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Ectomycorrhizal (ECM) symbioses are major components of boreal and temperate forest
ecosystems (Smith and Read, 2008; Clemmensen et al., 2013). Although well studied for several
decades, very little is known about the molecular players involved in the establishment and
maintenance of ECM symbioses (Garcia et al., 2015). Identifying the symbiont secretome is a
promising way to dissect the fungal contribution to the mutualistic molecular dialog. Pellegrin et al.
(2015) compared for the first time the predicted secretome of 49 soil-borne ECM, saprotrophic and
pathogenic fungi, revealing shared and specific features between species, and providing a better
understanding of the ECM lifestyle evolution.

FUNGAL SECRETOMES SUPPORT THE SAPROTROPHIC—ECM

FUNGI CONTINUUM

Comparative genomic studies revealed that ECM fungi evolved multiple times from saprotrophic
ancestors, and have partially lost their wood decay capabilities. This can be explained by the
convergent loss of multiple lignin oxidoreductases, class II peroxidases and plant cell wall
degradation enzymes (Martin et al., 2008, 2010; Tedersoo et al., 2010; Floudas et al., 2012; Wolfe
et al., 2012; Kohler et al., 2015). The comparison of fungal secretome released by Pellegrin et al.
(2015) supports this view.

Although features are shared between all studied fungi including the secreted lipases, proteases,
and Small-Secreted Proteins (SSPs), ECM-specific features that support the transition toward a
mutualistic lifestyle were highlighted. A reduction of Carbohydrate-Active enZymes (CAZymes)
compared to other species was observed in ECM fungi, confirming a reduction of plant cell wall
degradation capabilities.

Various SSPs called effectors are well known in pathogenic fungi to manipulate plant defenses
to facilitate infection (Stergiopoulos and de Wit, 2009). Some SSPs with a similar activity were also
described by functional analyses in mutualistic plant–fungal association (Kloppholz et al., 2011;
Plett et al., 2011; Tsuzuki et al., 2016). More recently, a comparative in silico analysis revealed that
many SSPs were shared by both arbuscular mycorrhizal fungi Rhizophagus clarus and Rhizophagus
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irregularis, supporting the role of secreted peptides in
mycorrhizal associations (Sędzielewska Toro and Brachmann,
2016). Remarkably, Pellegrin et al. (2015) predicted more SSPs
in the secretome of ECM than saprotrophic fungi, including
many that are ECM-specific (17 clusters). This observation
suggests that those specific SSPs could be a signature of the ECM
symbiosis lifestyle and could play a predominant role in the
molecular dialog with the host plants.

CAN ECM-SPECIFIC SSPs BE INVOLVED

IN EARLY STEPS OF MYCORRHIZAL

SYMBIOSIS FORMATION?

Mining the genome of the first ECM fungus, Laccaria bicolor,
allowed the prediction of SSPs potentially involved in free-living
conditions, mycorrhiza formation, or both (Martin et al., 2008).
Later, SSPs have been identified in the secretome of the ECM
fungi L. bicolor and Hebeloma cylindrosporum cultured without
their host (Vincent et al., 2012; Doré et al., 2015). Pellegrin et al.
(2015) predicted SSPs that are shared by ECM, saprotrophic, and
pathogenic fungi, suggesting conserved mechanisms in hyphal
development, fruiting body formation, or interaction with other
soil organisms and the environment. Similarly, the prediction
of ECM-specific SSPs suggests that they would be part of a
molecular dialog with host plants, leading to the formation
of functional ECM. So far, only fungal flavonoids and plant
phytohormones were described in the early stages of ECM
symbiosis establishment, but lipochitooligosaccharides, chitin
oligomers and even SSPs could be hypothesized as part of this
initial cross-talk too (Garcia et al., 2015).

Another function that could be attributed to fungal SSPs
would be their involvement in host-specificity. Although a high
degree of specificity is rare in ECM forests, some fungi can be
found exclusively associated with few tree species (Churchland
and Grayston, 2014). Thus, secreted molecules including SSPs
could facilitate the establishment of such specific interactions.
It is also possible to speculate that signaling molecules found
in plant root exudates might trigger the expression of fungal
SSPs, allowing the initiation of a specific interaction. The
identification of thousands of SSPs from various ECM fungi
combined with the development of transgenic transformation
technologies will provide new insights on the molecular cues and
signals participating in the establishment and function of ECM
associations.

TOWARD THE VALIDATION OF

ECM-SPECIFIC SMALL-SECRETED

PROTEINS

To this date, only one SSP named Mycorrhizal-induced Small-
Secreted Protein 7 (MiSSP7) from L. bicolor was described
in a symbiotic context. Pellegrin et al. (2015) and previous
large-scale studies highlighted many other SSPs with unknown
function (Martin et al., 2008; Doré et al., 2015; Kohler et al.,
2015).

The generation of transgenic fungi affected in the expression
of MiSSP7 was a turning point in the functional validation of
ECM-specific SSPs. The down-regulation of MiSSP7 resulted in
the inhibition of the Hartig net formation in poplar by interfering
with jasmonic acid immune response (Plett et al., 2011, 2014).
Excitingly, some other ECM fungi studied by Pellegrin et al.
(2015) are also transformable including H. cylindrosporum
(Combier et al., 2003) and Pisolithus tinctorius (Rodríguez-
Tovar et al., 2005). This technology opens the way to further
systematic validations using RNA interference, CRISPR/Cas9,
or over-expression approaches in both free-living and symbiotic
conditions (Garcia et al., 2014; Xu et al., 2015). It is worth noting
that P. tinctorius might become a particularly interesting model
to understand the role of ECM-specific SSPs. Among the 17
ECM-specific SSP clusters, P. tinctorius SSPs were found in 12
of them.

Other approaches based on the host plant can also be
envisioned to understand the role of ECM-specific SSPs including
the application of purified SSPs on plant roots, or the ectopic
expression of SSPs in genetically transformable hosts like poplar.
Finally, identifying plant genes targeted by fungal SSPs using for
example yeast-two-hybrid experiments will be ultimately needed
to unravel the function of those small molecules in symbiotic
associations.
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