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Neutralizing antibody (NAb) responses are promising immune effectors for control

of human immunodeficiency virus (HIV) infection. Protective activity and mechanisms

of immunodeficiency virus-specific NAbs have been increasingly scrutinized in

animals infected with simian immunodeficiency virus (SIV), chimeric simian/human

immunodeficiency virus (SHIV) and related viruses. Studies on such models have

unraveled a previously underscored protective potential against in vivo immunodeficiency

virus replication. Pre-challenge NAb titers feasibly provide sterile protection from

SIV/SHIV infection by purging the earliest onset of viral replication and likely modulate

innate immune cell responses. Sufficient sub-sterile NAb titers after established infection

also confer dose-dependent reduction of viremia, and in certain earlier time frames

augment adaptive immune cell responses and even provide rebound-free viral control.

Here, we provide an overview of the obtained patterns of SIV/SHIV protection and viral

control by various types of NAb passive immunizations and discuss how these notions

may be extrapolated to NAb-based clinical control of HIV infection.

Keywords: HIV, SIV, neutralizing antibodies, passive immunization, CD8+ T cells

INTRODUCTION

Viral infections overcoming the host sentinel hurdles of cell-intrinsic and innate immune responses
are met with well-concerted adaptive immune responses. Adaptive immune responses comprise
cellular and humoral effectors, and the central players for each are CD8+ cytotoxic T lymphocytes
(CTLs) targeting infected cells and neutralizing antibodies (NAbs) targeting viral envelopes (Envs).
Normally, a combinational response of these two effectors, initiated and assisted by professional
antigen-presenting cells (APCs) such as dendritic cells (DCs) and CD4+ helper T lymphocytes
(Th), effectively kill and neutralize infected cells and cell-free virus, respectively, resulting in
elimination of virus from the infected host.

Unfitting such an optimal course, CCR5+ (R5) memory CD4+ T cell-tropic (R5-tropic) human
immunodeficiency virus (HIV) and pathogenic simian immunodeficiency virus (SIV) infections
are met with inefficient adaptive immune responses, resulting in persistent viral replication
(Figure 1A). CTL responses play a still incomplete yet central role in primary resolution of viremia
(Goulder and Watkins, 2008), whereas there is a more major impairment in early NAb responses
in typical HIV/SIV infections (Tomaras et al., 2008). Delayed HIV/SIV-specific NAb induction
also accompanies very distinct traits, contrasting other viral infections; firstly, germinal center
formation itself is delayed for more than 1 month (Levesque et al., 2009; Peruchon et al., 2009).
Approximately past 3 months post-infection NAbs appear, which is severely delayed, and they
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FIGURE 1 | Viremia patterns in HIV/SIV/SHIV-infected animals

receiving interventions including passive NAbs. (A) Course of persistent

viremia in naïve infection. (B) Sterile protection against HIV/SIV/SHIV challenge

by pre-challenge NAbs. Depending on the type of antibody, anti-HIV bNAbs

can provide such protection at modest serum titers. Superacute-phase

(1–10d) NAbs similarly mediate elimination of viral reservoirs. Complete

elimination of virus (dotted lines) may be evaluated by experimental

interventions such as CD8+-cell depletion. (C) Viremia reduction by

subacute-phase post-challenge NAbs. An antibody dose-dependent

attainment of viral load reduction (generally 10–1000-fold) is observed.

Pharmacological decline of NAb titers and subsequent epitope-specific viral

NAb escape results in rebound of viremia. (D) Early passive NAb-mediated

sustained SIV viremia control by augmented virus-specific T-cell responses.

NAb administration near peak viremia provides viral accumulation in DCs and

functional augmentation in CTLs(/Th). Depending on combination of

host/virus, B-cell responses are alternatively augmented. Neutralizing activity is

critical for this modulation. (E) Antiretroviral therapy-based transient

suppression of SIV viremia for comparison with NAb-based viremia

suppression. Early in vivo viral dissemination (proportionate to t1) inversely

correlates with the time to post-therapy cessation viremia rebound (t2).

Judged from the uniform outcome of viral rebound, antiretroviral therapy likely

does not modulate endogenous host immune responses.

repetitively succumb to viral escape (Richman et al., 2003).
Along this course of NAb development, cross-reactivity against
other HIV strains is gradually acquired by NAbs at about

year 1 post-infection (Mikell et al., 2011). Later on, certain rare
patients further proceed to eliciting NAbs showing very extensive
cross-reactivity, which became defined as broadly neutralizing
antibodies (bNAbs) (Burton et al., 1994). These bNAbs can now
be identified and characterized by single-cell B-cell receptor
cloning (Scheid et al., 2009).

NAb absence in early infection conversely suggests
the importance of identifying anti-HIV antibody defense
mechanisms as well as induction strategies. A practical approach
formechanistically analyzingNAb-basedHIV control is antibody
passive immunization. Here, recent progress on antibody passive
immunization experiments in several types of animal AIDS
models will be discussed (Table 1).

STERILE PROTECTION AND VIREMIA
SUPPRESSION BY PASSIVE NAbs

The initial interest in the field of HIV antibodies was whether pre-
challenge NAbs may actually provide sterile protection against
the incoming virus. Early implications had been obtained in
a report on SIV-challenged cynomolgus macaques (Putkonen
et al., 1991), while viral quantitation (and thus evaluation
of protectivity) was relatively suboptimal at that time. Later
work demonstrated NAb sterile protection against CXCR4-
tropic (X4-tropic) HIV in human lymphocyte-reconstituted
immunodeficient mice (Gauduin et al., 1997) and X4-tropic
SHIV (X4-SHIV) challenge in pigtail macaques (Shibata et al.,
1999) and rhesusmacaques (Mascola et al., 1999, 2000; Baba et al.,
2000). Further analysis on X4-SHIVmodels proposed theoretical
requisite NAb titers (Nishimura et al., 2002) and also showed
that the temporal window period permitting NAb-mediated
sterile protection was very stringent (<24 h) (Nishimura et al.,
2003).

Next addressed was the fundamental question on how NAbs
may protect against the more difficult-to-protect CCR5-tropic
(R5-tropic) immunodeficiency viruses which propagate more
dominantly in vivo in the acute phase as transmitted/founder
strains (Keele et al., 2008). An early challenging work (Parren
et al., 2001) showed that, as like against X4-SHIVs, bNAb
b12 with sufficient titers can exert complete protection against
R5-tropic SHIV (R5-SHIV) challenge (Table 1 and Figure 1B).
This concept of R5-tropic virus sterile protection was further
confirmed by several combinations of bNAbs and viral challenge
routes (Veazey et al., 2003; Hessell et al., 2009a,b, 2010).
While it was first speculated that attainment of such sterile
protection-conferring titers was rather difficult, recent studies
have suggested that depending on the choice and potency of
the passive bNAb, sterile protection may well be a feasible goal
(Rudicell et al., 2014; Shingai et al., 2014). Another related new
study has discovered that the biological half-life of the bNAbs
determine the longevity of sterile protection against repeated
SHIV challenges afforded by a single administration (Gautam
et al., 2016). Based on the robust HIV/SIV-blocking efficacy in
vitro as well as theoretically maximal “breadth,” interest had
also been taken in blocking the CD4 entry receptor itself by
antibodies, while recently it was shown that straightforwardly
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blocking the viral Env by bNAbs was more effective (Pegu et al.,
2014).

Alternatively, it was also found that polyclonal neutralizing
IgG existing at viral challenge can confer slower disease onset as
well as enhanced survival in orally R5-SHIV-infected newborn
macaques, suggestive of a lasting protective effect by preexisting
NAb titers (Ng et al., 2010; Jaworski et al., 2013).

Extended from these, recently it was found that even in
established chronic-phase R5-SHIV infection (post-set point),
potent anti-HIV bNAbs at high titers can also provide
viremia suppression (Barouch et al., 2013; Shingai et al.,
2013) (Table 1 and Figure 1C). In such models, plasma bNAb
titers, viral suppression and rebound basically are linked in a
pharmacological manner; i.e., decline in NAb titers results in
viral escape and viremia recrudescence. Furthermore, a recent
report of HIV viremia suppression in stably infected (∼20
days) humanized mice (Klein et al., 2012) (Table 1) showed
that, compared with bNAb monotherapy, tri-mix or penta-
mix administration of bNAbs resulted in a much sharper
decline in viremia as well as delay in viremia rebound; i.e., an
increase in the number of simultaneous Env targeting resulted
in additive and/or synergistic containment of viral replication.
This result also provided a rationale of inducing and/or
administering multiple epitope-specific (b) NAbs for maximal
efficacy. Thus, pre-challenge NAb titers do provide sterile
protection against AIDS virus challenge and viremia suppression
can also be transiently attained by sufficient post-challenge NAb
titers.

INNATE IMMUNE-CELL BOOSTING BY
PASSIVE NAbs

How passive Ab administration may affect endogenous immune
responses has been a long-standing important question. In the
report on R5-SHIV sterile protection by b12 (Parren et al.,
2001), the authors noted that NAbs, at sub-sterilizing titers,
also derived cases of decreased viremia levels later on. Later,
the group showed that the b12 sterile protection occurred in
vivo in an Fc receptor- but not complement-dependent manner
(Hessell et al., 2007), and associated with antibody-dependent
cellular viral inhibition (ADCVI) (Forthal et al., 2001) activity
in vitro. These innate (mainly natural killer) cell-dependent
mechanisms were also explanatory of the above non-sterile
protective effects. Another line of work showed engineered
Fc receptor-binding properties of bNAb VRC01 being related
with extended bioavailability, altered localization (antibody
transcytosis) and improved protection against SHIV challenge
(Ko et al., 2014). Recently, treatment-naïve HIV-infected
patients manifested evidence for selective pressure by antibody-
dependent cellular cytotoxicity (ADCC) even without exogenous
Ab infusion (Chung et al., 2011), suggesting that augmenting
this innate cell-dependent molecular/cellular axis may indeed
be a promising strategy. Indeed, in HIV-1-infected humanized
mice, enhanced binding against activating Fc receptors increased
while its complete abrogation notably decreased bNAb-mediated
viremia suppression (Bournazos et al., 2014), suggesting

that innate cell modulation may also occur in established
infection.

ADAPTIVE IMMUNE-CELL BOOSTING BY
PASSIVE NAbs

Intimately linked with the above is how NAbs may influence
adaptive cellular responses. In our SIV challenge-NAb passive
immunization model, we found that early (day 7) passive
polyclonal NAb infusion in SIVmac239-challenged rhesus
macaques resulted in elevated myeloid DC-associated viral loads
(Yamamoto et al., 2007), temporally followed by elevation of
Gag-specific polyfunctional CD4+ T-cell responses and increased
in vitro viral suppressive activity in CD8+ cells (Yamamoto et al.,
2009) (Table 1 and Figure 1D). Extended from such findings,
in this model we recently identified that these NAb-mediated
CD8+ cells also acquired enhanced suppressive activity against
a panel of immunodominant CTL escape mutants, providing
stringent T cell-based SIV control for up to 2 years without
accumulation of viral CTL escape mutations (Iseda et al.,
2016). This poses a possibility that the total virus-specific CTL
population in NAb-infused animals became resistant against
arousal of SIVs with CTL escape mutations in vivo, contributing
to the prevention of CTL escape mutation accumulation. This
early CTL “functional broadening” in NAb-infused macaques
also may be related with the identified direct DC-mediated
CTL cross-priming activity of the infused NAbs, suggestive
of Ab/APC-dependent epitope spreading. Upon attainment
of this stable SIV control, the originally immunodominant
epitope-specific CTLs became preserved (presumably due to
early CTL broadening) and showed stimuli-specific metabolic
quiescence, as defined by enrichment of a phosphorylated
AMP kinase-low CTL subpopulation which is indicative of
exhaustion-free T-cell qualitative preservation (Blagih et al.,
2015). Thus, NAb-boosted T cell-based primary SIV control
also secondarily results in functional preservation of the most
potent CTLs, which in turn may have further stabilized the viral
control.

The above results collectively well explained SIV control in
the animals, i.e., by passive NAb-mediated improved acute-
phase CD4+/CD8+ T-cell priming. Alternatively, in another
two-dose (days 1 plus 14) polyclonal NAb infusion model,
cases of sterile protection and set-point viremia reduction were
obtained in SIVsmE660-challenged macaques, and this associated
with enhanced endogenous de novo NAb responses (Haigwood
et al., 1996, 2004). These similar phenotypes triggering different
endogenous immune effector responses may stem from the
different properties of the challenge virus strain (i.e., SIVmac239

is highly NAb-resistant and induces NAb responses only rarely
and in the chronic phase). Importantly, this pattern of synergism
between endogenous adaptive immune cells and early short-
termNAb administration has also become well-conceptualized in
murine retrovirus-infectedmice (Gros et al., 2008;Michaud et al.,
2010; Nasser et al., 2010), further emphasizing the importance
of actively modifying T-cell and/or B-cell responses through
coexisting NAbs.
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In the aforementioned chronic-phase SHIV viremia
suppression study (Barouch et al., 2013), bNAb infusion
in macaques similarly provided an increase in CTL viral
suppressive activity. Given that virus-specific CTLs show
considerable functional exhaustion due to antigen load in
chronic infection (Streeck et al., 2008), this post-NAb infusion
increase in viral suppression may reflect a functional recovery,
and hence may also involve viremia decrease itself in the recovery
process.

Another well-designed AIDS model utilizes infant macaques
to evaluate the direct impact of NAbs on impeding pathogenic
progression with a clear-cut disease phenotype. Here, pre-
challenge polyclonal and monoclonal NAbs conferred enhanced
endogenous B-cell responses against oral R5-SHIV challenge
and protection against disease onset (Ng et al., 2010; Jaworski
et al., 2013). This may be a consequence of CD4+ T-cell
protection, or due to some pattern of indirect B-cell modulation,
such as NAb-mediated Env antigenic modulation (Schoofs
et al., 2016). Conversely, late-phase polyclonal NAb infusion
in immunocompromised SIV-infected rapid progressors showed
no protective effect (Binley et al., 2000), suggesting the
importance of intact endogenous immunity for NAb-mediated
viral suppression. Taken together, results collectively show that
NAbs provide a wide spectrum of protective mechanisms in vivo,
particularly those involving Fc receptors (Lambour et al., 2016),
against AIDS virus replication.

COMPARISON BETWEEN PASSIVE NAbs
AND DRUG THERAPY

How passive NAbs, which indeed are soluble effectors, may
be pharmacologically compared for its impact with (combined)
antiretroviral therapy [(c)ART] is another important point. One
work on the effect of acute-phase ART on SIV-infected rhesus
macaques (Kubo et al., 2009) showed that initiation of ART as
early as day 2 (and up to day 28) still does not eliminate in vivo
virus, as demonstrated by rapid rebound of viremia. Another
further systematic analysis on temporal establishment of in vivo
viral reservoir seeding showed that past day 3 post-SIV challenge,
the time until initiation of cART is proportionate to the speed of
viremia rebound after therapy cessation (Whitney et al., 2014)
(Figure 1E). This implicates that the acknowledged notion of
“hit early and hard” for drug therapy (Ho, 1995) also partially
applies to the superacute phase, while attainment of complete
viral eradication by ART is still an independent and extremely
high final hurdle. This potentially may require host dispositions
different from ones associated with elite HIV control such as
possession of protective major histocompatibility complex class
I (MHC-I) alleles, as implicated in the VISCONTI study in which
early cART-treated patients with no viral rebound did not possess
them (Sáez-Cirión et al., 2013).

In stark contrast, a recent important report showed that
superacute-phase (days 1–10) administration of bNAbs (Hessell
et al., 2016) results in an elimination in virus-detectable
tissue compartments throughout the body for 6 months.
Another cutting-edge report (Liu et al., 2016) tracked previously

underscored post-infection viral replication in situ deriving
transcriptomic signatures of antiviral gene up-regulation in
infected foci (Barouch et al., 2016), and its abortion by in vivo
titers of bNAb PGT121 at viral challenge. These two essentially
may highlight a common notion of literally purging the eclipse
phase of initial viral infection/dissemination by NAbs. It remains
to be clarified whether the slightly earlier moment of NAb
infusion derives the protection not obtained by early cART,
or if other effector functions of NAbs unavailable by drugs
mediate the protective effect. Our model of an acute-phase single
NAb infusion resulting in sustained SIV control (Iseda et al.,
2016) is most suggestive for the latter. Implications are also
provided by a report showing that a combined bNAb single
shot at day 10 post-SHIV infection derives protective effects
substituting and comparable to that of a daily ART regimen for
the next 11 days (Bolton et al., 2016). Taken together, NAbs do
appear to exert protective effects unavailable by antiretroviral
therapy.

REQUISITE OF NEUTRALIZING ACTIVITY
IN PASSIVE ANTIBODY-BASED VIRAL
PREVENTION AND CONTROL

Whether direct virus-neutralizing activity is required for
antibody-mediated AIDS virus control is critical. A very
important report showed that for attaining stringent sterile
protection against R5-SHIV challenge, neutralizing activity is
indispensable (Burton et al., 2011). This notion was confirmed
by another group, which showed that regardless of possessing
potent Fc effector functions [ADCC and antibody-dependent
cellular phagocytosis (ADCP) (Pelegrin et al., 2015)], antibody
sterile protection was not obtained by pre-infection non-NAbs
(Dugast et al., 2014) (Table 1). Similarly, in acute-phase infection,
polyclonal non-NAb infusion at day 7 achieved no SIV viremia
control in our model (Nakane et al., 2013). We very recently
compared viral suppressive activity in our aforementioned
polyclonal NAb- and non-NAb-infused rhesus macaques, and
found that CD8+-cell viral suppressive activity is selectively
enhanced in NAb-infused but not in non-NAb-infused animals
(Yamamoto et al., 2016). This means that in addition to the
availability of direct virus neutralization, such property of
antiviral antibodies may also directly affect modulation patterns
of cellular immune responses and further impact disease
prognosis.

PASSIVE NAb IMMUNOTHERAPY IN
HIV-INFECTED HUMANS

Based on recent characterization of various bNAbs, their
application as immunotherapeutic agents has started to
extensively proceed in human trials. Preceding this current
trend, insights had been obtained by one early clinical trial
(Trkola et al., 2005), which showed that earlier administration
of bNAbs against HIV-infected humans resulted in more
delayed viremia rebound in several patients. In addition
to considerations on such endogenous baseline status
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of the patients to be treated, another current interest is
how the previously monitored association of virological
control and (b) NAb pharmacological properties can
be extrapolated from mice and non-human primates to
humans.

In one representative study, single administration of a well-
characterized potent CD4 binding site-specific bNAb VRC01
to HIV-infected patients was reported to exert 1.1–1.8 log10
reduction in viremia (Lynch et al., 2015). This single injection
also derived emergence of VRC01-resistant strains, suggesting
the necessity of either modifying or combining the NAbs to be
infused.

Administration of another extremely potent CD4 binding
site-specific bNAb 3BNC117, at a modest dose (30mg/kg), also
resulted in significant 0.8–2.5 log10 reduction in viremia (Caskey
et al., 2015). 3BNC117 administration in HIV-infected humans
also resulted in suppression of viral rebound during cART
interruption (Scheid et al., 2016), highlighting the feasibility of
and strong selective pressure exerted by this bNAb infusion.
Furthermore, 3BNC117 administration in HIV-infected viremic
individuals resulted in altered endogenous B-cell responses, as
analyzed by changes in viral Env and B-cell receptor phylogenetic
polymorphisms (Schoofs et al., 2016).

In another cohort, administration of an Env variable region
3 (V3)-specific bNAb KD-247 resulted in decreased viremia
in HIV-infected patients, as well as an obtained case of
ongoing viremia control after NAb decline (Matsushita et al.,
2015), showing that a V3-specific bNAb can also mediate
viral suppression. This bNAb further holds promise for host
protection in that it may give synergistic protective effects
with CD4-mimetic chemical compounds (Yoshimura et al.,
2010). This and other types of NAb/chemical compound

synergisms (Yoshimura et al., 2014; Madani et al., 2016)
may become important strategies, particularly in NAb-based
immunotherapies.

Collectively, these reports are now starting to provide a proof-
of-concept for the notions initially obtained in animal AIDS
models of NAb passive immunization.

CONCLUDING REMARKS

NAbs, when present by passive immunization, are being
recognized as capable of playing a central role in sterile protection
against and post-infection control of SIV and SHIV infection.
Future studies aiming for NAb immunotherapy-based HIV
clinical control shall proceed with a pharmacological perspective
on the in vivo spectrum/dosage as well as Fc-mediated effector
functions of the (b) NAbs to be infused. For prophylactic vaccine
induction of HIV-specific NAbs, in addition to the rational design
of vaccine Env antigen, designing attainment of synergism with
concomitantly induced T-cell responses may delineate protective
responses much more potent than what is currently expected.
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