEGF) in NPC cells, which suggests EBNA1 may contribute to
angiogenesis and metastasis of NPC (O’Neil et al., 2008). EBNA1
can disturb PML nuclear bodies and then inhibit malignant
transformation, which may be important for the development
of NPC (Sivachandran et al., 2008). Therefore, a large body of
evidence has shown that EBNA1 is associated with several types
of cancer through dysregulation of multiple signaling pathways.

EBNA2
Epstein–Barr virus nuclear antigen 2 (EBNA2) is one of the
initial latent viral genes expressed during EBV infection. EBNA2
initiates the transcription of a cascade of primary and secondary
target genes through activation of several viral and cellular
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genes (Maier et al., 2006). These changes eventually regulates
the activation of the resting B cell, through the cell cycle
inducing proliferation of growth transformed cells (Spender
et al., 1999). EBNA2 is a nuclear phosphoprotein that mimics
intracellular cleaved Notch1 and associates with RBP-Jk to
activate the expression of Notch1 target genes (Hofelmayr
et al., 2001), and deregulated Notch signaling is known to
drive non-viral lymphoid malignancies (Kaiser et al., 1999).
EBNA2 is also able to deregulate expression of c-MYC, further
increasing cell proliferation by up regulating cyclin Ds and
E, as well as downregulation of CDK2 inhibitors such as
p21CIP1 and p27KIP1 (Kaiser et al., 1999). EBNA2 also down-
regulates the expression of Bcl6, a master regulator of germinal
center differention, suggesting a key role of EBNA2 in B cell
lymphomagenesis (Boccellato et al., 2007). A recent study showed
that the overall survival of patients with EBNA2-positive DLBCL
was dramatically poorer than patients with EBNA2-negative
DLBCL, suggesting an important role for EBNA2 in lymphoma
development (Stuhlmann-Laeisz et al., 2016).

The EBNA3 Family of Proteins
Epstein–Barr virus nuclear antigen 3 (EBNA3) is a family of three
latency-associated proteins, which includes EBNA3A, EBNA3B,
and EBNA3C. They were first identified in latently infected B cell
cultures, and appear to be critical for EBV persistence and B-cell
lymphomagenesis (Whitehurst et al., 2015). The EBNA3 family
of proteins share approximately 30% sequence homology, and are

all expressed during the latent phase of EBV infection of primary
B-cells and in EBV-associated tumors of immunocompromised
cells. However, only EBNA3A and EBNA3C are essential for viral
transformation of B-lymphocytes, and all appear to significantly
contribute to maintaining the viability of transformed cells,
suggesting an important role in oncogenesis (Tomkinson et al.,
1993). EBNA3C has been reported to interact with many cellular
factors (Robertson et al., 1995; Choudhuri et al., 2007; Saha
et al., 2011, 2015; Banerjee et al., 2013, 2014; Jha et al., 2013a,
2014, 2015a,b,c). One of these cellular antigens is RBP-JK, which
binds to all the EBNA3 proteins (Robertson et al., 1995, 1996).
EBNA3C also binds with Nm23-H1 and reverses its ability to
induce cell migration (Subramanian et al., 2001), and targets
cell-cycle checkpoints by engaging the SCF (Skp2, Cullin, F-Box)-
ubiquitin ligase complex that can also lead to proteasomal
degradation of the retinoblastoma tumor suppressor protein
which demonstrates one of the mechanisms of oncogenesis
induced by EBV through the EBNA3 family of proteins (Knight
et al., 2005).

There are two important phenomenon in the process of
EBV induced oncogenesis described through several cellular
players in this review. We have utilized Ingenuity Pathway
Analysis (IPA) software, a product of Qiagen, Redwood City, CA,
USA. The available database included cellular players that are
significantly associated (p-value is ∼10−13) with transformation
and proliferation of tumor cell lines (p-value is ∼10−12)
(Figure 2). Our lab and others have demonstrated that EBNA1,

FIGURE 2 | Cell transformation and cell proliferation of tumor cell lines as mapped using the IPA software which demonstrates significant
association with major cellular pathways. Here we have groups or complexes formed with cellular molecules including Rb, Skp2, CyclinD, the transcription
factors E2F1, Tp73, Mdm2, Tp53, IRF4, Myc, HDAC1 and GMNN (Geminin), and kinases which include Aurora Kinase B, Pim1 and Gsk3B. We have also mapped
the known regulation of these cellular antigens and their activities by the essential EBV latent antigens EBNA1, EBNA2, EBNA3C, and LMP1 for transformation and
immortalization of EBV-infected cells leading to associated cancers.
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EBNA2, EBNA3C, and LMP1 are potent EBV antigens associated
with a number of transcription factors including E2F1, Tp73,
MDM2, Tp53, IRF4, Myc, HDAC1, and GMNN (Robertson et al.,
1995, 1996; Kaiser et al., 1999; Ma et al., 2000; Plaxco et al., 2000;
Zhou et al., 2000, 2005; Knight et al., 2005; Liu et al., 2005;
Saridakis et al., 2005; Choudhuri et al., 2007; Ding et al., 2007;
Chau et al., 2008; Allday, 2009; Forte and Luftig, 2009; Borestrom
et al., 2012; Frappier, 2012a; Accardi et al., 2013; Banerjee et al.,
2013; Tursiella et al., 2014; Jha et al., 2015b,c; Saha et al., 2015),
kinases including Aurora Kinase B, Pim1, GSK3B (Saha et al.,
2011; Jha et al., 2013a; Banerjee et al., 2014; Edwards et al., 2015),
and forms complexes with cellular factors whcih includes the
tumor suppressor and oncoproteins, Rb, Skp2, and CyclinD
(Arvanitakis et al., 1995; Ruf and Sample, 1999; Prathapam
et al., 2002; Knight et al., 2005; Choudhuri et al., 2007; Kang
et al., 2011; Saha and Robertson, 2011; Saha et al., 2011, 2015;
Sun et al., 2015; Figure 2). Cell transformation is regulated
through a broad range of interacting partners including Rb, E2F1,
Aurora Kinase B, Tp73, Mdm2, Pim1, Tp53, IRF4, Skp2, and Myc
(Halazonetis and Kandil, 1991; Lahoz et al., 1994; Hoang et al.,
1995; Pirollo et al., 1997; De Laurenzi et al., 1998; Givol et al.,
1998; Mochizuki et al., 1999; Lin et al., 2000; Gstaiger et al., 2001;
Kanda et al., 2005; Zhang et al., 2005; Xu et al., 2011). Moreover,
proliferation of tumor cell lines is associated with dyregulation
of the activities of the major cell factors Rb, E2F1, Aurora Kinase
B, Tp73, Mdm2, Pim1, Tp53, IRF4, Skp2, Myc, HDAC1, Cyclin
D, GSK3B, and GMNN (Wang et al., 2008; Liontos et al., 2009;
Karslioglu et al., 2011; Inuzuka et al., 2012; Jo and Ren, 2012;
Maddocks et al., 2013; Malinen et al., 2013; Huo et al., 2014;
Mikawa et al., 2014; Subramanian et al., 2015). These studies
together highlight the importance of EBNA3C and other EBNA
proteins in EBV-directed oncogenesis.

The LMP Family of Proteins
Latent membrane protein-1 (LMP-1) mimics CD40 and its over-
expression leads to activation of NF-kB, JNK, PI3K/Akt, and
MAPK pathways to promote cellular proliferation (Shair et al.,
2007). Additionally, LMP1 activated Bcl2 blocks apoptosis and
participated in cell cycle progression through cyclinD/CDK2
phosphorylation of Rb, and inhibition of p16 and p27 (Everly
et al., 2004). Another member of the LMP family, LMP2A
diminishes the surface immunoglobulin-mediated lytic cycle
reactivation (Bryant and Farrell, 2002). LMP2A also induces
the Ras/PI3K/Akt pathway and activates Bcl-xL expression to
promote B-cell survival (Chen, 2012). A study by Accardi
et al. (2013), showed that LMP1 activates the expression of
1Np73α, a strong antagonist of p53. Furthermore, inhibition of
JNK1 through chemicals or silencing, strongly down-regulated
1Np73α mRNA levels in LMP1 positive cells (Accardi et al.,
2013). At the same time, LMP1 mutants deficient in induction
of JNK1 did not induce1Np73α accumulation (Accardi et al.,
2013). Interestingly, LMP1 also induces epigenetic changes on the
promoter of p73 gene (Accardi et al., 2013). Emerging studies
suggest that these epigenetic changes play an important role
in carcinogenesis (Ren et al., 2011). Additionally, knockdown
through short hairpin RNA depletion of endogenous LMP1
in LCLs suppressed IL-32 expression, a novel proinflammatory

cytokine (Lai et al., 2015). Moreover, IL-32 can bind with protein
kinase Cδ inhibiting activation of the Zta promoter. Therefore,
knockdown of IL-32 in LCLs induces viral reactivation. However,
and surprisingly this has no influence on cell proliferation and
apoptosis (Lai et al., 2015).

Non-coding RNAs
The EBV-encoded nuclear BART RNAs are functional long
non-coding RNAs (lncRNAs) (Marquitz et al., 2015). To avoid
host immune attack, EBV expression of non-coding RNAs that
contribute to growth regulation without an immune response
may have implications for immune escape by the virus (Marquitz
et al., 2015). A recent RNA-seq analysis by Chen et al. (2005) had
showed that more than 99% of all virally derived polyadenylated
transcripts were BARTs in EBV-infected gastric tumors. Another
study by Feederle et al. (2011) highlighted the functions of
miRNAs in EBV infection as a strategy for allowing synchronous
and synergistic expression of genetic elements that contribute to
transformation of their target cells.

EBV-encoded small RNAs (EBERs) has been reported as
growth-stimulatory and their roles have been confirmed in
EBV-mediated B-cell transformation (Yajima et al., 2005). Using
genetic engineering approaches by reverse genetics in primary B
cells and in Akata cells the data strongly supports the hypothesis
that EBERs have roles in transformation of human primary
B cells. However, in vitro studies with deletion mutants have
indicated that EBV can transform B-cells without the presence
of the EBERs (Jha et al., 2016).

THE SWITCH OF LYTIC INFECTION AND
LATENCY

Typically, two types of EBV infection can be established in
different cell types: latent in primary B-cells and lytic in epithelial
cells (Figure 1; Amon and Farrell, 2005; Tsurumi et al., 2005).
Primary infection is generally asymptomatic. However, primary
infection in early adulthood can lead to IM (Odumade et al.,
2011). Upon initial infection of cells, EBV briefly undergoes an
initial burst of lytic replication that is productive but is aborted
and switches to a latent infection (Figure 1; Mansouri et al.,
2014). Following this period, EBV becomes strictly latent after the
lytic genes are silenced by chromatinization (Penkert and Kalejta,
2011). It is important to note that only a small fraction of the
virus infected cells are reactivated during the latent infection state
(Figure 1; Rong and Perelson, 2009).

The switch during EBV infection in host cells from latent
to lytic form is greatly determined by the cellular transcription
factors that regulate the activity of immediate-early (IE) lytic
genes, especially BZLF1 and BRLF1 (Adamson et al., 2000). In
EBV latently infected cells, multiple cellular factors are necessary
for establishment and maintenance of viral latency (Haan et al.,
2001). For example, YY1 inhibits BZLF1 and BRLF1 transcription
and is important for maintenance of viral latency (Zalani et al.,
1997). MEF2D recruits class II histone deacetylases (HDAC) to
the BZLF1 gene promoter and inactivates its activity (Gruffat
et al., 2002b). Furthermore, Oct-2 and PAX5, two B cell-specific
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transcription factors, have also been shown to be important in
promoting EBV latency by negatively regulating the function of
the BZLF1 protein (Robinson et al., 2012; Raver et al., 2013). The
chromatin structure of the BZLF1 gene promoter (Zp) is also
critical for regulating its expression (Chang et al., 2008). Zp is
activated by histone acetylation and was shown to be inactivated
by DNA methylation (Bryant and Farrell, 2002). These multiple
strategies are involved in regulating latency during EBV infection.

Epstein–Barr virus reactivation can be triggered in human
cells by either chemical agents or biological stimuli, including
TPA, sodium butyrate, HDAC inhibitors, phorbol esters, calcium
ionophores, chemotherapeutic agents, BCR engagement, TGF-β,
and hypoxia (Figure 1; Gorres et al., 2014; Kenney and Mertz,
2014). BCR signaling-mediated EBV reactivation is mainly
induced through PI3K and PKC that further regulate the activity
of the Zp promoter (Goswami et al., 2012). T-cells secreting TGF-
β also triggers EBV reactivation through signaling and induction
of BZLF1 gene expression (Fahmi et al., 2000; Inman and Allday,
2000). Hypoxia can also activate EBV lytic infection by enhancing
the expression of the immediate early transactivator Zta (Jiang
et al., 2006). These factors finally activate the transcription of
two lytic transactivators BZLF1 and BRLF1 (Miller et al., 2007).
Then the two genes encode antigens induced expression of viral
E (early) genes, which are necessary for viral DNA replication,
and L (late) genes, such as capsid proteins and glycoproteins
(Gruffat et al., 2002a). In most EBV-positive cell lines, the Zta
protein, encoded by the BZLF1 ORF, is a major trigger for
viral reactivation because its expression alone can induce the
reactivation cascade (Speck et al., 1997). This suggests that it
is a major switch important for EBV reactivation from latency.
Expression of the BRLF1 gene encoding the Rta protein also
induces the switch from latent to lytic infection in a subset
of EBV-positive cells, particularly epithelial cells. Importantly,
EBV reactivation is largely induced by BCR stimulation and
plasma cell differentiation (Laichalk and Thorley-Lawson, 2005;
Davies et al., 2010). Two cellular proteins, XBP-1 and BLIMP-
1, are critical for differentiation of plasma cells (Reimold et al.,
2001; Shaffer et al., 2002). Furthermore, the expression of XBP-
1 in some EBV latently infected cells is sufficient for viral
reactivation, and BLIMP-1 could also induce viral lytic cycle in
EBV-transformed cells by activating Zp and Rp transcription
(Vrzalikova et al., 2011).

REACTIVATION OF EBV

Viral reactivation in an infected host is induced by several
key factors (Ye et al., 2011). Chronic interpersonal stress
can drive EBV reactivation and replication by weakening the
cellular immune system control over viral latency through
both autonomic and glucocorticoid pathways (Fagundes et al.,
2014). The chronic relationship with stress could be a key
psychological feature driving the link between attachment anxiety
and EBV reactivation (Fagundes et al., 2014). Also, it has
been hypothesized that individuals who have higher attachment
anxiety have elevated EBV VCA IgG antibodies compared to
lower attachment anxiety (Fagundes et al., 2014).

Typically, EBV-induced cancers containing undifferentiated
cells may be due in part to cells dying from lytic EBV infection
when they differentiate (Reusch et al., 2015). However, Ntera-
2 cells, a neuro-epithelial cells can be infected by EBV after
differentiation (Jha et al., 2015a). In gastric cancer and NPC cell
lines, BLIMP1 is sufficient to induce EBV lytic gene expression
(Reusch et al., 2015). Furthermore, the studies showed that
BLIMP1 can activate transcription of Rp over 300-fold in
addition to Zp at 20- to 50-fold in several epithelial cell lines
(Reusch et al., 2015). Reusch et al. (2015) showed that both Zp
and Rp are robustly induced by BLIMP1, and that Rp is activated
greater than Zp in epithelial cells. Therefore, it is possible that
BLIMP1 activation of Zp is a major mechanism for induction of
EBV reactivation in B-cells (Vrzalikova et al., 2011). Therefore, it
is speculated that EBV induced B-cell malignancy are much more
responsive to Zp than Rp (Reusch et al., 2015). Also, deletion
of EBER1 or EBER2 had minimal effect on the transformation
frequency of primary B-cells or the generations of LCLs by EBV
(Wu et al., 2007). Moreover, Gulley and Tang (2008) showed that
EBER2 is essential for efficient transformation of B lymphocytes
and maximum growth potential of LCLs. Contrary to this, several
studies demonstrated that EBERs were not essential for primary
infection, viral replication, or B-cell immortalization (Delecluse
and Hammerschmidt, 2000). However, EBERs were found to be
important for establishment of malignant phenotypes and tumor
formation in SCID mice (Yamamoto et al., 2000).

Most of the EBV latent proteins expressed in Wp-restricted
or type III latency were oncogenic and might contribute to
resistance of EBV-associated lymphomas to chemotherapy (Hui
et al., 2014). Further, it was shown that EBV-positive BL cells of
type III latency were more resistant to dying by nocodazole or
taxol compared to EBV negative or latency I BL cells (Leao et al.,
2007). BL cells of Wp-restricted or type III latency were more
resistant to treatment with HDAC inhibitors than those of type
I latency (Leao et al., 2007).

TERT-induced NOTCH2 activation is regulated through NF-
kB (Nickoloff et al., 2002). In addition, pharmacologic inhibition
of NOTCH signaling triggers EBV lytic cycle which leads to
the death of the EBV-infected cells (Giunco et al., 2015). IRFs
are also regulated by EBV and can modulate the expression
of both viral and cellular factors that are involved in EBV
latency and transformation (Zhang and Pagano, 2001). To
date, it is known that IRF-7, IRF-4 and IRF-5 are associated
with EBV transformation (Xu et al., 2011). IRF-5, normally
a tumor suppressor is highly expressed in EBV transformed
cells. Combined with IRF-4, it is involved in EBV-mediated
regulation of Toll like receptor 7 (TLR7) activities (Martin
et al., 2007). Recently, we have shown that Spi-1/B motif of
IRF-4 is critical for its interaction with EBNA3C in EBV-
induced B-cell immortalization (Banerjee et al., 2013). We also
demonstrated that EBNA3C can stabilize IRF-4, which leads to
downregulation of IRF-8 by enhancing its proteasome-mediated
degradation (Banerjee et al., 2013). Therefore, we conclude
that EBV induces a balanced expression of IRFs during EBV
transformation which when deregulated can trigger reactivation.
With mutual inhibition and/or activation among oncogenic and
tumor suppressor factors, EBV may drive the infected cell to
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apoptosis or proliferation in various microenvironments for the
survival of the virus in vivo and this may also have important
consequences for viral gene regulation whcih leads to reactivation
of a small percentage of infected cells in tumors which are critical
for maintaining the cancer phenotype (Zhao et al., 2010).

In LCLs and PBMCs, we have successfully demonstrated
that the mitotic protein Aurora kinase B (AK-B) is critical,
and regulated through EBNA3C in B-cell transformation (Jha
et al., 2013a). In the course of transformation both EBNA3C and
AK-B targets several tumor suppressors like p53, p73 and pRB
through a mechanism of phosphorylation and ubiquitination
(Jha et al., 2015c). Cyclins, specifically Cyclin A, D1, E are
also a crucial regulators in B-cell transformation through EBV
(Saha et al., 2011). Several studies highlighted the importance
of the DDR in EBV induced B-cell transformation (Choudhuri
et al., 2007; Jha et al., 2013b, 2014). Briefly, ChK1, ChK2,
and H2AX are critical components of EBV-derived B-cell
transformation and are activated during early infection as
well as provide a bridge to bypass the host immune system
for virus propagation (Choudhuri et al., 2007; Jha et al.,
2014).

Studying latent and lytic replication in EBV infected B-cells or
epithelial cells is important for determination of the mechanisms
which lead to development of EBV-associated diseases. In several
studies utilizing primary or immortalized B-cells infected with
wild type EBV isolated from BAC clones, we monitored the
expression of genes at transcript levels during the early days
of infection (Figure 1; Halder et al., 2009; Saha et al., 2011,
2015; Banerjee et al., 2013; Jha et al., 2013a, 2015b,c). Further,
we have used several epithelial primary and immortalized cells
including primary neurons, Ntera-2, Sh-Sy5Y, and HEK-293
cells (Jha et al., 2015a), and clearly showed that during the
initial days of EBV infection the latent gene expression was
low, but the lytic gene expression resulted in active virus
progeny produced in the culture medium. Furthermore, this
active virus progeny was capable of infecting new cells during
this early infection period. Therefore, the number of EBV
infected cells were greater on day 5 compared to days 1
or 2 (Jha et al., 2015a). Active virus progeny were verified
through infection of fresh cells with virus collected from media
during early infection (Figure 1). We have also observed that
a large percentage of infected cells died during this early
period. Previous studies have also suggested that EBV-infected
B-cells are transformed to LCLs in a similar manner after and
initial period of lytic virus production (Figure 1; Kurth et al.,
2000; Carter et al., 2002; Shannon-Lowe et al., 2009). However,
investigating the disease-associated cell types will provide further
insights which will enhance our understanding of the complexity
of EBV-driven pathogenesis in a range of associated chronic
diseases.

EBV VIRAL LOAD IN HODGKIN AND
NON-HODGKIN

Epstein–Barr virus viral load in plasma has been used as a
marker of tumor burden in patients with sporadic EBV-related

lymphoma including B cell, T cell, NK cell, and Hodgkin
subtypes (Gulley and Tang, 2010). Interestingly, EBV DNA is
detectable ahead of cancer diagnosis, and also the level of its
DNA at diagnosis can predict effects and efficacies of therapies
(Zhang et al., 2015). These findings strongly suggest that routine
plasma evaluation for EBV viral load on initial diagnosis may be
important for predicting EBV-related pathogenesis. Whether or
not this is transferable to other know tumor viruses is yet to be
determined but in this age of microbiome and exchange of genetic
information between host and infectious agents it would not be
surprising if future diagnostic strategies can be developed using
blood serum analysis of nucleic acids signatures to detect levels
of infectious agents including viruses like EBV as a routine test
for predicting associated pathologies.

TREATMENT OF EBV ASSOCIATED
DISEASES

To date the majority of antiviral agents used against EBV
are the acyclic nucleoside analogs Acyclovir or Ganciclovir,
which are only efficient during EBV lytic life cycle (Gustafson
et al., 1998). Another antiviral Maribavir is active against EBV
(Gershburg and Pagano, 2005). However, the mechanism of
action is not fully understood. Furthermore, some natural and
synthetic compounds, like moronic acid, derivatives of betulinic,
glycyrrhizic acids, and flavonoids have been shown to inhibit
EBV lytic cycle (Chang et al., 2003; Lin, 2003; Lin et al.,
2008). However, their mechanism of actions are not well-
defined.

Recently, we have successfully identified several small
molecules inhibitors (NSC65381, NSC10010, NSC16553, and
NSC1881) that were able to kill virus positive LCLs as well
as EBV negative BL cells (Dzeng et al., 2015). We have also
demonstrated that c-Myc and NF-kB are the major signaling
molecules targeted through these inhibitors to kill virus positive
cells (Dzeng et al., 2015). Earlier, arsenic trioxide (As2O3)
and sodium arsenite (NaAsO2) were also shown to induce cell
death in P3HR1 cells (Zebboudj et al., 2014). Interestingly,
this effect was due to reactivation of EBV lytic cycle through
induction of the immediate-early proteins Zta and Rta (Ragoczy
et al., 1998). There are several studies using a combination
of drugs including rituximab, cyclophosphamide, vincristine,
doxorubicin, and prednisolone or methotrexate, vincristine,
and procarbazine to treat EBV associated patients with greater
efficacy (Kuriyama et al., 2014). These combined therapeutic
approaches may be a better strategy for future anti-viral
therapy as is now becoming the norm in most oncology
regimens.

POTENTIAL FUTURE DISCOVERY

Recently growing evidence suggest that the CRISPER/CAS9
system can be efficiently activated in viral infected cells for editing
of viral genomes (Seeger and Sohn, 2014; Yuen et al., 2015). Using
this strategy we can precisely destroy the latent promoters of
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EBV which are critical for viral latent infection and so result
in loss of transformed phenotype and killing of infected
cells. This could be a potential strategy for control of EBV
pathogenesis in immunocompromised individuals. Another
approach for future exploration is to uncover the complete
transcription network of host-EBV interaction. This could
be classified as the types of genes at different locations,
temporally expressed, and the associated pathologies. One
interesting possibility is the utility of EBV in gene therapy.
EBV can efficiently infect B-cell and the infected cells circulates
in the vascular system. Therefore, EBV may have potential
for use as a novel vector to transport of cellular genes
to specific anatomical sites as a means of targeted gene
therapy.
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