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As our understanding of the human microbiome expands, impacts on health and
disease continue to be revealed. Alterations in the microbiome can result in dysbiosis,
which has now been linked to subsequent autoimmune and metabolic diseases,
highlighting the need to identify factors that shape the microbiome. Research has
identified that the composition and functions of the human microbiome can be
influenced by diet, age, sex, and environment. More recently, studies have explored
how human genetic variation may also influence the microbiome. Here, we review
several recent analytical advances in this new research area, including those that use
genome-wide association studies to examine host genome-microbiome interactions,
while controlling for the influence of other factors. We find that current research is
limited by small sample sizes, lack of cohort replication, and insufficient confirmatory
mechanistic studies. In addition, we discuss the importance of understanding long-term
interactions between the host genome and microbiome, as well as the potential impacts
of disrupting this relationship, and explore new research avenues that may provide
information about the co-evolutionary history of humans and their microorganisms.
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INTRODUCTION

Our view of the microbial community within us has shifted drastically in the last few decades
from simplistic commensalism to complex mutualisms. As a comprehensive understanding of this
microbial community expands, we are beginning to unravel the impact of microbes on human
health. This diverse microbial community is defined as the ‘microbiota, and the collective genomes
of all microbial species and their environment is termed the ‘microbiome’ (Marchesi and Ravel,
2015). Microbiota play key roles in human health throughout life (Gregory, 2011; Yatsunenko et al.,
2012; Rodriguez et al., 2015; Zapata and Quagliarello, 2015), and dysbiosis, defined as an imbalance
of the composition of the microbial components of the microbiota (Karlsson et al., 2013; Parekh
et al., 2015) has now been linked with various metabolic diseases such as obesity, type 2 diabetes
and inflammatory bowel disease (IBD).

Our improved ability to examine the microbiome is a result of a revolution in DNA sequencing
technologies and techniques, and the reapplication of pre-existing concepts from ecology.
Exponential advances in DNA sequencing technology, from low-throughput Sanger sequencing
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to high-throughput next generation sequencing, have allowed us
to obtain huge amounts of sequence data at a fraction of the cost
(Cho and Blaser, 2012; van Dijk et al., 2014). Furthermore, the
availability of cheap computational power, coupled with free and
readily available open source software tools, has resulted in larger
capacities for in-depth analysis of sequenced data to characterize
microbial communities. In addition, the applications of concepts
from ecology, such as diversity indices [Alpha diversity and Beta
diversity (Whittaker, 1972)], have enabled us to better categorize
and understand the composition and diversity of the microbial
world within us (Blaser, 2014).

Two separate methods are commonly applied to examine
human microbiota: metabarcoding or shotgun sequencing.
Metabarcoding typically uses the 16S ribosomal RNA (rRNA)
encoding gene to characterize the species structure of bacterial
communities in various environments, and has been the gold
standard in microbiome research due to the ubiquity of the
16S rRNA gene amongst prokaryotes and the availability of
large reference databases (Woese et al., 1990). However, shotgun
metagenomic sequencing, or sequencing DNA fragments at
random from the sample, is increasing in popularity, as it can
be used for both species profiling and functional analysis. Both
approaches have limitations. For example, 16S rRNA sequencing
can be biased due to uneven amplification of bacterial 16S
rRNA genes or primer biases. While challenges with identifying
low abundance community members with shotgun metagenomic
sequencing and the cost of large-scale multiplexing at sufficiently
high depths make this method prohibitive for many labs,
shotgun metagenomic sequencing has the potential to provide
information about the microbial community and the host
simultaneously (Poretsky et al., 2014).

From an evolutionary perspective, microbiome studies have
revealed compositional differences in microbiota between great
apes, archaic hominins, and modern humans, with a marked
reduction in microbial diversity observed within modern
humans. This loss of bacterial diversity in modern humans
is postulated to be a result of lifestyle changes (Cho and
Blaser, 2012). Dietary changes brought about by agriculture
altered the human microbiota considerably over 7,500 years
ago, and changed again with the recent movement toward
animal-based and fat-rich western diets (Adler et al., 2013). This
reduction in diversity is thought to be partially responsible for
the dysbiosis observed in modern human microbiomes that is
now associated with various metabolic and autoimmune diseases
(Blaser and Falkow, 2009; Adler et al., 2013; Moeller et al.,
2014; Logan et al,, 2016). Furthermore, changes in the human
microbiome through time and the linked impacts on human
health highlight the importance of studying the co-evolution of
the human microbiome and how those evolutionary changes in
microbial composition may have interacted with our genomes
(Linderholm, 2015).

In parallel with these recent discoveries in microbiome
research, the last two decades of genomic research have expanded
our understanding of how human genomic differences result in
phenotypic changes that impact human health and well-being.
The advent of large genome wide association studies (GWAS)
on a population level have allowed us to better understand the

relationships between common genetic variants and diseases,
such as Alzheimers, type 2 diabetes and obesity (Imamura
and Maeda, 2011; Fall and Ingelsson, 2014; Rao et al., 2014).
However, these two research fields, microbiome research and
human population genetics, have only recently begun to explore
the human genome and microbiome simultaneously, to examine
how their interaction influences our health and disease. Our
understanding of their interactive roles in our health and disease
remains in its infancy (Gilbert et al., 2016; Wang and Jia, 2016).
This review highlights in chronological order advances linking
host genetic variation with microbiome composition and more
recent research using GWAS.

MICROBIOMES

The Human Microbiome Project (HMP) determined that
different body sites are distinct niches for various bacteria,
resulting in differences in microbiome composition throughout
the body (The Human Microbiome Project, 2012). The human
gut, due to its large surface area and role in nutrition
and energy homeostasis, is home to a plethora of microbes.
Its microbiome has been the most studied due to its easy
access for sampling and critical importance for health. The
gut microbiome has been shown to play essential roles in
the metabolism of complex polysaccharides. These complex
polysaccharides are used to synthesize short-chain fatty acids
such as butyrate, acetate, and propionate that are used as
signaling molecules in the communication and development
of host innate immune system (Jacobs and Braun, 2014).
This system can breakdown due to changes in microbiome
composition or pathogenic microorganism colonization that
hijacks and alters these pathways, contributing to the etiology of
metabolic and infectious diseases, such as type 2 diabetes, IBD,
obesity (Carding et al., 2015), and Clostridium difficile infection
(CDI; Bien et al., 2013). In addition to the influence of the
gut microbiome on the immune system, short-chain fatty acids
produced by the gut microbiota have also been shown to impact
the brain and nervous system (Rhee et al., 2009; Thomas et al,,
2012).

Microbiomes at different body sites interact and can influence
one another. This interaction between microbiomes at different
sites in the body, such as the oral and gut microbiomes,
was indicated in a study by Ding and Schloss (2014) where
specific microbes abundant in the gut were more likely to be
present in the oral cavity (saliva and supragingival plaque). This
predictive relationship between the oral and gut microbiota is
not surprising, as the oral cavity is the gateway to the gut for
various microbes (Dewhirst et al., 2010). The advent of modern
dentistry has exposed the presence of pathogenic bacteria in the
oral cavity. However, our understanding of the role played by
non-pathogenic commensal bacteria is relatively recent. Recent
research has revealed over 600 bacterial species or phylotypes
present at different sites in the oral cavity (Dewhirst et al., 2010),
including many commensal species that help in host defense
by colonizing prime locations and creating an inhospitable
environment for secondary colonization of pathogenic bacteria.
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Disruption of the composition of this healthy oral microbiome
has been observed to result in inflammation and diseases such
as periodontitis and the proliferation of bacterial species, such as
Streptococcus mutans, which play crucial roles in the etiology of
dental caries (cavities) (Johansson et al., 2015; Kumar and Mason,
2015). This is exemplified by recent research showing that the
oral microbiomes of patients with dental caries are distinct in
composition and abundance of Streptococcus compared to that
of healthy individuals (Johansson et al., 2015).

In order to study host genome and microbiome interactions,
it is crucial to examine other factors that influence microbiome
composition. Recent advances in microbiome research has shown
that microbial composition can be heavily influenced by the
environment through diet and lifestyle (David et al, 2014).
Western populations have homogeneous diets and lifestyles
resulting in lower microbial diversity. Microbiomes from non-
western and indigenous populations are currently being explored
as a means to examine how unique lifestyles impact the human
microbiome. Studies examining microbiota in African hunter-
gatherers such as the Hadza (Schnorr et al., 2014) and South
American indigenous peoples (Yatsunenko et al., 2012) have
revealed a broader picture of the human gut microbiome -
one that is more diverse and complex. Sex has also been
shown to influence microbial composition with a number of
recent studies correlating specific microbial composition to
specific sexes (Markle et al., 2013; Ding and Schloss, 2014;
Blekhman et al., 2015). In many studies, such as those on the
microbiomes of the Hadza and Hutterites (a North American
isolated community with shared diet and non-standard cultural
practices), differences in microbial compositions between the
sexes are related to the dissimilarities in societal roles played
by men and women (Schnorr et al., 2014; Davenport et al.,
2014, 2015). Age is another factor that influences microbial
composition. In infants, the gut microbiome is highly unstable
and can resemble that of the mother, but shifts toward a more
robust adult microbiome within 2-3 years of life (Yatsunenko
et al, 2012). This shift may be due to changing diets due
to the increase in age. In a murine model system, Langille
et al. (2014) demonstrated differences in microbial composition
between old and young mice, and identified specific bacterial
genera, such as Alistipes, that were more prevalent in older
mice. Furthermore, two recent publications using large datasets
(N > 1000) confirmed these factors, as well as 69 others that
fall in categories, such as medication, blood parameters, health
status, anthropometric features, and lifestyle that correlated
with variation in microbiome composition (Falony et al,
2016; Zhernakova et al., 2016). These differences in age, sex,
populations, culture, and environment will need to be addressed
in studies exploring human genome-microbiome interactions.

EXPLORING HOST
GENOME-MICROBIOME INTERACTIONS

Animal Models
Animal models provide an avenue to probe these interactions
at a depth that is not possible using human-based studies.

Studies using zebrafish (Kanther and Rawls, 2010; Milligan-
Myhre et al., 2011), Drosophila (Kuraishi et al, 2013),
and mice have been crucial for laying the foundations of
microbiome research (Kostic et al., 2013). Many early animal-
based microbiome studies focused on the symbiosis between
microbial communities and their hosts. Sharon et al. (2010)
illustrated the role that commensal microbiota play in the
mating preference of Drosophila melanogaster. In zebrafish, the
influence of the host genome on the microbiome was confirmed
by an experiment involving transplantation of microbiota
between germ-free zebrafish and mice. The transplanted
microbiota adapted to resemble the host’s normal microbiota,
demonstrating that the host genome selects for specific microbes
to suit certain niches within an organism (Rawls et al,
2006).

Murine Models

Microbiome research in mice has been ground-breaking, as
germ-free mice have played crucial roles in many baseline
experiments. Murine models have shown that gut microbiota
are influenced by the genetic background of the mice (Esworthy
et al, 2010), and that gut microbial composition should be
viewed as a complex polygenic trait (Benson et al., 2010). Mice
have a large number of orthologous genes and similarities in
microbiome composition to humans, and quantitative trait loci
(QTL) analyses in mice have revealed specific gene regions
that modulate microbiome composition (Srinivas et al., 2013).
Benson et al. (2010) reported 18 QTLs that were associated
with specific bacterial taxa. Furthermore, McKnite et al. (2012)
used genetic mapping to link gut microbiota of laboratory
crossed mice to immune genes that modulate microbiome
composition.

Human-Based Studies

Murine model studies have consistently shown that host
genotypes are important in regulating microbiota composition
(Campbell et al., 2012; Hildebrand et al., 2013; Bongers et al.,
2014). While murine models demonstrate the importance of
genotypes in regulating the composition of microbiota, they
cannot be viewed as replacements for human-based studies due
to the inherent complexity involved in extrapolating murine
results to humans (Seok et al., 2013). Turnbaugh et al. (2009) and
Yatsunenko et al. (2012) used dizygotic and monozygotic twins to
examine the heritability of the gut microbiome while controlling
for environmental factors. Although both studies concluded
that there were no statistically significant differences between
monozygotic and dizygotic twins, they were both underpowered
due to their small sample sizes and lack of statistical rigor.
Consequently, a follow up studies using larger sample sizes of
the same twin datasets by Goodrich et al. (2014) and more
recently by Goodrich et al. (2016a) revealed the measurable
influence of host genetic variation on microbial composition,
showing Christensenellaceae to be the most heritable taxon,
while Bacteroidetes was more influenced by the environment.
Goodrich et al. (2016a) also showed that highly heritable taxa
correlated with higher levels of temporal stability, highlighting
the importance of these taxa to the host.
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A candidate gene approach has also been explored (Jacobs
and Braun, 2014). Research by Folseraas et al. (2012) and
Knights et al. (2014) examined the role of gut microbiome
composition and host genetic loci associated with IBD and
related diseases in humans. Folseraas et al. (2012) showed
that the gene FUT2 is associated with a signficant increase
in the abundance of Firmicutes and significant decrease
of Proteobacteria, while Knights et al. (2014) correlated
the NOD2 gene with Enterobactericea, pointing toward
the impact of these two genotypes and their associated
bacterial taxa as risk factors for IBD and IBD related
diseases.

While these studies provided valuable insight into how the
microbiome can be inherited like other phenotypic traits, their
study design using heritability is limited, as it cannot identify
statistically significant genetic loci on a genome-wide level that
interact with gut microbiota composition.

The Advent Of Microbiome - GWAS
Research

Recently, researchers have begun to apply techniques from
GWAS to microbiome research. GWAS seek to identify
relevant common genetic variants associated with various disease
phenotypes, by simultaneously screening thousands of the most
common variants in the human genome and these phenotypes
(Bush and Moore, 2012). In humans, GWAS have successfully
linked genetic variation to various disease phenotypes, including
type 2 diabetes, obesity, and heart disease (Visscher et al.,
2012). However, very few studies have used GWAS to explore
the interaction between human genetics and microbiome
composition.

Three recent studies have broke new ground by using
GWAS to study the influence of genetic variation on
microbiome composition. Blekhman et al. (2015) reported
the first microbiome GWAS study based on genomic and
microbiome data mined from the HMP. Microbiome data from
15 sites on the body were correlated with human genomic
data inferred from “contaminating” human DNA of the body
sites to expose the role that host genetic variation plays in
microbiome composition across various sites in the body.
These inferences on the host were made possible due to the
large amounts of host DNA found, which were variable at
different body sites. A subsequent publication by Davenport

et al. (2015) analyzed the gut microbiome and host genetic
data from Hutterites, a North American isolated community
with shared diet and identical cultural practices, to control
for environmental confounders. The third and most recent
study by Goodrich et al. (2016a) revisited the inheritance of
the gut microbiota in twins and examined the link between
host genetics and gut microbiome composition in 1,248
individuals, including mono- and di-zygotic twin pairs.
All three studies (Blekhman et al, 2015; Davenport et al,
2015; Goodrich et al, 2016a) revealed that specific bacterial
taxa, such as Bifidobacterium, are inheritable and correlate
with specific host genotypes. Goodrich et al. (2016a) linked
Bifidobacteria which metabolizes lactose in the gut with the
LCT gene locus which encodes for the enzyme lactase that
hydrolyses lactose. They revealed that lactase ‘non-persisters’
harbored lower levels of Bifidobacterium relative to lactase
‘persisters, possibly due to the higher availability of lactose
in the gut of lactase non-persisters. Blekhman et al. (2015)
and Davenport et al. (2015) also found that immunity-related
genes, such as interleukin-2 (IL2) influenced the modulation
of microbiome composition via pathways that may then
result in complex diseases, although the exact mechanism
remain unknown. Goodrich et al. (2016a) also updated and
summarized an earlier list by Spor et al. (2011) of number
of other host genetic loci that are suspected to be associated
with the microbiome that was primarily based on mouse QTL
research.

Furthermore, these studies used gene expression data to
illustrate that genetic loci linked to microbiome composition have
a functional role in metabolic diseases, such as obesity (Blekhman
et al,, 2015; Davenport et al., 2015).

Microbiome - GWAS Methodology

Thus far, many of the most recent microbiome GWAS
studies on human hosts used either Alpha diversity indices
(a-diversity; within population diversity) or Beta diversity
indices (B-diversity; between population diversity) of microbial
composition as phenotypes, and correlated the diversity
with common genetic variants (SNPs). Table 1 details the
methods used in microbiome GWAS in human hosts published
to date, based on our knowledge. Blekhman et al. (2015)
utilized a traditional GWAS statistical software package,
PLINK (Purcell et al, 2007), and completed regression

TABLE 1 | Methods used in human microbiome Genome wide association studies (GWAS).

Method Software tool Sample Microbiome Number of SNP/ Reference Notes
size (sampling site) Genes correlated
Additive linear mixed PLINK (v1.07) 93 Microbiome 83* Blekhman et al., 2015 *Pathway based
model Purcell et al., 2007; composition at various analysis was used in lieu
Chang et al., 2015 body sites (10) of genes.
Genome-wide efficient GEMMA (v0.94) 127 Gut microbiome 187* Davenport et al., *SNP
mixed-model Zhou and 2015
association (GEMMA) Stephens, 2012
Microbiome GWAS Microbiome GWAS 1,248 Gut microbiome 142* Goodrich et al., *Genes
Hua et al., 2015 2016a *GEMMA (v0.94) was
also used.
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analysis with an additive linear mixed model, followed by
multiple test corrections to identify SNPs associated with
microbiome composition at genome-wide significances.
However, Davenport et al. (2015) and Goodrich et al. (2016a)
used a genome-wide efficient mixed model implemented
in the GEMMA software tool in their studies (Zhou and
Stephens, 2012). These studies demonstrated that B-diversity
is a more appropriate metric than a-diversity for microbiome
GWAS, as it represents the microbial community more
comprehensively and reduces the temporal variability observed
with a-diversity resulting in an increase in statistical power
(Hua et al., 2015). Microbiome GWAS (Hua et al., 2015) is
a recently developed statistical software package that uses
B-diversity indices calculated using both unweighted or
weighted UniFrac and genome-wide SNPs, and allows for
controlling confounders as covariates in a computationally
efficient framework. Microbiome GWAS has been tested using
both simulations and on a lung cancer dataset to identify
microbiota associated with lung cancer risk in Europeans (Hua
et al., 2015). More recently, Microbiome GWAS was applied
to the expanded UK twins dataset (n = 1,248) (Goodrich
et al, 2016a). This statistical package has the capability
to correct for skewness and kurtosis in the score statistics
that are a result of small sample sizes. Another recently
published software package is MiRKAT (Zhao et al, 2015),
which is a kernel regression based test to find associations
between genome-wide SNPs and B-diversity computed using
a generalized UniFrac (Chen et al,, 2012). MiRKAT is limited
by its computationally inefficient framework, and requires long
run time and a large amount of processing power (Hua et al,,
2015).

These microbiome — GWAS wide association studies form
the initial attempts to elucidate genome-microbiome interaction;
however, a number of limitations currently exist. GWAS typically
require large sample sizes in order to obtain statistically
significant results and account for small effect sizes that can
be attributed to variants correlated with phenotypes (Hayes,
2013). The studies of Blekhman et al. (2015) and Davenport
et al. (2015) both had small sample sizes (~100) that likely
resulted in underpowered statistical analyses, especially following
the multiple test corrections that were required for the
results to be statistically significant. Blekhman et al.(2015)
combined various individual SNPs into groups based on their
association with similar biological pathways to increase statistical
power, while Davenport et al. (2015) performed multiple test
corrections on SNPs within each genome-wide association
study to reduce the number of SNPs undergoing multiple
test corrections. Nevertheless, both of these approaches do
not fit the required statistical rigor observed in traditional
GWAS studies (Barsh et al., 2012). Another challenge in
microbiome — GWAS studies is the need for replicate cohorts.
While Blekhman et al. (2015) used the Twins UK dataset
(Moayyeri et al., 2012), Davenport et al. (2015) lacked a
replication cohort to confirm their results. Improving statistical
power by accounting for excess zeros in OTU counts of
metagenomic samples (Xu et al., 2015), as well as larger host
sample sizes and replication cohorts, are crucial if we are to

obtain a more reliable understanding of genome-microbiome
interactions. Furthermore, while most studies of this type
identify genetic loci that appear to interact with the genome,
all are yet to be confirmed by mechanistic or functional
studies.

EVOLUTIONARY PERSPECTIVE ON
GENOME-MICROBIOME INTERACTIONS

Due to changes in the human microbiome and genome
over long periods of time, an evolutionary perspective
on the microbiome is important in interpreting these
effects on human health and disease. Several groups have
examined modern populations to infer the influences of
different evolutionary histories on the human microbiome.
Moeller et al. (2014) showed how the human microbiome
evolved by sequencing the gut microbiome of chimpanzees,
bonobos, gorillas, and modern humans. More recently,
they reported the presence of shared microbial composition
across all four host species, suggesting the existence of an
ancestral hominid microbiome (Moeller et al., 2016). In
addition, Moeller et al. (2014) showed that the microbiome
of our hominid ancestors was more diverse and more
stable compared to that of modern humans. Disruptive
dietary and environmental changes, such as the transition
to agriculture, may have likely contributed to the loss of
such diversity (Adler et al, 2011). Moeller et al. (2014)
observed that bacterial taxa, such as Bacteroidetes, are
associated with animal fat, rich diets, and high protein
intake, and increase in abundance in modern humans. In
contrast, taxa responsible for the degradation of complex
polysaccharides, such as Methanobrevibacter, underwent
decreases in abundance. The authors also compared their data to
people in remote Venezuela, rural Malawi, and industrial United
States, demonstrating a gradient of diminished microbiotic
diversity driven by environment and diet (Moeller et al., 2014,
2016).

Similar findings have also been observed in other studies,
Schnorr et al. (2014) and Schnorr (2015) explored the gut
microbiome of the Hadza people, an Indigenous group of
Tanzanian Hunter-gatherers. Researchers observed high bacterial
diversity in this group compared to Western populations, as
well as higher abundances of plant polysaccharide metabolizing
taxa, such as Prevotella and Treponema. These taxa likely
provide the Hadza with short chain fatty acids, such as
butyrate and propionic acid, which positively influence immune
and nervous systems by regulating inflammation (Rhee et al,,
2009; Thomas et al, 2012). Other researchers hypothesized
that the diversity and composition of the Hadza’s microbiome
contribute to their low rates of nutritional and metabolic diseases
(Blurton Jones et al., 1992). Similarly, De Filippo et al. (2010)
and Yatsunenko et al. (2012) have shown the presence of a
decreasing gradient of microbial diversity and abundance from
contemporary Hunter-gatherers, rural farming communities to
western populations. These studies suggest that our changing
diets and lifestyles are responsible for our “missing microbes,”
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and the resulting metabolic and autoimmune diseases (Blaser and
Falkow, 2009).

Ancient DNA

Expanding the focus of microbiome studies to non-western
and indigenous populations around the world has helped
us to understand the diversity of the human microbiome.
However, these studies do not provide us the information
necessary to understand evolutionary changes through time.
The expansion of microbiome research from contemporary
to ancient human populations has provided us with
evolutionary snapshots of change through time, allowing
for the examination of the human microbiome before, during,
and after cultural shifts, such as the agricultural transition
(Neolithic Revolution), the Industrial Revolution, and the
advent of modern globalized and highly processed food
(Adler et al., 2013). Studying these evolutionary snapshots
provide information on how these communities have changed
and adapted in real time, and improve our understanding
of how these changes have influenced human health and
disease.

In recent years, ancient DNA (aDNA) research has unveiled
genomes of archaic hominins, such as Neanderthals (Priifer et al.,
2014), Denisovans (Meyer et al., 2012) as well as prehistoric
human populations (Mathieson et al., 2015). Ancient DNA
refers to damaged DNA extracted from fossil remains, and is
characterized by short fragment sizes, cross linkage between
DNA molecules, and increased cytosine deamination due to
the taphonomic effects of the environment and time (Hofreiter
et al., 2001; Willerslev and Cooper, 2005; Linderholm, 2015).
Typical samples for extraction of aDNA are obtained from
locations in the human body that offer the most protection
from exogenous DNA (i.e., that from both the environment
and microbes). The samples that have been most successful for
the retrieval of hominin aDNA are bones (femur and petrosal)
(Meyer et al., 2014; Pinhasi et al., 2015) and teeth (Adler et al,,
2011).

While the vast majority of research in this field has
focused on the extraction and analysis of genomic data
for human population history, the last 5 years has seen
cutting-edge research expose the potential of ancient human
microbiome DNA (Adler et al., 2013; Warinner et al., 2015).
This has primarily been done using dental calculus, a calcified
bacterial biofilm (dental plaque) that forms on teeth. Due
to the process of dental calculus formation that encapsulates
microbial DNA protecting it from external contamination, it is
possible to extract large amounts of microbial aDNA that are
relatively uncontaminated by the environment. Dental calculus
research has already provided insights into changes in the
oral microbiome during large cultural shifts in time, including
transitions to agriculture and industrialization (Adler et al,
2013).

Research to analyze the microbial diversity within dental
calculus began with de la Fuente et al. (2013) using species-
specific PCR amplification, followed by Adler et al. (2013)
using 16S metabarcode sequencing and Warinner et al. (2014)
using metagenomic shotgun sequencing. Ancient dental calculus

revealed how the human microbiome has adapted through
time, as observed through 34 ancient calculus samples in
Europe over the past 8,000 years (Adler et al., 2013). The
authors were able to show that both the transition to
agriculture (~7,500 years ago) followed by the availability of
processed food, antibiotics, and toxins in the environment
following the Industrial Revolution (~150 years ago) resulted in
decreased bacterial diversity and an increase in oral microbiota
dysbiosis.

aDNA has also been used to explore the evolutionary
history of specific microorganisms, such as the causative agents
of tuberculosis (Bos et al,, 2014), plague (Bos et al., 2011),
leprosy (Inskip et al., 2015), and gastritis (Maixner et al,
2016). While important, these studies have not revealed how
the microbiome in these individuals has shifted. Microbiome-
based studies, using aDNA from dental calculus of ancient
populations, can provide us with a unique perspective on the
evolution of entire bacterial communities, and their coevolution
with their hosts, rather than individual taxa (Adler et al.,
2013; Metcalf et al., 2014; Warinner et al., 2014). The growing
availability of genomic information from ancient humans (Haak
et al, 2015; Mathieson et al., 2015; Skoglund et al, 2015)
provides a unique opportunity to examine co-evolutionary
interactions through time. For example, several studies have
described the human genomic changes that occurred during
the agricultural transition, including alterations in both immune
and metabolic genes that allowed early farming communities to
adapt to new diets and environments (Allentoft et al., 2015).
These loci, such as those relating to lactase persistence and
immune responses, are similar to loci identified in modern day
microbiome - GWAS studies Goodrich et al. (2016b), suggesting
that there may be a link between genomic and microbiome
alterations.

FUTURE DIRECTIONS

In order to obtain a detailed understanding of these interactions,
larger sample sizes and independent replication cohorts are
required to confirm the associations that are detected. This will be
beyond the singular capacity of many research laboratories and
will require large collaborations, as seen in the medical genetics
community where GWAS studies have been applied to specific
human diseases. As the list of microbiome associated genetic loci
grows, there is also the need for functional studies to understand
the mechanisms that underlie genome-microbiome interactions.
Gnotobiotic mice and human cell lines hold promise toward that
aim and are part of the NIH Integrated HMP (iHMP/HMP 2.0),
announced in 2014 as the successor to the HMP. The Integrated
HMP has initiated the transition from high throughput screening
to longitudinal and detailed mechanistic studies [Integrative
Hmp (iHMP) Research Network Consortium, 2014]. In addition,
studying the co-evolution of the genome and microbiome in
ancient humans using ancient DNA will provide a comprehensive
overview of the changes to the interaction over time. Further
research will also require multidisciplinary expertise that is
missing in recent publications. Microbiologists and population
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geneticists will need to work together with bioinformaticians
to accurately design experiments, perform rigorous statistical
tests, and analyze results. With these steps, a clear understanding
of the interactions between our genome and the microbiome
will open new avenues for numerous medical therapies. This
research will truly bring us into the age of personalized
medicine, with the ability to modify our microbiome in light
of our genome, to prevent disease and maintain human
health.
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