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Native lactic acid bacteria (LAB) are capable of growing during winemaking, thereby
strongly affecting wine quality. The species of LAB present in musts, wines during
malolactic fermentation (MLF), and barrels/filters were investigated in wineries from
the emerging wine region of Queretaro, México using multiplex PCR and culture.
The resistance to wine-like conditions (WLC): ethanol (10, 12, and 13%), SO2 (30
mg·l−1), and low pH (3.5) of native LAB strains was also studied. Five species were
detected within 61 samples obtained: Oenococcus oeni, Lactobacillus plantarum,
Pediococcus parvulus, Lactobacillus hilgardi, and Lactobacillus brevis. Four species
(excepting L. brevis) were found in must; O. oeni and P. parvulus were ubiquitous in
wine and L. plantarum and L. brevis were mainly present at the initial stage of MLF, while
L. hilgardii was mostly detected at the advanced stage. Furthermore, some species
detected in barrel/filter, prove them to be hazardous reservoirs. From 822 LAB isolates,
only 119 resisted WLC with 10% ethanol; the number of strains able to grow in WLC
with 13% ethanol decreased approximately by 50%, O. oeni being the most versatile
species with 65% of resistant isolates, while Lactobacillus spp. and P. parvulus were
the most strongly affected, especially those recovered from barrel/filter, with less than
10% of resistant isolates. This study evidences the presence of local strains able to be
used as starter cultures, and also enabled the assessment of the risks derived from the
presence of spoilage LAB strains resistant to WLC.

Keywords: malolactic fermentation, multiplex PCR, Oenococcus oeni, starter cultures, wine spoilage

INTRODUCTION

The conversion from grape must into wine is a complex process that involves the development
of various microorganisms, including lactic acid bacteria (LAB). However, wine is considered an
unsuitable environment for microbial growth due to its low pH, high concentrations of ethanol
and sulfur dioxide (SO2), and other limiting factors (Spano and Massa, 2006). The LAB capable
of overcoming these conditions mainly belong to Oenococcus, Lactobacillus, Pediococcus, and
Leuconostoc genera (Lonvaud-Funel, 1999).
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In order to have any effect on wine quality, LAB should be
able to not only survive, but also to grow within wine (Renouf
et al., 2008), and the effect produced therein will depend on the
major species present and their ability to overcome the harsh
environment of winemaking (du Toit and Pretorius, 2000). The
specie Oenococcus oeni is known as the main one responsible
for malolactic fermentation (MLF), a process in which L-
malic acid is decarboxylated into L-lactic acid, causing a partial
deacidification, conferring microbial stability, and improving
wine flavor profile (Lerm et al., 2010). However, some other LAB,
such as Pediococcus spp. and some species of Lactobacillus, are
widely associated with wine spoilage, often producing biogenic
amines, off-odors, and other undesirable metabolites (Bartowsky,
2009).

Moreover, LAB can enter wine from vineyard or winery
equipment (Fleet, 1993), and their diversity is influenced by
grape variety and geographic region (Bokulich et al., 2013b).
Therefore, it is advisable to study the autochthonous LAB
of a particular winemaking area in order to detect potential
starter cultures or species that represent risks of wine spoilage
(Pérez-Martín et al., 2014). The use of molecular techniques
to achieve this porpoise is currently preferred; some of them,
such as ARDRA (Rodas et al., 2003), DGGE (Cocolin et al.,
2013), or new generation sequencing (Bokulich et al., 2013a),
display all the diversity of bacteria present in a sample.
Meanwhile, other techniques, such as multiplex PCR described
by Petri et al. (2013), are aimed at those bacteria of particular
interest in winemaking. This particular technique allows the
identification of 13 of the principal LAB associated with
winemaking in a simple PCR assay, facilitating data processing
or subsequent analyses to complete the identification of an
amplicon.

Several studies intending to elucidate the presence,
distribution, and adaptation of wine associated LAB have
already been performed in wineries from regions with an
extensive winemaking tradition, such as Mentrida (Pérez-
Martín et al., 2014), La Rioja (González-Arenzana et al.,
2015), Patagonia (La Hens et al., 2015), and Apulia (Garofalo
et al., 2015). However, this kind of studies are missing in
areas where the development of this industry is recent, like
Queretaro State in Mexico. This region is considered nowadays
the second most important within the Mexican territory.
Located in the central area of the country, the climate is semi
dry and temperate, the soils are deep with either a clayey
loam texture or lightly calcareous. In 2013, above 350 ha of
vineyards were censed and wine production was estimated
in 1.5 millions of liters (Consejo Mexicano Vitivinícola A.C
[CMV], 2014). To date, the main varieties established are
‘Merlot,’ ‘Cabernet Sauvignon,’ ‘Syrah,’ and ‘Tempranillo’
as well as the white varieties ‘Macabeo’ and ‘Chardonnay’
(Asociación de Vitivinicultores de Querétaro [AVQ], 2011).
Wines possess low ethanol contents (from 9 to 12%) and a
total titratable acidity around 7 g/L tartaric acid (De la Cruz-de
Aquino et al., 2012). Wineries usually use commercial yeasts
to guarantee an optimal alcoholic fermentation, but MLF is
almost always carried out spontaneously, which makes it very
unpredictable.

The aim of this research was to elucidate the principal LAB
species present in strategic materials in wineries established
in Queretaro and to determine their resistance to wine-like
conditions (WLC), including high ethanol concentrations and
low pH, in order to assess risks and detect possible starter cultures
within local strains.

MATERIALS AND METHODS

Experimental Site and Sampling
This study was conducted in four wineries named A, B, C,
and D, located in Queretaro State, Mexico. Wineries A, B,
and C have the respective vineyards and are located in the
municipality of Ezequiel Montes, approximately 205 km from
Mexico City. Winery D lacks a vineyard and is located 21 km
from the others, in the municipality of Tequisquiapan. At winery
C commercial cultures of LAB are used to induce MLF after
finishing alcoholic fermentation; at winery B a commercial
inoculum of LAB was used for the first time the year of
the study, and at wineries A and D, MLF is left to occur
spontaneously.

Depending on the availability at the wineries, different types
of samples were collected, their characteristics are described in
Table 1. Must, wine and barrel/filter samples were taken at winery
A; must and wine at winery B; only must at winery C and only
wine at winery D. Each type of sample was collected in triplicate
as follows:

(i) Must: Four mature bunches of grapes from the varieties:
‘Cabernet Sauvignon,’ ‘Tempranillo,’ and ‘Syrah’ at wineries
A and B, and only ‘Macabeo’ at C, were randomly sampled in
triplicates using plastic bags (20 cm × 30 cm). Also, 500 ml
of must were taken from the stemmer of wineries A and B
(one and two batches, respectively). Once they reached the
laboratory, bunches were manually crushed inside their bags,
the musts obtained from grapes and those collected from the
stemmers were transferred to sterile flasks (500 ml) and left
to spontaneously ferment at 25◦C. For 15 days, aliquots of
fermenting must were obtained every 5 days for molecular
and microbial analyses.

(ii) Wine: Samples were taken once the alcoholic fermentation
had ended. At wineries A and D, 100 ml of wine were
sampled from three fermentation tanks, in three stages of
MLF: (a) beginning, (b) intermediate, and (c) advance. At
winery B, only the beginning stage was sampled, before a
commercial strain inoculation. At each winery three types
of wines were collected: two single-variety, one ‘Cabernet
Sauvignon,’ another ‘Tempranillo,’ and the third a blend of
‘Grenache,’ ‘Carignan,’ ‘Syrah,’ and ‘Nebbiolo.’

(iii) Barrel/filter: The inside of a barrel was rinsed with 500 ml of
peptone diluent (0.1%, pH 5), which was swirled five times;
afterward the diluent was recovered in a sterile flask. Three
filters were also individually collected in plastic bags. Once
they reached the laboratory, 100 ml of peptone diluent was
added to each filter and then homogenized in a Stomacher R©

400 (Seward Ltd.) at medium speed for 1 min.
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TABLE 1 | Principal characteristics of the samples collected.

Winery Sample type N1 Sugar content (◦Bx) pH Ethanol (%, v/v) SO2 Total (mg·L−1)

A Must 12 23 3.8 − −

Wine-i 3 5 3.4 12.1 31.5

Wine-m 3 5 3.6 12.1 31.5

Wine-a 3 5 3.7 12.1 31.5

Barrel/filter 4 − − − −

B Must 15 22 3.8 − −

Wine-i 3 5 3.4 11.9 29.8

C Must 9 21 3.7 − −

D Wine-i 3 4 4.1 12.6 33.1

Wine-m 3 4 3.7 12.6 33.1

Wine-a 3 4 3.8 12.6 33.1

1Total number of samples.
Data reported as mean of three replicates per sample analyzed.

LAB Enumeration and Isolation
Must, wine and barrel/filter rinse aliquots (1 mL) were taken for
serial dilutions and plated in three culture media: Man Rogosa
Sharpe (MRS; DIBICO), MRS added to tomato juice (10%, v/v;
Ruiz et al., 2008) or to apple juice (15%, v/v; Solieri et al.,
2010). All media were adjusted to pH 4.8 and supplemented with
natamycin (100 mg·l−1) and sodium azide (50 mg·l−1) to prevent
yeast and acetic acid bacteria growth, respectively (Reguant et al.,
2005). Incubation was carried out at 30◦C for 8 days. As bacterial
population is a non-normal data, the results were statistically
analyzed using the non-parametric Kruskal – Wallis with Dunn’s
post hoc test using the software JMP 9.0.

From culture plates, approximately 5% of the colonies were
isolated and purified. Gram stain and catalase tests were
performed to confirm the isolates belonging to LAB group.
Isolates were preserved in MRS broth with glycerol 20% at−80◦C
until subsequent identification and resistance tests.

Isolates Resistance to Wine-Like
Conditions
The isolates’ ability to grow in the presence of ethanol, SO2,
and low pH (WLC) was assessed through automatic readings
of optical density (OD; every 20 min, for 72 h, at 30◦C)
using a Bioscreen© analyzer (Miranda-Castilleja et al., 2015).
Approximately 5 Log CFU·ml−1 (OD = 0.2) of each LAB
isolate were inoculated in individual wells containing 200 µL of
synthetic medium similar to wine (SW, Carreté et al., 2002) added
to 53 mg·l−1 of potassium metabisulfite (equivalent to 30 mg·l−1

SO2), pH 3.5, and ethanol (10, 12, and 13%). As positive control,
the isolates were also inoculated in the SW medium (pH 4)
without the inhibitors. Detection time (DT), an indirect measure
of the lag phase, was used as a response variable, considering the
strain to be resistant to each condition when its DT value was
lower than the total incubation time (72 h).

Detection of LAB Species in Wineries
The detection of species present in the wineries’ samples (must,
wine, and barrel/filter) and the identification of LAB isolates

capable of growing in WLC were both carried out using a
multiplex PCR (Petri et al., 2013).

DNA Extraction
Must, wine, and barrel/filter rinse aliquots (15 mL) were
centrifuged (5000 × g, 10 min). From a cell pellet, DNA
was extracted using the commercial kit Powersoil (MoBio
Laboratories, Inc.) and the bench bead-top homogenizer
PowerLyzer (MoBio Laboratories, Inc.) at 4500 rpm for 4 min,
following the manufacturer’s instructions.

DNA extraction of LAB isolates was performed as follows: The
strains were grown in 1 ml of MRS broth at 30◦C for 3 days. The
cell pellet obtained through centrifugation (13000× g, 2 min) was
re-suspended in 300 µl of lysis buffer (200 mM Tris–HCl, pH 8.5,
250 mM NaCl, 25 mM EDTA, 0.5% w/v SDS) with powdered glass
(0.2 g). The suspension was shaken in a PowerLyzer (MoBio)
at 4500 rpm for 1 min. After centrifugation at 13000 × g for
5 min, 150 µl of 3 M sodium acetate (pH 5.2) was added to
the supernatant, which was stored at −20◦C for 30 min and
then centrifuged (13 000 × g, 10 min). The supernatant was
transferred to a new tube and nucleic acids were precipitated
with 400 µl of isopropanol and then washed with ethanol (70%).
Finally, the DNA was re-suspended in 25 µl of TE buffer (Soto-
Muñoz et al., 2014).

Multiplex PCR
The multiplex PCR was done using Multiplex Mastermix
(Qiagen) with 1 µL of sample DNA, following the procedure
described by Petri et al. (2013) with some modifications: 95◦C
for 15 min for initial denaturation, six cycles consisting of 30 s at
94◦C, annealing for 3 min beginning at 69◦C with a reduction
of 1◦C each cycle and an elongation step of 1.5 min at 72◦C;
then 25 cycles of 30 s at 94◦C, 3 min at 62◦C, and 1.5 min
at 72◦C, followed by a final extension step of 10 min at 72◦C.
The primers used are listed in Table 2. The PCR products were
analyzed by electrophoresis on 1.8% agarose gels with TBE buffer
(90 V for 45 min). Gels were stained with ethidium bromide
(0.5 µg·ml−1) and visualized with an EDAS 290 digital imaging
system (Kodak). TrackitTM 100 bp (Invitrogen) was used as the
standard molecular weight marker.
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TABLE 2 | Primers used for the identification of lactic acid bacteria (LAB)
by multiplex PCR.

Primer Sequence Target

Primer mixture I

SCAR-OENI-F GGTAGATTAACCCGCGACG O. oeni

SCAR-OENI-R GGAATCGGTAGCATCCTG

SCAR-LBR-F GGAAGATCAAGAATATCGGTG L. brevis

SCAR-LBR-R GCGTCTCTAATTCACTGAGC

SCAR-LPL-F GAAGATTTGCCCATCGGTG L. plantarum

SCAR-LPL-R CGTTTGATGGTAGCGTTGC

SCAR-LEU-F GTGGTCATGGGTCTTAGC Leuconostoc

SCAR-LEU-R GGATCAAGACTAGCCAATGG mesenteroides

SCAR-WPA-F GCTGATGAACCCATACCTC Weissella
paramesenteroides

SCAR-WPA-R GACCTGATTCGCTCGTTG

SCAR-PDA-F GTCTAAACTGGTGGTTAAACG P. damnosus

SCAR-PDA-R ATCGCACCTGGTTCAATGC

SCAR-PPA-F GCATGAATCACTTTTCGCTC P. parvulus

SCAR-PPA-R CAAAGATTGTGACCCAGTTG

Primer mixture II

SCAR-LBU-F CTATCTTTAACCGCATTGCCG L. buchneri

SCAR-LBU-R GACACGCTTCTCATGATTGTC

SCAR-PAC-F ATGATGGACAGACTCCCTG P. acidilactici

SCAR-PAC-R CGAGCTGCGTAGATATGTC

SCAR-LBH-F TTCCTTGGTAATGTGCTTGC L. hilgardii

SCAR-LBH-R AATGGCAATCGCAATGGACG

SCAR-PIN-F CTATCCTTACAATGTGCATCG P. inopinatus

SCAR-PIN-R TGGTGCGTCAGTAAATGTAAG

SCAR-LCU-F CCAGATCCATCAGAAGATACG L. curvatus

SCAR-LCU-R GCTAACTTACCACTAACGACC

SCAR-PPE-F GGGAACGGTTTTAGTTTTATACG P. pentosaceus

SCAR-PPE-R CTAAGAGCGGTGATGATAAG

RESULTS

Enumeration and Isolation of LAB in
Different Samples and Stages of MLF
A total of 822 isolates were recovered from the counting plates
of the 61 samples collected at the four wineries (Table 3). Three
culture media were used in this study to improve LAB recovery;
however, contrary to previous reports (Solieri et al., 2010;
Schillinger and Holzapfel, 2012), the population, the morphology
of the colonies observed and species identified were very similar
in the different media (Supplementary Figure S1). Therefore, in
Figure 1, the LAB populations are shown, independent of culture
media, involving six replicates of each sample analyzed (two per
culture media). The LAB counts in musts from wineries A and
B were rather low (101–103 CFU·ml−1) and no bacterial growth
(<10 CFU·ml−1) was observed in several samples (5/12 in A and
6/15 in B). By contrast, higher counts (104–105 CFU·ml−1) were
observed in musts from winery C, being this winery the one with
the highest populations observed. In wine, the LAB populations
ranged from 102 CFU·ml−1 at the beginning of the process,
to 109 CFU·ml−1 at the second stage (climax of MLF), with
intermediate values at the advanced stage. Finally, in barrel/filters

TABLE 3 | Number of samples handled and isolates obtained from the four
wineries located in Queretaro, Mexico.

Winery Sample type Total samples Total isolates

A Must 12 23

Wine 9 213

Barrel/filter 4 156

B Must 15 96

Wine 3 89

C Must 9 103

D Wine 9 142

Total 61 822

rinse, the LAB population was around 108 CFU·ml−1 being
superior comparing to must but similar to the populations
observed in wine.

Detection and Distribution of LAB
Species through the Wineries
Five species (O. oeni, Pediococcus parvulus, Lactobacillus
plantarum, Lactobacillus hilgardii, and Lactobacillus brevis) were
detected among the wineries’ samples (Table 4). In most of the
cases, the detection by culture confirmed what was observed
with the molecular detection (culture-independent). However,
some discrepancies between detection approaches were observed:
L. brevis in wines (from A and B) and barrel/filter was only
detected by culture. Conversely, the presence of O. oeni at winery
C was only determined by direct multiplex PCR.

In several must samples (18/33), the LAB species investigated
were not detected, and in the remaining ones, L. plantarum was
widely detected at wineries A (58%) and C (100%). O. oeni was
found in 67% of the samples from B and 56% from C. Finally,
P. parvulus was only found in 8% of the samples from winery B
and L. hilgardii only in 22% from C.

In wine samples, the five species were detected and O. oeni and
P. parvulus were found in all samples. L. plantarum was detected
in several samples from three wineries (22–56%). L. hilgardii was
only found at winery A (22%), whereas, L. brevis was present
at wineries A and B at 11 and 33%, respectively. Additionally,
L. brevis and L. plantarum were mainly detected at the first stage
of MLF, and L. hilgardii predominated at the advanced stage.
Finally, in barrel/filter samples, all the five species were found.
Winery A showed the greatest diversity of LAB species and at
winery B the presence of O. oeni was remarkable.

LAB Resistance to Increasing Ethanol
Concentrations with SO2 and pH of 3.5
As expected, the number of resistant isolates falls as ethanol
concentration increases (Figure 2). In some samples (must
from C; wine from A and D), the diversity of resistant species
remained, with fewer individual ones capable of growing with
13% ethanol, evidencing strain variation. Moreover, the number
of resistant O. oeni isolates remained unchanged, even with
higher ethanol concentrations, which is particularly notable at
winery B. Conversely, P. parvulus was strongly affected by
higher ethanol levels, particularly those isolates obtained from
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TABLE 4 | Percentage of incidence of LAB species detected by culture (C) and molecular assay (M) in samples of must, wine in three stages of
malolactic fermentation (MLF): Initial (i), middle (m), and advanced (a) and barrel/filter; obtained in wineries A, B, C, and D.

Winery Sample type N1 O. oeni P. parvulus L. plantarum L. hilgardii L. brevis

M C2 M C M C M C M C

A Must 12 0 0 0 0 58 17 0 0 0 0

Wine-i 3 100 100 100 100 67 67 0 0 0 33

Wine-m 3 100 100 100 100 0 0 0 0 0 0

Wine-a 3 100 100 100 100 0 0 67 67 0 0

Barrel/filter 4 100 100 100 100 0 50 100 100 0 50

B Must 15 0 67 0 8 0 0 0 0 0 0

Wine-i 3 100 100 100 100 0 100 0 0 0 100

C Must 9 56 0 0 0 100 100 0 22 0 0

D Wine-i 3 100 0 100 100 100 0 0 0 0 0

Wine-m 3 100 33 100 100 67 0 0 0 0 0

Wine-a 3 100 33 100 100 0 0 0 0 0 0

1N: number of samples analyzed.
2Culture-dependent approach: identifying isolates resistant to wine-like conditions (WLC) with 10% ethanol.

FIGURE 1 | Population of lactic acid bacteria in samples of must, barrel/filter and wine throughout three stages of malolactic fermentation: I
beginning, M intermediate, A advanced; obtained from wineries (A–D). Kruskal–Wallis analysis and Dunn’s post hoc test among wineries, MFL stages and
sample type. The box indicates the 25th and 75th percentiles, line across the box shows the median value and the whiskers caps represent the maximum and
minimum values.

barrel/filter, of which around 90% did not resist 13% ethanol.
The Lactobacillus spp. in this study were also affected by 13%
ethanol, with only 37% of the isolates being resistant to this
condition. Finally, the high number of isolates (10 of 19) from
must from winery C resistant to 13% ethanol is remarkable, given
their origin.

DISCUSSION

LAB Populations
The low LAB populations found in musts are consistent with
the fact that they are minor constituents of grape microbiota,
the populations usually reported being around 102 CFU·g−1

(Barata et al., 2012). Meanwhile, higher populations found in
must from winery C could be associated with grape variety;
must from winery C was obtained from a white variety
(‘Macabeo’), while musts from wineries A and B derived from
red varieties (‘Tempranillo,’ ‘Syrah,’ and ‘Cabernet Sauvignon’).

Higher numbers of LAB obtained from white varieties compared
to red ones were also reported by Bae et al. (2006), which has been
attributed to the fact that some phenolic compounds only present
in red varieties can produce a toxic effect on bacteria (Reguant
et al., 2000). The fluctuating populations of LAB observed in
wine at different stages of MLF coincides with Saguir et al. (2009)
and González-Arenzana et al. (2012), who reported that lower
counts of LAB at the beginning of MLF increased throughout the
process, reaching up to 8 Log CFU·ml−1.

Furthermore, barrel/filter samples were considered together
in this study since the barrel contained the wine in which the
filters were used, and only a few samples of each material could be
collected. In particular, the LAB population found in barrels (103

CFU·ml−1) was similar to that reported by González-Arenzana
et al. (2013). Barrels are recognized as microbial reservoirs in
cellars, since they offer shelter where microorganisms can remain.
However, this material also represents a stressful environment,
which could explain the low populations encountered therein
(Renouf et al., 2007; Bokulich et al., 2013a).
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FIGURE 2 | Proportion of isolates of lactic acid bacteria (LAB) species capable of growing in a synthetic medium similar to wine (SW) with SO2 30 mg
l−1 pH 3.5 and different ethanol concentrations (% v/v, x-axis), from different wineries (horizontal boxes, A–D) and types of samples taken (vertical
boxes). The number of resistant isolates is indicated above the column.

Detection and Distribution of LAB
Species
The multiplex PCR assay was efficient in detecting the principal
LAB species in the winery samples (Figure 3), however, it was
hampered when low LAB populations were present, as in musts
and wines at the first stage of MLF. The detection limit reported
for this technique is 104 CFU·ml−1 (Petri et al., 2013), and
the samples were concentrated 15 times, therefore, populations
under 103 were not detectable in this study. This detection limit
could also explain the lack of recognition of L. hilgardii, L.
plantarum, and L. brevis through this approach in some samples.
Another known bias that could explain the lack of detection
of certain species is preferential amplification, in which the
abundance of certain species, such as O. oeni and P. parvulus,
may have caused reagents to exhaust without amplifying scarce
species (Sint et al., 2012).

The species mainly detected in musts (L. plantarum, P.
parvulus, and L. hilgardii) are widely associated with wine grapes
(Renouf et al., 2005; Bae et al., 2006; Barata et al., 2012). The

last two are known to produce off-odors (Costello and Henschke,
2002) and biogenic amines in wine (Lonvaud-Funel, 2001), while
L. plantarum has been recently regarded as starter culture for
MLF (Lerm et al., 2011; Bravo-Ferrada et al., 2013), and has even
shown additional advantages due to its capacity of degradation
of biogenic amines (Capozzi et al., 2012) as well as better
performance in co-inoculation with Saccharomyces cerevisiae
(Berbegal et al., 2016). Moreover, the detection of O. oeni in musts
is remarkable, given its importance in MLF and since this species
is rarely found therein (Bae et al., 2006; Mesas et al., 2011).

In wine, the fact that O. oeni and P. parvulus were
frequently found together suggests some type of association
between them, as has been previously posited by Renouf
et al. (2007) and Pérez-Martín et al. (2014). Nevertheless,
it is important to point out that P. parvulus is the species
most often involved in ropiness, a major bacterial alteration
in wines (Dols-Lafargue et al., 2008). Moreover, the detection
of L. brevis and L. plantarum only at the beginning of MLF
shows a decrease in their populations at advanced stages,
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FIGURE 3 | Identification of LAB isolates (lines 2–5) and detection of species present in wine-related (6–9) samples using multiplex PCR. The origin of
the sample is indicated above as follows: The first letter corresponds to the type of sample: G, must; F, banel/filter; W, wine. The second letter corresponds to the
winery: A, B, C, or D. The first line corresponds to the molecular weight marker TrackitTM 100 bp (Invitrogen). Moreover, the species corresponding to that molecular
weight is specified (Petri et al., 2013).

probably due to a low resistance to the modified medium.
Finally, the fact that L. hilgardii was only found at the advanced
stages of MLF suggests a contamination of the wine, probably
through the barrels where this bacterium was also found;
this emphasizes the need to implement effective disinfection
methods during the winemaking process (González-Arenzana
et al., 2013).

Even if the presence of some of these species can lead to
wine spoilage, this problem has not been perceived in the
local wines; only certain delays or inhibitions of the MLF are
apparent. The spoilage features of these bacteria are usually
strain-dependent, and for spoilage phenotypes to be produced,
not only is the presence of the responsible bacteria required,
but also the conducive environmental conditions, for instance,
several stress conditions (ethanol, SO2, and low pH) promote the
production of β-glucan responsible for ropiness by P. parvulus
(Dols-Lafargue et al., 2008).

Resistance to Wine-Like Conditions
In this study, LAB species were challenged with scarce nutrients
combined with ethanol, SO2, and low pH, simulating a more
realistic representation of what LAB face during winemaking.
One of the principal changes in this process is ethanol
concentration, which affects each LAB species differently, and the
resistance of each isolate could also vary, depending on its origin
(Arroyo-López et al., 2010).

The species showing more tolerant isolates to WLC was
O. oeni, which is expected, since this species stands out for its
ability to overcome the harsh conditions of wine, enabling it to

dominate this media and establish itself in the cellars (Lonvaud-
Funel, 1999). Conversely, higher ethanol levels significantly
affected P. parvulus, an undesirable, but apparently prevalent
species at these wineries. This high susceptibility could be due to
the more stressful conditions found in barrels, which could lead
to more sensitive strains.

Although L. plantarum has been previously reported with
better adaptability to wine than O. oeni (G-Alegría et al., 2004),
the isolates evaluated in this study did not show a remarkable
performance. Even if Lactobacillus species are considered highly
resistant to ethanol (Shane Gold et al., 1992), wines elaborated in
Queretaro seldom reach more than 12% ethanol (De la Cruz-de
Aquino et al., 2012), which could explain the lack of adaptation
of local strains to 13% ethanol. Moreover, the fact that a high
number of isolates (10 of 19) belonging to Lactobacillus spp. and
obtained from winery C resisted 13% ethanol was surprising,
since they were isolated from must, where they had not been
previously exposed to alcohol. Winery C is the oldest one sampled
(about 30 years old), which could have enabled some strains to
adapt to both environments, vineyard and cellar. This allowed the
identification of resistant strains that could eventually be used as
starter cultures, as well as the detection of more hazardous species
(and materials) with regard to spoilage.

CONCLUSION

This is the first report related to the diversity of wine associated
LAB in Mexico, and particularly in the wine region of Queretaro.
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Throughout the four wineries studied, five species (O. oeni, P.
parvulus, L. plantarum, L. hilgardii, and L. brevis) were detected
in must, wine, and barrel/filter samples. The species O. oeni and
L. plantarum were detected at all the wineries and P. parvulus
was only absent at winery C. L. plantarum and L. brevis were
mainly found in musts and at the initial stages of MLF in wines,
while L. hilgardii was principally detected at the end of MLF.
The highest ethanol concentration tested (13%) combined with
30 mg·l−1 of SO2 and pH of 3.5 diminished the number of
resistant isolates by around half, regardless of materials origin,
with O. oeni being the species with a greater proportion of
resistant isolates. In contrast, P. parvulus and Lactobacillus
species obtained from barrel/filters were the most affected by high
concentration of ethanol.
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