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Widespread pollution of terrestrial ecosystems with petroleum hydrocarbons (PHCs)
has generated a need for remediation and, given that many PHCs are biodegradable,
bio- and phyto-remediation are often viable approaches for active and passive
remediation. This review focuses on phytoremediation with particular interest on the
interactions between and use of plant-associated bacteria to restore PHC polluted
sites. Plant-associated bacteria include endophytic, phyllospheric, and rhizospheric
bacteria, and cooperation between these bacteria and their host plants allows for
greater plant survivability and treatment outcomes in contaminated sites. Bacterially
driven PHC bioremediation is attributed to the presence of diverse suites of
metabolic genes for aliphatic and aromatic hydrocarbons, along with a broader
suite of physiological properties including biosurfactant production, biofilm formation,
chemotaxis to hydrocarbons, and flexibility in cell-surface hydrophobicity. In soils
impacted by PHC contamination, microbial bioremediation generally relies on the
addition of high-energy electron acceptors (e.g., oxygen) and fertilization to supply
limiting nutrients (e.g., nitrogen, phosphorous, potassium) in the face of excess PHC
carbon. As an alternative, the addition of plants can greatly improve bioremediation
rates and outcomes as plants provide microbial habitats, improve soil porosity (thereby
increasing mass transfer of substrates and electron acceptors), and exchange limiting
nutrients with their microbial counterparts. In return, plant-associated microorganisms
improve plant growth by reducing soil toxicity through contaminant removal, producing
plant growth promoting metabolites, liberating sequestered plant nutrients from soil,
fixing nitrogen, and more generally establishing the foundations of soil nutrient cycling.
In a practical and applied sense, the collective action of plants and their associated
microorganisms is advantageous for remediation of PHC contaminated soil in terms of
overall cost and success rates for in situ implementation in a diversity of environments.
Mechanistically, there remain biological unknowns that present challenges for applying
bio- and phyto-remediation technologies without having a deep prior understanding
of individual target sites. In this review, evidence from traditional and modern omics
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technologies is discussed to provide a framework for plant–microbe interactions during
PHC remediation. The potential for integrating multiple molecular and computational
techniques to evaluate linkages between microbial communities, plant communities and
ecosystem processes is explored with an eye on improving phytoremediation of PHC
contaminated sites.

Keywords: phytoremediation, bioremediation, remediation, petroleum hydrocarbons, plant–bacteria assisted
remediation

INTRODUCTION

Petroleum hydrocarbons (PHCs) are organic compounds
comprised of carbon and hydrogen atoms arranged in
varying structural configurations with physical and chemical
characteristics that vary over orders of magnitude; they are
broadly classified in two categories namely, gasoline range
organics (GROs) and diesel range organics (DROs). GROs
include mono-aromatic hydrocarbons such as benzene, toluene,
ethylbenzene, and xylenes (BTEX), and short chain alkanes (C6–
C10) with low boiling points (60–170◦C) such as isopentane,
2,3-dimethyl butane, n-butane, and pentane. DROs include
longer chain alkanes (C10–C40) and hydrophobic chemicals
such as polycyclic aromatic hydrocarbons (PAH) (Kamath
et al., 2004). The industrialization of modern societies and
the increasing demand for energy generation to heat our
domestic and working areas, to fuel our transportation networks
as well as to power fabricating processes has resulted in the
extensive exploitation of PHCs, which are the most widespread
class of organic contaminants worldwide (Brassington et al.,
2007).

Prolonged exposure to PHCs can initiate detrimental damages
to the central nervous system in humans and animals, can result
in respiratory system dysfunction, disrupt the endocrine system
and, as a result, considerably increase the probability of lung, skin,
bladder, liver, and kidney cancers (Costello, 1979; Hutcheson
et al., 1996; Boffetta et al., 1997; Singh et al., 2004; Locksley, 2010).
Hence, the need to remediate PHC contaminated environments
is of great importance.

Generally, conventional physical and chemical in situ and
ex situ clean-up technologies for PHC remediation involve
excavation, air sparging, removal and off-site treatment in
biopiles, pump and treat, incineration, slurry- and solid
phase reactors, soil washing, soil vapor extraction, asphalt
batching, thermal desorption, chemical oxidation, hydrolysis and
photolysis (Amatya et al., 2002; Khan et al., 2004; Zhou et al.,
2005; Do et al., 2009). However, experience has demonstrated that
these strategies are expensive, and often only result in incomplete
decomposition of the pollutants of the concern.

Thus, research over the last two decades has focused on
offering remediation schemes that are moving away from the
conventional ones and are mainly based on biological methods
with emphasis to the convergent action of plants and their related
microorganisms to remove and degrade PHCs. However, there
are still numerous aspects about the mechanisms involved that
remain the subject of research and debate among members of the
scientific community.

This review tries to provide one more piece of information
in this complicated puzzle of plant–microbe partnerships with
emphasis on the remediation of PHC contaminated sites
mediated by plant–bacteria associations.

BIOREMEDIATION OF PETROLEUM
HYDROCARBONS

Bioremediation is defined as the use of biologically mediated
processes to detoxify, degrade or transform pollutants to an
innocuous state (Azubuike et al., 2016). Bioremediation is a
useful tool for the treatment of PHC contaminated terrestrial
and marine ecosystems (Atlas, 1995; Atlas and Cerniglia, 1995;
Almeida et al., 2013; Xue et al., 2015; Scoma et al., 2016; Wang
et al., 2016). Accession to PHC substrates while regulating
toxic effects is the first hurdle that must be overcome for a
microorganism to exploit these energy-rich molecules for growth
and energy production. The pivotal parameters that dictate
the degree of PHC “susceptibility” to biodegradation can be
widely classified into three inter-related categories (Figure 1):
(a) microbial properties (genetic complement, gene regulation
and expression, surface hydrophobicity, metabolic diversity
and flexibility, substrate uptake or adherence mechanisms,
tolerance to metals and other toxic xenobiotics, chemotaxis,
biofilm formation); (b) environmental factors (presence of
terminal electron acceptors, nutrient availability, salinity,
pressure, temperature, pH, water availability, and osmotic
stress); and (c) properties of the hydrocarbon substrate
(solubility, concentration, hydrophobicity, volatility, molecular
mass) (Sikkema et al., 1995; Hino et al., 1997; Marquez-
Rocha et al., 2001; Bressler and Gray, 2003; Martinez-Checa
et al., 2007; Bordoloi and Konwar, 2009; Botalova et al.,
2009; Calvo et al., 2009; Banat et al., 2010; Couling et al.,
2010).

Generally, once a bacterial community begins to remove
PHCs from a contaminated environment, bioavailability (here
defined as “the quantity of a contaminant which is freely
available to cross the cellular membrane of an organism from
the surrounding medium”), and bioaccessibility [here defined
as the “quantity of the contaminant which has the potential to
cross an organism’s (cellular) membrane from the environment
it inhabits”], determine the degree and rate at which the
contaminant can be taken up by the microorganism (Semple
et al., 2007; Dandie et al., 2010). Moreover, bioavailability may
be assessed in two complementary ways: (i) by chemical methods
(e.g., selective extraction methods), which determine the available
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FIGURE 1 | Main factors affecting biodegradation of petroleum hydrocarbons (PHCs).

fraction of a well-defined class of contaminants, and (ii) by
biological methods, which expose organisms to contaminated
media (Harmsen, 2007). Although plethora of reports supports
the concept that bioremediation efficiency is normally limited by
PHC bioavailability (Schwartz and Scow, 2001; Wick et al., 2001;
Liste and Alexander, 2002; Shor et al., 2003; Tabak et al., 2003;
Hamdi et al., 2007b), such generalizations should not be applied
to all cases (Huesemann et al., 2004) given the diversity of the
biological world.

In a classical experiment conducted by Rosenberg et al.
(1980), the microbial adhesion to hydrocarbon (MATH) assay
was established as a method to quantify microbial cell surface
hydrophobicity via their attachment to hydrocarbon droplets.
Other quantitative measures of cell hydrophobicity include the
measurement of water contact angles (Reid et al., 1992) and zeta
potentials (Busscher et al., 1995).

Microbial adhesion to hydrophobic surfaces, usually defined
as the process of transferring unbound, suspended cells from the
aqueous phase to an interface (pure or mixed, liquid or solid
hydrocarbons in a water-immiscible phase), is one mechanism
used by microorganisms to counteract the limited bioavailability
of insoluble and poorly soluble PHCs (Bouchez-Naitali et al.,
1999; Hermansson, 1999). The significance of adhesion in the
biodegradation of aliphatic hydrocarbon non-aqueous phase
liquids (NAPLs) has been reported by Volkering et al. (1997);
however, adherence to PHCs does not necessarily correlate with
utilization (Grimaud, 2010).

Depending on the physiology of the organism involved,
microbial adhesion to hydrophobic surfaces may benefit growth
on, and biodegradation of, very poorly water-soluble PHCs
such as n-alkanes and large PAHs dissolved in a non-aqueous
phase (Abbasnezhad et al., 2011). In other cases, the addition
of cationic surfactants such as cetylpyridinium chloride (CPC),
poly-L-lysine and chlorhexidine gluconate (CHX), or long
chain alcohols such as 1-dodecanol and farnesol, may promote
the growth of a hydrophilic bacterium, such as Pseudomonas
fluorescens strain LP6a, at oil–water interfaces (Abbasnezhad
et al., 2008).

Biosurfactants, either microbially derived or plant derived,
can also be involved in hydrocarbon accession by regulating
cell envelope hydrophobicity and, thus, the attachment and
detachment to and from PHC droplets. This can be facilitated
by exposing the hydrophilic or hydrophobic moieties of
cell-bound biosurfactants external to the cell (Rosenberg
et al., 1988). Microorganisms with degradation capabilities
may also alter their cell hydrophobicity during growth on
PHCs (Franzetti et al., 2008a; Tzintzun-Camacho et al.,
2012).

Interestingly, it has been found that the qualitative and
quantitative composition of bacterial outer surfaces are
affected in a dose-dependent manner by biosurfactants such as
rhamnolipids (Zhong et al., 2007; Sotirova et al., 2008), fatty
acids (Chang et al., 2009), and chemical surfactants (Mohanty
and Mukherji, 2012).
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BIOSURFACTANTS, BIOFILMS, AND
CHEMOTAXIS: ROLE IN IMPROVING
BIOREMEDIATION

Bacteria, yeast and filamentous fungi can synthesize a structurally
diverse array of organic compounds with surface activity. These
amphiphilic compounds generally comprise a hydrophilic acid,
peptide cations or anions, mono-, di- or polysaccharides, and
a hydrophobic moiety of unsaturated or saturated hydrocarbon
chains, fatty acids, or lipids (Banat et al., 2010). Surface active
compounds in biological systems can be broadly classified as: (a)
low-molecular-weight compounds called biosurfactants, such as
lipopeptides, glycolipids, and proteins (e.g., glycolipids such as
rhamnolipids, trehalose lipids, sophorolipids, mannosylerythritol
lipids, and lipopeptides such as surfactin and fungicin (Franzetti
et al., 2008a, 2010; Cameotra and Singh, 2009; Nguyen and
Sabatini, 2011; Banat et al., 2014; Dobler et al., 2016; Santos
et al., 2016); and (b) bioemulsifiers, high-molecular-weight
polymers of lipopolysaccharides, polysaccharides, proteins or
lipoproteins (e.g., such as the lipopolysaccharide emulsan
and the polysaccharide and protein complex alasan) (Neu,
1996; Uzoigwe et al., 2015). Biosurfactants reduce surface and
interfacial tensions, while bioemulsifiers stabilize oil-in-water
emulsions and have less capacity to lower surface tension than
biosurfactants (Smyth et al., 2010a,b).

Microbial surfactants can promote bacterial growth on PHCs
by increasing the surface area between oil and water through
emulsification, and by increasing pseudosolubility through
partitioning into micelles (Volkering et al., 1997). In certain
cases, this results in an increase in contaminant bioavailability to
degrading microorganisms. Recent reviews provide paradigms of
successful biosurfactant applications in bioremediation processes
(Mulligan, 2009; Pacwa-Plociniczak et al., 2011; Lawniczak
et al., 2013). For example, production of lipopeptides by
Bacillus circulans (Das et al., 2008), as well as lipopeptides and
protein-starch-lipids by two strains of Pseudomonas aeruginosa
(Bordoloi and Konwar, 2009) have been shown to enhance PAH
biodegradation.

Relatively recently, a comparative study between Triton X-100
and the commercial rhamnolipid JBR-515 (Jeneil Biosurfactant
Company, USA), was conducted to explore the factors affecting
the process of surfactant enhanced biodegradation of model
NAPLs by a naphthalene degrader, Burkholderia multivorans
(NG1). Briefly, Triton X-100 enhanced bioavailability through
emulsification and supported direct interfacial uptake, while
the rhamnolipid mixture JBR-515 did not substantially emulsify
hydrocarbons, enhancing bioavailability instead through micellar
solubilization (Mohanty and Mukherji, 2013).

In P. aeruginosa, it has been observed that the uptake
of rhamolipid-coated hexadecane droplets occurred through
a mechanism very similar to pinocytosis (Cameotra and
Singh, 2009); the latter can be tentatively defined here as
“internalization of biosurfactant layered hydrocarbon droplet.”
Depending on the physiology of the organism with respect
to its preferred hydrocarbon accession mode (direct contact
with sparingly soluble hydrocarbons, direct attachment to

insoluble hydrocarbon droplets, micellization of hydrocarbons
with biosurfactants), the presence of biologically derived and
synthetic surfactants may inhibit biodegradation. Micelle cores
can trap organic contaminants, creating a hydrophilic barrier
between “hydrophobic microorganisms” and organic molecules,
the result of which is the potential substrate becoming less
available (Colores et al., 2000). Crucially, some microorganisms
can emulsify hydrocarbons even in the absence of cell growth or
uptake of hydrocarbons. That suggests that emulsification may
be associated with the surface properties of the cells, because of
attachment to the oil–water interface by general hydrophobic
interactions rather than specific recognition of the substrate.
Therefore, microbial cells may behave as fine solid particles at
interfaces. Having knowledge of that, prompt the hypothesis
that intact, stationary-phase microorganisms, referred previously
as “hydrophobic” can stabilize oil–water emulsions by adhering
to the oil–water interface a property related to cell surface
hydrophobicity.

In mixed microbial communities, in situ production of
microbial- or plant-derived biosurfactants, or exogenously
added (bio)surfactants, may serve as a preferred substrate for
a normally hydrocarbonoclastic species, limiting remediation
outcomes (Franzetti et al., 2008b). Endogenous and exogenous
biosurfactants may also prove toxic to some organisms by
disrupting membrane permeability, interfering with chemotaxis-
driven motility, and disrupting or limiting biofilm formation.

Biofilms, bacterial communities surrounded by self-produced
polymeric matrices reversibly attached to an inert or a biotic
surface (Costerton et al., 1995), are an adaptive mechanism
for microorganisms to better cope with harsh physical and
chemical conditions, to facilitate catabolite exchange, to increase
horizontal gene transfer, and to regulate the redox state of
their environment (Gorbushina and Broughton, 2009; Shemesh
et al., 2010). Biofilm matrices may consist of extracellular
polysaccharides (EPSs), proteins and DNA (Sutherland, 2001;
Branda et al., 2005; Rinaudi and Gonzalez, 2009), with
EPS affecting the porosity, density, water content, charge,
hydrophobicity, and mechanical stability of biofilms (Flemming
and Wingender, 2010). Biofilms may also enhance PHC
bioremediation processes by increasing pollutant availability
(Wick et al., 2002; Johnsen and Karlson, 2004). The secretion
of polymers is often correlated with establishment of the
biofilm growth mode; thus, in case that secretion of polymers
by microorganisms is followed by formation of biofilms
on the surface of insoluble hydrocarbons, renders those
microorganisms especially well-suited for the treatment of
recalcitrant compounds because of their high microbial biomass
within biofilm compared to the cells grown in dispersed culture
along with their ability to immobilize compounds by biosorption.
Moreover, the biofilm lifestyle facilitates degradation processes
by maintaining optimal conditions of pH, localized solute
concentrations and redox potential in the vicinity of the cells
(Singh et al., 2006).

In addition to the production of biosurfactants and
biofilm formation, chemotaxis, the targeted movement of
microorganisms in response to chemical gradients with the aim
of finding ideal conditions for growth and survival (Eisenbach
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and Caplan, 1998; Wadhams and Armitage, 2004; Baker et al.,
2006a,b; Paul et al., 2006; Rao et al., 2008; Hazelbauer and Lai,
2010; Krell et al., 2011), has been shown to be important for
microbial exploitation of PHCs in soil and water (Marx and
Aitken, 2000; Pandey and Jain, 2002; Parales and Haddock, 2004;
Ford and Harvey, 2007; Strobel et al., 2011). For example, the
capability of bacteria to sense and swim toward n-hexadecane
(Nisenbaum et al., 2013), gas oil (D’Ippolito et al., 2011), as well
as various monocyclic and PAHs and their nitro-, amino-, or
chloro-substituted relatives has been demonstrated to stimulate
degradation of the corresponding PHCs (Grimm and Harwood,
1997; Parales et al., 2000; Samanta and Jain, 2000; Pandey
et al., 2002; Lanfranconi et al., 2003; Law and Aitken, 2003;
Ortega-Calvo et al., 2003; Vardar et al., 2005; Cunliffe et al., 2006;
Gordillo et al., 2007; Iwaki et al., 2007; Peng et al., 2008; Bisht
et al., 2010; Tremaroli et al., 2010; Fernandez-Luqueno et al.,
2011), presumably by allowing the microorganism to balance
access to substrate and substrate toxicity (Olson et al., 2004;
Jeong et al., 2010).

In fact, the chemotactic behavior of bacteria can be either
toward (positive chemotaxis) or away (negative) from the
chemical gradient. Thus, chemotaxis presumably acts like a
balance mechanism that helps the bacteria to perform in an ideal
way if it increases bioavailability of pollutants whilst, at the same
time protects them in case of toxicity. For example, this balance
may explain why the naphthalene degrading Pseudomonas putida
PpG7 was repelled by vapor-phase naphthalene at steady state
gaseous concentrations that were significantly lower than the
aqueous concentrations that resulted in positive chemotaxis
(Hanzel et al., 2010).

In some cases, the chemotaxis mechanisms for PHC degrading
microorganisms are well-characterized, and it has been observed
that, in some cases, PHC catabolic genes are co-located with
chemotaxis genes on plasmids (Grimm and Harwood, 1999). It
has been shown in bacteria of the genus Pseudomonas that the
chemotactic response is mediated by the McpT chemoreceptor
encoded by the pGRT1 megaplasmid. Two alleles of mcpT are
borne on this plasmid and inactivation of either one results
in a loss of the chemotactic phenotype, while cloning of mcpT
into a plasmid complemented not only the mcpT mutants, but
also made it possible to transfer chemotactic response to other
Pseudomonas strains for high PAH concentrations, indicating
that chemotaxis toward toxic PAHs is gene-dose dependent
(Lacal et al., 2011). Overall, increased expression of motility and
chemotaxis genes suggest that microbial communities are able to
ramp up metabolic pathways that will allow for direct contact
with hydrocarbon compounds (Smith et al., 2013).

REMEDIATION STRATEGIES

Historically, both ex situ and in situ bioremediation approaches
have been used for the restoration of PHC-polluted environments
(Stroud et al., 2007). However, in situ approaches have
become more prevalent as costs compared to ex situ are
generally lower with fewer disruptions to the natural landscape
(Romantschuk et al., 2000; Jorgensen, 2007). The different

approaches used for assessment of the ecological sustainability
of in situ bioremediation processes have been thoroughly
reviewed (Pandey et al., 2009), with natural attenuation
(Smets and Pritchard, 2003; Scow and Hicks, 2005) and
biostimulation/bioaugmentation being discussed below.

NATURAL ATTENUATION

A growing body of studies, including modeling and field
experimentation provide evidence that natural attenuation is
a promising remediation option for soils, estuarine sediments
and groundwater contaminated by PHCs (Khan and Husain,
2003; Suarez and Rifai, 2004; Verginelli and Baciocchi, 2013).
In the same context, several other reports have underlined the
significant role of subsurface natural attenuation processes in
bioremediation (Pasteris et al., 2002; Devaull, 2007; Lundegard
et al., 2008; Abreu et al., 2009). Natural attenuation has been
shown as an effective bioremediation option for a chronically
diesel-oil-polluted site over a long period of time under
unfavorably cold conditions (Margesin and Schinner, 2001).

The recovery of the Gulf of Mexico after the Deepwater
Horizon blowout testifies to the fact that in situ bioremediation
based on natural attenuation can be successful after large scale
spills. Indeed, quick adaptation of the native microflora of the
deep sea ecosystem to oil contamination resulted in dominance
of bacteria of the order Oceanospirillales in the γ-Proteobacteria,
a group which includes known psychrophilic hydrocarbon
degraders and microorganisms from hydrocarbon-dominated
environments (Hazen et al., 2010).

BIOSTIMULATION, BIOAUGMENTATION,
AND ENDOPHYTES

The principle behind biostimulation as a method to increase
PHC degradation relies on the establishment of a propitious
environment for hydrocarbonclastic bacterial communities
through the addition of nutrients (e.g., nitrogen and phosphorus,
horse manure, poultry litter, domestic sewage, rice straw biochar,
crop residues), and other supplementary components such as
biosurfactants and electron acceptors [e.g., O2, chelated Fe (III),
nitrates, sulfate] (Gallego et al., 2001; Molina-Barahona et al.,
2004; Coles et al., 2009; Lai et al., 2009; Qin et al., 2013; Zhao
et al., 2015; Ladino-Orjuela et al., 2016). The adjuvant role of
these factors is related either to the metabolic activity of the
naturally occurring degrading bacteria or to the bioavailability
of PHCs. Among these biostimulants, addition of nutrients has
been demonstrated to improve the degradation potential of
native microbial communities (Thomassin-Lacroix et al., 2002;
Delille et al., 2004; Garcia-Blanco et al., 2007). Studies at both
laboratory and field scales have revealed enhanced degradation
of PHCs (diesel oil, pyrene, phenanthrene) based on the addition
of biosolids, inorganic fertilizers (rich in N and P) and organic
fertilizers (Braddock et al., 1995; Carmichael and Pfaender, 1997;
Margesin et al., 2003; Xu and Obbard, 2003; Sarkar et al.,
2005).
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Moreover, it has been observed that the higher the initial PHC
contamination, the more marked was the effect of fertilization on
PHC removal (Margesin et al., 2007). Similar results have been
observed in aquatic environments, however, caution is required
given that high nutrient levels can be the causative agent of
ecological impairments such as eutrophication (Nikolopoulou
and Kalogerakis, 2009).

Approximately, 1–5% N by weight of oil with a ratio of
N:P between 5 and 10:1 is applicable for oil spill remediation
(Swannell et al., 1996). Furthermore, based on a theoretical
calculation the conversion of 1 g of hydrocarbon to cell materials
requires the utilization of 150 mg of nitrogen and 30 mg of
phosphorus (Rosenberg and Ron, 1996).

A number of comparative studies have reported different
C:N:P ratios as the most suitable prior to the commencement of
in situ bioremediation. In this sense, it has been proposed that
optimal C:N:P mole-ratios to enhance hydrocarbon removal in
soil are at the levels of 100:9:2, 100:10:1, 100:10:5, or 250:10:3
(Zawierucha and Malina, 2011).

Given that most energetically favorable terminal electron
acceptor is O2, it is assumed that adequate aeration through
mechanical tillage, forced aeration and addition of alternative
oxygen sources, such as oxygen-releasing compounds (ORCs),
or agents such as potassium permanganate (KMnO4), hydrogen
peroxide (H2O2), or ozone (O3) should stimulate microbial
activity and enhance aerobic biodegradation rates (Brown et al.,
2003; Saito and Magara, 2003; Goi et al., 2006; Menendez-Vega
et al., 2007; Tsai and Kao, 2009).

Furthermore, the rate of hydrocarbon removal has also
been stimulated by generating optimal conditions for other
physical factors such as temperature (Horel and Schiewer, 2009)
and moisture (Zawierucha and Malina, 2011). Recently, the
application of non-conventional biostimulation methods has
been reported. For example, incorporating modified Fenton’s
reagent as a pre-treatment in combination with inorganic
fertilizers has improved the bioremediation of diesel polluted soil
(Andrea Silva-Castro et al., 2013).

Several authors have investigated the impacts of in situ
biostimulation treatments on bacterial diversity aiming to
understand the relationships between the dominance, physiology
and function of specific genera able to degrade contaminants
of concern (Iwamoto et al., 2000; Evans et al., 2004). These
observations suggest that identifying the key players that drive
community structure is a prerequisite to comprehend, model,
forecast, monitor, and control biostimulation processes (Hazen,
2010).

Another variant of bioremediation, bioaugmentation,
involves the introduction in adequate numbers of bacterial
populations with the necessary catabolic potential to mediate
PHC degradation (Vogel, 1996; Paliwal et al., 2012). Therefore,
selection and addition of (a) a pre-adapted bacterial strain, (b)
a pre-adapted consortium, (c) genetically engineered bacteria,
or (d) catabolic genes packaged in a vector to be transferred by
conjugation into indigenous microorganisms, is of paramount
importance for any bioaugmentation process (El Fantroussi
and Agathos, 2005; Singer et al., 2005; Thompson et al.,
2005). When considering bioaugmentation, it is important to

consult local regulations and decide if: (1) a single strain or a
known mixed microbial consortium can be introduced, (2) an
autochthonous, defined as an indigenous bacterial consortium
previously enriched from the polluted soil and cultivated
with hydrocarbons as the carbon source can be re-inoculated
or (3) an allochthonous, defined as a foreign consortium
previously drawn from another PHCs polluted site, can be
used (Ueno et al., 2007). In fact, the bioremediation of soils
freshly contaminated with petroleum constituents could benefit
from the addition of biota primed for PHCs biodegradation
(Greenwood et al., 2009). Interestingly, based on the use of
selected native strains, bioaugmentation has been shown to
accelerate the bioremediation of soils co-contaminated with
diesel oil and various heavy metals (Alisi et al., 2009). A study
conducted to evaluate the potential of indigenous and exogenous
microorganisms for bioremediation of clayey and silty soils
polluted with diesel oil revealed that a native consortium was the
best option for remediating the silty soil, while a combination
of native and exogenous consortia was more effective for
remediating the clayey soil (Moliterni et al., 2012). Most recently,
the introduction of an exogenous PHCs-degrading consortium
consisting of Rhodococcus equi, Enterobacter sp., Acinetobacter
calcoaceticus, Comamonas sp., and Pseudomonas alcaligenes,
increased the production of high erucic acid rapeseed (Brassica
napus) biomass in soils treated with diesel oil ranging from
6,000 to 24,000 mg kg−1 dry soil (Graj et al., 2013). Despite the
satisfactory nature of these experiments, the Achilles’ heel of
traditional bioaugmentation remains if foreign bacteria are able
to establish stable communities in competitive environments. In
more detail, the exogenous introduction (bioaugmentation) of
efficient PHCs degraders is actually a rational re-arrangement
of the microbial richness aiming to the dominance of bacterial
group(s) with specific catabolic traits necessary for the clean-up.

Thus, the diverse natural life forms that live in communities
within the biotope inoculated with an exogenous inoculum,
represents a major obstacle in the successful remediation
performance of such an inoculum. Overviewing the literature,
there is a consensus that the decline in population size of active
exogenously inoculated bacteria is attributed to various factors
of which competition with autochthonous bacteria for nutrients
and electron acceptors seems to be paramount. Therefore, the
long term efficacy of such inoculum requisites a successful initial
establishment (Goldstein et al., 1985; van Veen et al., 1997;
Bouchez et al., 2000; El Fantroussi and Agathos, 2005; Thompson
et al., 2005).

Numerous studies have concluded that bioaugmentation
through isolation and reintroduction of hydrocarbon degrading
bacteria from a contaminated site is more effective than in situ
biostimulation and natural attenuation when applied to sites
contaminated with various PHCs (Bento et al., 2005; Smith et al.,
2005; Liu et al., 2008; Couto et al., 2010).

However, it is often found that biostimulation with a
commercial fertilizer is more effective than bioaugmentation
(Demque et al., 1997), or that fertilizer effects of foreign
inoculants are more important than the inoculants themselves.

While it may be possible to adjust the makeup of a microbial
community, as was done with bioaugmentation of a bench
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scale biobarrier (Daghio et al., 2015) and nutrient addition to a
diesel-contaminated boreal forest soil (Kauppi et al., 2011), PHC
removal efficiencies may not be increased, although outcomes are
site specific (Yergeau et al., 2009).

Bioaugmentation with endophytic bacteria with
biodegradative capabilities may have benefits compared to
conventional bioaugmentation with free-living bacteria, as
endophytes may have greater potential to find a suitable niche in
an established community due to their association with a plant
host. Further benefits can be achieved if the endophyte transfers
metabolic genes for biodegradation to native endophytes
(Taghavi et al., 2005).

For example, in situ bioaugmentation by P. putida W619
decreased trichloroethylene evapotranspiration up to 90% under
field conditions (Weyens et al., 2009a). This result was achieved
after the establishment and enrichment of P. putida W619-TCE
as a poplar root endophyte followed by further horizontal gene
transfer of TCE metabolic activity to members of the poplar’s
endogenous endophytic community (Weyens et al., 2009b).

For more information about the different techniques
developed for bioaugmenting environmental sites (Figure 2),
with emphasis on PHC spills, the reader is referred to the reviews
of Gentry et al. (2004), Hosokawa et al. (2009), and Tyagi et al.
(2011).

In addition, both bioaugmentation and biostimulation appear
to be effective for enhancing PHC biodegradation in soil
and, in some cases, the simultaneous application of these
techniques results in additional improvement (Hamdi et al.,
2007a; Mrozik and Piotrowska-Seget, 2010; Xu and Lu,
2010; Sun et al., 2012; Taccari et al., 2012). For example,
it has been demonstrated that the highest pyrene removal
(84%) was obtained through a combined bioaugmentation-
biostimulation process, followed by bioaugmentation (57%),

biostimulation (50%), and control (37%) processes (Ghaly et al.,
2013).

Overall, site conditions, composition of the indigenous
microbial community, and the type, quantity and toxicity of the
pollutant present demand a case by case approach to deal with
contamination challenges.

GENES AND ENZYMES PARTICIPATING
IN AEROBIC DEGRADATION OF
HYDROCARBONS

In addition to promoting bioavailability (e.g., by addition
or production of biosurfactants), and stimulating microbial
activity (e.g., by biostimulation or bioaugmentation), PHC
bioremediation can be further optimized by involving
assiduously characterized bacterial strains carrying the
necessary metabolic pathways for the complete degradation
(mineralization) of components in petroleum mixtures.

In general, even though the biodegradation of PHCs can
occur under anaerobic conditions, the majority of them are
more efficiently metabolized under aerobic conditions. Figure 3
illustrates the basic principle of aerobic catabolism of PHCs.
PHC biodegradability tends to decrease in the following order:
n-alkanes > branched-chain alkanes > branched alkenes > low-
molecular-weight n-alkyl aromatics > monoaromatics > cyclic
alkanes > PAHs > asphaltenes (Atlas, 1981; Van Hamme et al.,
2003; Tyagi et al., 2011). Despite the chemical stability of alkane
molecules, in the presence of O2 they can be activated by
oxygenases and completely oxidized to carbon dioxide and water.

The expression of genes involved in alkane degradation is
strictly controlled (Wang and Shao, 2013), and microorganisms
have multiple alkane degradation systems that target alkanes of

FIGURE 2 | Possible strategies for the bioremediation of PHC contaminated sites.
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FIGURE 3 | Aerobic catabolism of PHCs by microorganisms.

different chain lengths (Table 1). Specific regulation mechanisms
ensure that the genes involved in alkane degradation are
expressed only under certain conditions, in the presence of the
appropriate alkanes when other preferred substrates are not
available (Rojo, 2009).

Generally, alkane-degradation by bacteria begins with an
oxidative attack at the terminal methyl group with the formation
of a fatty alcohol, aldehyde, and fatty acid. The carboxylic acid
can then be combined with CoA and, via ß-oxidation, yield
acetyl-CoA that enters the tricarboxylic acid (TCA) cycle. For
short-chain length (C1–C4) n-alkanes, methane monooxygenases
(MMO) are the first enzymes involved in the process. The MMO
enzyme family consists of two distinct forms: a soluble di-
iron methane monooxygenase (sMMO) and a membrane-bound
copper-containing methane monooxygenase (pMMO); the alpha
subunits of these enzymes are encoded by mmoX and pmoA
genes, respectively. Notably, sMMO performs the co-oxidation of
saturated, unsaturated, linear, branched and cyclic hydrocarbons,
whereas pMMO has a much narrower substrate range, being

TABLE 1 | Overview of the genes and enzymes involved in alkanes
degradation listed in this review.

Gene/enzyme Microorganisms Reference

sMMO Methylosinus trichosporium OB3b Baik et al., 2003

sMMO Methylococcus capsulatus (Bath) Baik et al., 2003

pMMO Methylococcus capsulatus (Bath) Lieberman et al., 2003

alkB1 Pseudomonas aeruginosa PAO1 Marin et al., 2003

alkB2 Pseudomonas aeruginosa PAO1 Marin et al., 2003

alkB1 Pseudomonas aeruginosa RR1 Marin et al., 2003

alkB2 Pseudomonas aeruginosa RR1 Marin et al., 2003

alkB1 Alcanivorax borkumensis AP1 van Beilen et al., 2004

alkB2 Alcanivorax borkumensis AP1 van Beilen et al., 2004

P450-1 Alcanivorax borkumensis SK2 Schneiker et al., 2006

P450-2 Alcanivorax borkumensis SK2 Schneiker et al., 2006

P450-3 Alcanivorax borkumensis SK2 Schneiker et al., 2006

alkB1 Alcanivorax hongdengensis A-11-3 Wang and Shao, 2012

alkB2 Alcanivorax hongdengensis A-11-3 Wang and Shao, 2012

p450-1 Alcanivorax hongdengensis A-11-3 Wang and Shao, 2012

p450-2 Alcanivorax hongdengensis A-11-3 Wang and Shao, 2012

p450-3 Alcanivorax hongdengensis A-11-3 Wang and Shao, 2012

AlkMa Acinetobacter sp. M-1 Tani et al., 2001

AlkMb Acinetobacter sp. M-1 Tani et al., 2001

almA Alcanivorax dieselolei B5 Wang and Shao, 2014

AlmA Acinetobacter strain DSM 17874 Throne-Holst et al., 2007

LadA Geobacillus thermodenitrificans NG80-2 Feng et al., 2007

sMMO Gordonia sp. TY-5 Kotani et al., 2003

sBMO Pseudomonas butanovora Sluis et al., 2002

CYP153 Dietzia sp. Strain DQ12-45-1b Liang et al., 2016

alkB Pseudomonas putida GPo1 van Beilen et al., 2001

AlkB Gordonia strain SoCg Lo Piccolo et al., 2011

CYP153 Acinetobacter sp. EB104 Maier et al., 2001

P450 Alcanivorax dieselolei B-5 Liu et al., 2011

P450 Rhodococcus erythropolis strain PR4 Sekine et al., 2006

mostly active against alkanes and alkenes with lengths up to
five carbons (Berthe-Corti and Bruns, 2001 ; Steinkamp et al.,
2001; Baik et al., 2003; Lieberman et al., 2003; Hua et al., 2011;
Jiang et al., 2011). Gaseous alkanes are metabolized by strains
expressing propane or butane monooxygenases (BMOs) that are
related to pMMO or sMMO, respectively. For example, Gordonia
sp. TY-5 has been reported to be able to use propane as the
sole carbon source, but no other gaseous alkanes. A complete
operon encoding for PmA, which is similar to the α subunit
of sMMO, an NADH-dependent reductase and a regulatory
protein, was cloned and sequenced from this strain. Upon
deletion of one of the subunits, the ability of the organism to
grow on propane was nullified, corroborating its role in propane
oxidation (Kotani et al., 2003). The hydroxylase subunits of
propane monooxygenase show relatively high sequence similarity
with butane monooxygenase (sBMO) isolated from Pseudomonas
butanovora, an organism which oxidizes butane to 1-butanol.
This BMO has been cloned and is similar to sMMO: the
hydroxylase subunits α and ß, and the regulatory protein B show
more than 60%, 50% amino acid sequence identity, respectively,
to the corresponding subunits of sMMOs (Sluis et al., 2002).
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The differential regulation of multiple alkane hydroxylases has
been described in P. aeruginosa RR1 and in P. aeruginosa PAO1.
These strains contain the alkane hydroxylases AlkB1 (which
oxidizes C16–C24 n-alkanes) and AlkB2 (which oxidizes C12–
C20 n-alkanes). When C10–C22 alkanes are present, both genes
are expressed but the expression of alkB1 is double that of alkB2.
Furthermore, alkB2 is preferentially induced at the beginning
of the exponential phase, and alkB1 is preferentially induced
during the late exponential phase, with expression of both genes
decreasing during the stationary phase (Marin et al., 2003).

A more complex system has been described in Alcanivorax
borkumensis, an organism with two alkane hydroxylases (AlkB1,
active on C5–C12 n-alkanes and AklB2, active on C8–C16
n-alkanes) and three cytochrome P450s involved in alkane
oxidation (P450-1, P450-2, and P450-3) (van Beilen et al., 2004;
Schneiker et al., 2006). The expression of alkB1 and alkB2 genes
is induced when C10–C16 alkanes are provided and decreases
when the cells enter the stationary phase (van Beilen et al.,
2004; Sabirova et al., 2006; Schneiker et al., 2006). An AlkS-
like activator seems to be involved in the activation of alkB1
in response to the presence of alkanes. Higher levels of AlkS
have been detected when hexadecane was provided instead
of pyruvate, and the alkB1 promoter in A. borkumensis has
an AlkS-binding site immediately upstream (van Beilen et al.,
2004; Sabirova et al., 2006). A regulator of the AraC family is
located close to P450-1, however, its role in the regulation of
the expression of P450-1 still has to be investigated (Schneiker
et al., 2006). It was recently suggested that a potential AraC
family regulator (CypR) is involved in CYP153 gene activation,
a gene that encodes an alkane hydroxylase that belongs to
the cytochrome P450 superfamily (Funhoff et al., 2006) in the
Gram-positive bacterium Dietzia sp. strain DQ12-45-1b (Liang
et al., 2016). As in A. borkumensis, Alcanivorax hongdengensis
degrades alkanes by using alkB1, alkB2, p450-1, p450-2, and
p450-3. In A. hongdengensis a gene that encodes for a protein
homologous to TetR family regulators is located downstream
of alkB1. Furthermore, the presence of a regulator of the GntR
family has been observed upstream of alkB2 but its role in
the regulation of the degradation pathways is still not known
(Wang and Shao, 2012). Acinetobacter sp. M-1 has two alkane
hydroxylases, AlkMa and AlkMb. AlkMa is induced by AlkRa in
the presence of >C22 n-alkanes, and the alkMb gene is induced
by AlkRb when C16–C22 n-alkanes are provided (Tani et al.,
2001).

Other important mechanisms regulating alkane metabolism
are product repression and catabolite repression control (Rojo,
2009). For example, expression of BMO in P. butanovora is
repressed by propionate, a downstream metabolite of propane
oxidation (Doughty et al., 2006). Moreover, propionate acts as a
repressor of alkane degradation in P. butanovora by competitive
inhibition for the BMO catalytic site (Doughty et al., 2007).
It has been shown that expression of BMO-encoding genes is
activated by the putative sigma (54)-transcriptional regulator
BmoR. This peptide recognizes alcohols and aldehydes produced
during alkane degradation (Kurth et al., 2008).

In microorganisms that are versatile with respect to PHC
metabolism can be repressed in the presence of other carbon

sources that are used as preferred substrates via catabolite
repression (Rojo, 2010). As an example, the most thoroughly
characterized alkane degradation pathway, encoded by the OCT
plasmid carried by P. putida GPo1 (van Beilen et al., 2001), will
be described. In this system, the alkBFGHJKL operon encodes the
enzymes necessary for converting alkanes into acetyl-coenzyme
A (CoA), while alkST encodes a rubredoxin reductase (AlkT) and
the positive regulator for the alkBFGHJKL operon (AlkS). These
two operons are located end to end, separated by 9.7 kb of DNA,
within which lies alkN, a gene coding for a methyl accepting
transducer protein that may be involved in alkane chemotaxis.
When alkanes are provided, the transcriptional regulator AlkS
activates alkST gene expression by using the PalkS2 promoter
(Canosa et al., 2000). Increased AlkS levels activate expression
of alkBFGHJKL via the PalkB promoter (Canosa et al., 1999;
Panke et al., 1999). However, when the cells are growing in a rich
medium, the activation of both PalkB and PalkS2 is negatively
affected even if alkanes are provided (Yuste et al., 1998; Staijen
et al., 1999; Canosa et al., 2000). In a rich medium the global
regulatory protein Crc (catabolite repression control) inhibits
translation of alkS mRNA (Moreno et al., 2007). It was suggested
that Crc and the protein Hfq form a stable complex with RNA
resulting in the inhibition of translation initiation (Moreno et al.,
2015). It has been demonstrated that in P. putida, Crc also
limits the translation of mRNAs coding for enzymes involved in
the first steps of alkane degradation (Hernandez-Arranz et al.,
2013). Another regulation system involves the cytochrome o
ubiquinol oxidase (Cyo), a component of the electron transport
chain (Dinamarca et al., 2002). The expression of cyo depends
on the oxygen concentration and the presence of the carbon
source, with Cyo levels being correlated with repression of alkane
degradation (Dinamarca et al., 2002, 2003). The role of Cyo
during the degradation of long chain alkanes in Alcanivorax
dieselolei has been reported (Wang and Shao, 2014). In the
presence of long chain alkanes and pristane, Cyo was expressed
resulting in decreased AlmR production. AlmR is a negative
regulatory protein of almA, a gene which encodes for the AlmA
hydroxylase that is active against both long chain and branched
alkanes (Wang and Shao, 2014). Noteworthy, at this point is
that of all the genes mentioned, the function of alkL remains
unknown, although, it is suspected to be involved in transport
(Figure 4).

Another class of hydroxylases, facilitating the terminal
hydroxylation of medium-chain n-alkanes, includes enzymes
related to the soluble cytochrome P450 CYP153 from
Acinetobacter sp. EB104 (Maier et al., 2001). Since that enzyme
was characterized, several researchers have reported that bacteria
belonging to Mycobacterium, Rhodococcus, and Alcanivorax
isolated from various environments such as contaminated soil,
groundwater and surface water, use that enzymatic machinery to
degrade medium-chain alkanes (Kubota et al., 2005; Schneiker
et al., 2006; Sekine et al., 2006; Wang et al., 2010; Liu et al., 2011).
Even though assimilation of alkanes up to C20 is reported for
bacteria containing AlkB family and cytochrome P450 alkane
hydroxylases, there is a scarcity of information on metabolic
pathways and enzyme systems that degrade >C20 alkanes (Rojo,
2009).
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FIGURE 4 | Locations and functions of the alk gene products in the inner and outer membrane of gram negative bacteria (Van Hamme et al., 2003).

Usually, the alkane hydroxylases present in bacteria able
to degrade alkanes longer than C20 are not evolutionary
related to known AlkB and P450-like proteins and include
AlmA (a flavin binding monooxygenase involved in the
degradation of long-chain n-alkanes of C32 and longer)
from Acinetobacter strain DSM 17874 (Throne-Holst et al.,
2007), and LadA from Geobacillus thermodenitrificans NG80-
2 (Feng et al., 2007), able to generate primary alcohols from
C15 to C36 alkanes. Acinetobacter sp. M-1 (Sakai et al.,
1994), and Acinetobacter baylyi ADP1 (Vaneechoutte et al.,
2006), have been also found to grow with C32 and C36,
respectively.

In addition, long chain n-alkane degrading bacterial
species such as: Marinobacter aquaeolei VT8, Oceanobacter
sp. RED65, Ralstonia spp., Mycobacterium spp., Photorhabdus
sp., Psychrobacter spp., and Nocardia farcinica IFM10152,
has been reported (Wentzel et al., 2007). Lately, a unique
functional AlkB-type alkane hydroxylase system has been
described that allows growth on long-chain liquid and solid
n-alkanes in the Gram-positive Gordonia strain SoCg (Lo
Piccolo et al., 2011). In contrast to alkanes, the general mode
of monoaromatic and PAH biodegradation requires the

presence of bacteria that harbor catabolic genes coding for
dioxygenases. Generally, catabolism of PAHs is triggered by a
dioxygenase reaction that adds hydroxyl groups (OH) to one
ring.

Thereafter, the hydroxylated ring is subjected to ring
fission, producing a substituted PAH with one ring less
than the parent molecule. Subsequent oxygenase reactions
are utilized to ultimately mineralize the PAH (Olson et al.,
2003). Ring-hydroxylating dioxygenases related to polycyclic
aromatic hydrocarbon oxidation (PAH-RHD), such as those
encoded by the nah, nod, and phn genes in Gram-negative
bacteria, and the evolutionarily correlated nid, nir, and nar
genes in Gram-positive bacteria, catalyze the first step of
the PAH degradation pathway (Larkin et al., 1999; Saito
et al., 2000; Khan et al., 2001). In this step, dioxygenase-
catalyzed oxidation of arenes yields vicinal cis-dihydrodiols
as the early bioproducts of a multicomponent enzyme
system.

Furthermore, these di-hydroxylated intermediates may
then be cleaved by intradiol or extradiol ring-cleaving
dioxygenases through either an ortho-cleavage pathway or
a meta-cleavage pathway, leading to central intermediates such
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as protocatechuates and catechols that are further converted
to TCA cycle intermediates (Peng et al., 2008). The catalytic
component with hydroxylase activity is composed of an alpha
subunit of about 50 kDa and a beta subunit of 20 kDa, which
assemble in a α3ß3 heterohexamer.

Each alpha subunit consists of two domains, the N-terminal
Rieske domain, which contains a [2Fe-2S] cluster, and the
C-terminal catalytic domain, which contains a mononuclear
ferrous ion close to the substrate-binding site. The catalytic
component requires electrons to activate oxygen at each cycle
of hydroxylation of the substrate. Two auxiliary proteins,
a ferredoxin and a flavin-containing oxidoreductase, often
provide the necessary reductant at the expense of NAD(P)H
oxidation (Jouanneau et al., 2011). Genes coding for the
catalytic domain of PAH-RHDs (α-subunit) have been
broadly used as biomarkers of PAH-degrading potential in
various environments, making this subunit a valuable tool for
studying RHD biodiversity (Flocco et al., 2009; Ding et al.,
2010).

Based on amino acid sequence comparisons of the catalytic
oxygenase α subunits, four discernible classes have been
reported. These are: (a) the naphthalene family which
includes Gram-negative bacterial enzymes responsible
for the degradation of naphthalene and phenanthrene;
(b) the benzoate family encompassing enzymes for the
oxidation of aromatic acids; (c) the phthalate class that
includes the diverse mono- and dioxygenases (interestingly
the majority of the members of this family lack the ß
subunits and possess only the reductase component in the
electron transport chain); and (d) the toluene/biphenyl

class that contains enzymes from both Gram-negative
and Gram-positive microbes capable of transforming
toluene, benzene, and chlorobenzenes (Gibson and Parales,
2000).

Historically, the critical point for the analysis of
PAH degradation by aerobic bacteria started with
the discovery, in P. putida strain G7, of naphthalene
catabolic genes (nah) located on the plasmid NAH7
(Simon et al., 1993). After that discovery, work mainly
on Pseudomonas species made evident that naphthalene
biodegradation occurs via the formation of salicylate as an
intermediate.

Upon examination of the diversity of dioxygenases involved
in the degradation of low molecular weight (LMW) and
high molecular weight (HMW) PAH compounds (e.g.,
naphthalene, phenanthrene, anthracene, pyrene, benzo[a]pyrene,
benzo[a]anthracene), it is noticeable that both Gram-negative
genera like Pseudomonas, Ochrobactrum, Polaromonas,
Sphingomonas, Novosphingobium, Acidovorax and Burkholderia,
and Gram-positive genera like Mycobacterium, Gordonia,
Bacillus, Nocardia, and Rhodococcus, are exploiting these
enzymes for the degradation of the aforementioned compounds
(Table 2). Overall, the oxidation of naphthalene follows either
the gentisic acid (Grund et al., 1992), or catechol (ortho
and/or meta) degradation pathways (Eaton and Chapman,
1992) in order to generate compounds for integration in
the TCA cycle, and there is a good body of evidence linking
stimulated microbial PHC biodegradation to the presence of
plant metabolites in the rhizophere as discussed in the next
sections.

TABLE 2 | Overview of the genes and enzymes involved in PAH degradation listed in this review.

Gene/enzyme Microorganisms Reference

nah Mycobacterium sp. strain PYR-1 Khan et al., 2001

nod Rhodococcus sp. strain NCIMB12038 Larkin et al., 1999

phn Nocardioides sp. strain KP7 Saito et al., 2000

nidA Rhodococcus wratislaviensis IFP 2016 Auffret et al., 2009

nah Pseudomonas stutzeri AN10 Bosch et al., 2000

nid Mycobacterium spp. Brezna et al., 2003

2-Carboxybenzaldehyde dehydrogenase Nocardioides sp. strain KP7 Iwabuchi and Harayama, 1997

α-Subunit of the polycyclic aromatic hydrocarbon
ring-hydroxylating dioxygenases (PAH-RHDα)

Pseudomonas, Polaromonas, Sphingomonas, Acidovorax,
Burkholderia, Mycobacterium, Gordonia, Terrabacter,
Nocardioides, and Bacillus

Jurelevicius et al., 2012

narB Rhodococcus sp. NCIMB12038 Kulakov et al., 2000

Gentisate 1,2-dioxygenase Polaromonas naphthalenivorans CJ2 Lee et al., 2011

Catechol 2,3-dioxygenase Burkholderia sp. AA1 Ma and Herson, 2000

β-Ketoadipate and gentisate pathways Polaromonas sp. strain JS666 Mattes et al., 2008

phn Sphingomonas sp. strain LH128 Schuler et al., 2009

Catechol 1,2-dioxygenase and catechol 2,3-dioxygenase Gordonia polyisoprenivorans Silva et al., 2012

Catechol dioxygenases Pseudomonas sp., Ochrobactrum sp., Rhodococcus sp. Singh et al., 2013

phn genes Acidovorax sp. Singleton et al., 2009

nidA, bphA3A4C Novosphingobium sp. PCY, Microbacterium sp. BPW,
Ralstonia sp. BPH, Alcaligenes sp. SSK1B, Achromobacter
sp. SSK4

Wongwongsee et al., 2013

1,2-Dihydroxynaphthalene oxygenase Rhodococcus sp. strain b4 Grund et al., 1992

nah Pseudomonas aeruginosa PAO1 Eaton and Chapman, 1992
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PLANTS AND BACTERIA FOR THE
REMEDIATION OF PETROLEUM
HYDROCARBONS

Phytoremediation, defined as the use of plants and their
associated microorganisms to assimilate, transform, metabolize,
detoxify and degrade various toxic inorganic and organic
compounds (e.g., PHCs, pesticides, dyes, solvents) found in
soil, water, groundwater, and air is generally considered
as an environmentally friendly, cost effective, and socially
accepted remediation approach (Salt et al., 1995, 1998; Alkorta
and Garbisu, 2001; Pilon-Smits, 2005; Sandhu et al., 2007;
Reichenauer and Germida, 2008; , Wenzel, 2009; Prasad et al.,
2010; Kabra et al., 2012). For more information about the
advantages and disadvantages of phytoremediation we refer to
the following reviews (Susarla et al., 2002; Kuiper et al., 2004;
Arthur et al., 2005; Pandey et al., 2009 ; Vangronsveld et al., 2009).

Plant-associated bacteria include endophytic, phyllospheric
and rhizospheric bacteria, and they have a variety of interactions
with plants, ranging from being active pathogens, opportunistic
pathogens, and bacteria that dwell within the plant and merit
some physical protection, to bacteria actively interacting with
the host plant generating mutually beneficial association for
both organisms (Newman and Reynolds, 2004; Weyens et al.,
2009c). The ability of bacteria to degrade PHCs is attributed
to the presence of catabolic genes and enzymes, which allow
them to utilize the complex chemicals found in petroleum
mixtures as vital energy sources (Rojo, 2009; Das and Chandran,
2010). Many bacterial strains have been reported to encompass
the metabolic pathways required for the degradation of the
relevant hydrocarbons. Species of Pseudomonas, Acinetobacter,
Mycobacterium, Haemophilus, Rhodococcus, Paenibacillus, and
Ralstonia belong to the most extensively studied bacteria (Tyagi
et al., 2011). On the other hand, though a substantial number
of hydrocarbons can be metabolized by bacteria, in the absence
of plants this process is not always efficient due to the relatively
low number of these microorganisms in bulk soil. Indeed, in
the rhizosphere 10–1000 times higher microbial activity has
been reported. Hence, the role of plants in the ongoing process
is equally important (Palmroth et al., 2002; Gaskin et al.,
2008).

In another context, PHCs are giving rise as serious threat
not only to soil but also to estuarine sediments (Chapman and
Wang, 2001; Daane et al., 2001). The ecological importance of
these ecosystems, along with their susceptibility to pollutants
such as PHCs (Andrade et al., 2004), have fostered various
research groups to investigate, whether plant–microorganisms
associations may actively contribute to PHC degradation in
estuarine environments. In fact, a number of recent studies have
evaluated the influence of different salt marsh plant–bacteria
associations on PHC fate and concluded that such symbiosis
enhances significantly the degradation pattern via alteration
of the functional diversity of the PHC degrading bacterial
community (Oliveira et al., 2014, 2015).

Phytoremediation encompasses four distinct mechanisms
namely phytostabilization, phytodegradation, phytovol-

atilization, and rhizodegradation (Germida et al., 2002).
Briefly, the term phytostabilization includes immobilization of
the contaminants in soil, either simply by preventing erosion,
leaching, or dispersion, or by transforming them through
precipitation in the rhizosphere to less bioavailable forms. In
an integrated approach phyto- and rhizodegradation can be
approached as a mutually beneficial form of phytoremediation,
where both plants and microorganisms mediate the breakdown
of the contaminants via the use of their enzymatic machinery.
Next phytovolatilization, due to the complete removal of the
pollutant from the site as a gas, without further need for
plant harvesting and disposal, holds promise as an attractive
technology (Pilon-Smits, 2005; Lim et al., 2016).

In addition to the these concepts, a number of studies have
shown that phyllosphere bacteria possess the ability to utilize
gaseous and deposited PHCs (Waight et al., 2007; Yutthammo
et al., 2010; Al-Awadhi et al., 2012; Ali et al., 2012); the latter holds
great potential in air clean-up by opening up the new direction of
air phyllo-remediation, which is actually the exploitation of air
remediation capabilities based on the cooperation between plants
and their associated phyllo-sphere microorganisms (Weyens
et al., 2015).

Despite the fact of continuous exchange with airborne
populations (Whipps et al., 2008), after recruitment phyllospheric
bacteria are able to form real communities, prompting the
hypothesis that they endure specific selection processes (Rastogi
et al., 2012; Vorholt, 2012). The driving forces thought to govern
community structure include plant species, leaf age, season,
geographical location, and various environmental factors (Vokou
et al., 2012; Muller and Ruppel, 2014). Thus, because of the
high variability of phyllospheric community structure, further
research about the bacterial communities hosted by different
plant species in different environments is needed in order
to evaluate their potential contribution to air bioremediation.
Generally, in these very close plant–bacteria interactions, plants
provide nutrients and residency for bacteria, which in exchange
can improve applicability and efficiency of phytoremediation in
case of sites contaminated by PHCs.

In a recent review (Thijs et al., 2016), it has been suggested that
considering meta-organisms in their natural contexts (that is, the
host and its microbiome together), will increase our knowledge of
plant–microbial interactions and therefore facilitate translation
to more effective, and predictable phytoremediation approaches.
In the following sections, selected paradigms will be described to
shed light to the field of PHC degradation via plants, bacteria, and
their intimate interactions.

PLANTS AND PHC REMEDIATION

In order to survive and thrive in PHC contaminated
environments, plants must exhibit: (i) a tolerance to one or more
components of petroleum mixtures, (ii) high competitiveness,
(iii) fast growth, and (iv) the ability to produce and secrete
hydrocarbon degrading enzymes. In this context, plants may
be positively influenced by the presence of bacteria that are
able to: synthesize plant hormones, such as, indole-3-acetic
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acid (IAA), gibberellins (GAs), and cytokinins (CKs); suppress
ethylene production via 1-aminocyclopropane-1-carboxylate
(ACC) deaminase activity; fix nitrogen; mobilize nutrients such
as phosphorus and other minerals important in plant growth and
development (Hardoim et al., 2008; Glick and Stearns, 2011);
and metabolize a broach range of PHCs (Reed and Glick, 2005).

In situ implementation of phytoremediation strategies to
restore contaminated sites has several drawbacks compared to
traditional technologies such as pump and treat of contaminated
groundwater, soil excavation and above-ground treatment. For
example, if a plant has a shallow root zone and slow growth
rates long periods of time may pass before contact with the
target pollutant is made, if it is reached at all. The toxicity of
the pollutants to native or introduced vegetation may result in
inhibition of seed germination, reduced photosynthetic pigment
production, compacted growth of tissues (root, aerial parts),
slackening of nutrient assimilation and disruption of root
architecture (Smith et al., 2006; Meudec et al., 2007; Euliss
et al., 2008). Hence, selection of plants with increased pollutant
tolerance, production of sufficient root and shoot biomass,
suitability for various soil types, effective pollutant uptake
mechanisms, and appropriate metabolic capabilities to degrade
organic pollutants are prerequisites for successful remediation
(Wenzel, 2009).

The initial physiological response of plants to PHCs in soil
includes PHC uptake, translocation, and accumulation in organs
such as roots and shoots. The rates of these processes are generally
related to PHC concentration (Wild et al., 2005; Lu et al., 2010),
lipophilicity, solubility, and volatility. Compound lipophilicity,
expressed as an octanol-water partition coefficient (Kow), gives
some indication about the tendency of a molecule to move
through lipid bilayers, with log Kow values between 0.5 and 3
reflecting compounds with sufficient hydrophobicity to move
through membrane lipid bilayers while exhibiting sufficient water
solubility to dissolve in cellular fluids (Cherian and Oliveira,
2005). Compounds with a log Kow < 0,5 are characterized by
high water-solubility, and plant roots do generally not translocate
them at a rate surpassing passive influx (Cunningham and Berti,
1993), whereas compounds with a log Kow > 3.5 cannot be taken
up and translocated into the plant due to tight sorption onto the
soil and root surfaces (Meng et al., 2011).

After being transported inside the plant, PHCs can be either
sequestered in root tissue, or transported into shoots and leaves,
where they can be stored in vacuoles or volatilized into the
atmosphere (Reichenauer and Germida, 2008).

Increasingly compelling evidence has accumulated about the
use of plants for the remediation of environments polluted
by PHCs (Liste and Alexander, 2000; van der Lelie et al.,
2001; Newman and Reynolds, 2004; Pena-Castro et al., 2006;
Euliss et al., 2008; Gerhardt et al., 2009; Peng et al., 2009;
Zhang et al., 2012). Numerous studies focusing on plant
species suitable for phytoremediation of PHC-contaminated
soils have recognized that among others, Italian ryegrass
(Lolium perenne), sorghum (Sorghum bicolor), maize (Zea
mays), tall fescue (Festuca arundinacea), alfalfa (Medicago sativa
var. Harpe), elephant grass (Pennisetum purpureum), bermuda
grass (Cynodon dactylon), birdsfoot trefoil (Lotus corniculatus

var. Leo), sunflower (Helianthus annuus), southern crabgrass
(Digitaria sanguinalis), red clover (Trifolium pratense), beggar
ticks (Bidens cernua), and sedge species (Cyperus rotundus) may
be effective (Radwan et al., 1995; Wiltse et al., 1998; Chaineau
et al., 2000; Huang et al., 2004; Parrish et al., 2004; Rutherford
et al., 2005; Kaimi et al., 2007; Muratova et al., 2008; Shirdam
et al., 2008; Ayotamuno et al., 2010; Tang et al., 2010; Yousaf
et al., 2010; Hall et al., 2011; Basumatary et al., 2012, 2013). In
general, the positive influence of leguminous plants is attributed
in part to their ability to increase soil nitrogen concentrations
in soils with high C:N ratio, whereas the positive contributions
provided by grasses are correlated with their fibrous root systems,
large root surface and deeper penetration into the soil matrix
(Gaskin et al., 2008; Rezek et al., 2008). Taking into account the
interplay between plants and their associate microorganisms in
phytoremediaton, various research groups have investigated the
role of fertilizers in this process and concluded that both the
choice of, as well as the level of, added fertilizer is linked with
the plant species present on site and the level of contamination
(Cartmill et al., 2014; Jagtap et al., 2014; Ribeiro et al., 2014).
It has been reported that the application of an ornamental
plant (Mirabilis jalapa), characterized by non-trivial tolerance to
petroleum contamination, strongly promoted PHC degradation
when the concentration of PHC in soil was equal to or lower than
10,000 mg kg−1 (Peng et al., 2009).

Planting trees such as willows (Salix spp.) and hybrid poplars
(Populus spp.) have been effective for remediating sites with
contaminated groundwater (Cook et al., 2010) because they are
easy to propagate, exhibit fast and perennial growth, generate
phreatophytic roots that extend to the groundwater table, exhibit
high water uptake rates, possess highly absorptive surface tissues,
and are able to tolerate both a variety of contaminants and
site flooding (Jordahl et al., 1997; Newman and Reynolds, 2004;
Widdowson et al., 2005; Euliss et al., 2008; Barac et al., 2009).

The effects of varying concentrations of PHCs and nutrients
on the spatial and temporal patterns of fine root production
of hybrid poplar (P. deltoides × P. petrowskyana C. V. Griffin)
has been investigated (Gunderson et al., 2008). It was observed
that fine root production increased linearly up to approximately
500 mg kg−1 PHC, and then remained constant, and the
working hypothesis is that the extensive fine root network
may lead to enhanced contaminant degradation because of
stimulated microbial activity due to a strong rhizosphere effect.
A recent review compared the effectiveness of trees and grasses
for remediation of PHCs and concluded that only minor
differences are observed between trees and grasses with respect to
average reduction of PHC concentrations (Cook and Hesterberg,
2013). Phytoremediation is a site-specific remediation method,
explaining why contradictory results regarding the efficiency
of this technology in removing contaminants from soil have
been reported (Joner et al., 2004). Gaining knowledge about
the molecular effects of PHCs on a range of plant species
might contribute to better management of contaminated sites
by providing physiological information to guide plant selection.
In a recent study, aimed at unraveling PHC effects on plants,
the global gene expression of 10-day-old A. thaliana seedlings
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exposed to the water-soluble fraction of a PHC mixture (WSF-
MF380) was evaluated over time using whole genome microarray
analysis. Results showed that the formation of an obstructive film
covering the plant surface triggered gene expression responses
similar to abiotic stresses such as heat, hypoxia, oxidative
and osmotic stresses (Nardeli et al., 2016). Experiments with
seedlings of Amorpha fruticosa exposed to PHC contaminated
soil (≤15 g kg−1), demonstrated that the enzymes glutathione
reductase (GR), superoxide dismutase (SOD) and catalase (CAT),
effectively hampered reactive oxygen species (ROS) accumulation
(Cui et al., 2016). The latter finding suggest the possibility
of using the behavior of the antioxidant defense system and
the growth reaction of seedlings under exposure to various
PHCs concentrations as a valuable criterion for selection of the
appropriate species for phytoremediation sites.

RHIZOSPHERE BACTERIA AND PHC
REMEDIATION

The photoautotrophic nature of plants, together with the fact
that petroleum mixtures are poorly soluble in water means
that for efficient PHC degradation the biocatalytic activities of
rhizospheric microorganisms are essential. Generally, vegetated
soils favor higher microbial numbers and diversity compared to
bulk soil (Smalla et al., 2001; Haichar et al., 2008; Glick, 2010;
Uroz et al., 2010). This effect is due to the release of organic
compounds by plants commonly referred to as “rhizodeposits”;
these compounds can be categorized as exudates, secretions, plant
mucilages, mucigel, and root lysates (Olson et al., 2003) that
are utilized by microorganisms as sources of carbon and energy
(Chaudhry et al., 2005). Research has shown that plants, by
releasing these organic compounds, change the physicochemical
and biological properties of the soil most likely facilitating
the attraction of chemotactic bacteria with desired metabolic
activities (Hartmann et al., 2009). Plants release others organic
compounds including terpenes, flavonoids and some lignin-
derived components with chemical structures similar to those
of PHCs, chemicals which may induce expression of PHC-
degrading genes in rhizospheric microorganisms (Sun et al.,
2010). Once attracted, PHC-degrading rhizosphere bacteria may
ameliorate plant tolerance to PHCs and result in faster soil health
recovery (Escalante-Espinosa et al., 2005; Barrutia et al., 2011).
As an example, an increase of phenolic compounds found in root
exudates has been associated with a higher degree of degradation
of benzo[a]pyrene in the rhizosphere of Phragmites australis
(Toyama et al., 2011).

More recently it has been demonstrated that PHC
mineralization patterns by rhizosphere bacteria was substantially
affected by root exudate composition. Specifically, certain
compounds (e.g., acetate, alanine) were found to be associated
with increased mineralization capacity, whilst others (e.g.,
malonate, trehalose, sucrose, glucose, xylose, mannose) resulted
in decreased mineralization (Phillips et al., 2012).

A negative correlation in the degradation of PHCs
(phenanthrene) and the presence of rhizodeposits (e.g.,
fumarate, mannitol, trehalose, sucrose, glucose, xylose, mannose,

and fructose) in the rhizosphere of Lolium multiflorum has been
demonstrated (Thomas and Cébron, 2016). Despite the divergent
nature of these results, a vast body of literature confirms the
beneficial association of bacteria and their host plants in the
remediation PHCs at the level of the rhizosphere (Table 3). Root
exudates may enhance microbial PHC metabolism in a number
of ways: (i) PHC co-metabolism via plant secreted enzymes;
(ii) increasing PHC bioavailability through the production of
LMW carboxylates that may enhance PHC desorption and
compete for soil adsorption sites (An et al., 2010; Gao et al.,
2010), or through production of lipophilic or biosurfactant-like
root exudates which may increase PHC solubility (Read et al.,
2003); (iii) stimulation of microbial biomass and activity through
excretion of labile C and N sources and by increasing nutrient
availability due to the action of plant released enzymes (e.g.,
acid phosphatases) and organic chelators (Rohrbacher and
St-Arnaud, 2016).

ENDOPHYTIC BACTERIA AND PHC
REMEDIATION

Bacteria dwelling the internal tissues of plants (roots, stems,
leaves) overcome some competition for nutrients and space
experienced by rhizosphere bacteria, and are physically protected
from unfavorable environmental conditions (Schulz et al., 2006).

Cultivable endophytic bacteria have been isolated from
various plants species ranging from herbaceous crop plants
such as sugar cane (Loiret et al., 2004), wheat (Larran
et al., 2002), maize (Gutierrez-Zamora and Martınez-Romero,
2001), the metal hyperaccumulating alpine pennycress (Thlaspi
caerulescens) (Lodewyckx et al., 2002), tall fescue (Malinowski
et al., 2000), Arabidopsis seeds (Truyens et al., 2015a,b), different
grass species (Dalton et al., 2004; Thijs et al., 2014b), woody tree
species such as oak and ash (Weyens et al., 2009a), sycamore
(Thijs et al., 2014a), poplar (Porteous Moore et al., 2006; Van der
Lelie et al., 2009), Mimosa pudica (Pandey et al., 2005), pine seeds
(Cankar et al., 2005), and other forest trees (Pirttilä and Frank,
2011).

Endophytic root colonization follows a general model where
initially bacteria move toward the plant roots either passively
via soil water fluxes, or actively via specific induction of flagellar
activity by plant-released compounds. Subsequently, non-specific
adsorption of bacteria to roots occurs, followed by anchoring
that result in firm attachment to the root surface. Specific or
complex interactions between the bacterium and the host plant,
such as the secretion of root exudates, may arise resulting in
changes in bacterial gene expression. Microscopic studies using
gfp-labeled bacterial strains have illustrated this model in poplar
trees (Germaine et al., 2004; Taghavi et al., 2009), and it has been
observed that the phyllosphere may be a source of endophytic
bacteria (Quadt-Hallmann et al., 1997).

In a pioneering study, it was shown that the enrichment of
bacteria with the appropriate catabolic genes in the endophytic
root compartment is correlated with the type and amount of
contaminant and the genotype of the plant (Siciliano et al.,
2001). Since then, a number of reports have confirmed that
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endophytic bacteria, have a better capacity to enhance PHC
phytoremediation than rhizosphere or soil bacteria (Barac et al.,
2004; Doty, 2008; Ryan et al., 2008; Weyens et al., 2010;
Yousaf et al., 2011). This may be due to the fact that some
endophytic bacteria have the potential to mineralize PHCs in
trees, herbaceous plants and grasses (Barac et al., 2004; Phillips
et al., 2008; Afzal et al., 2011). In a field experiment with four
plant species, Achillea millefolium, Solidago canadensis, Trifolium
aureum, and Dactylis glomerata, the presence of bacterial
endophytes with PHC degradation capacity was observed
(Lumactud et al., 2016). With the microbial communities, the
class Actinobacteria was identified as the dominant group in three
of the plant species examined, with Gammaproteobacteria being
more abundant in S. canadensis.

Despite of the selective pressure of PHCs, the plant species
remains the key factor shaping endophytic bacterial community
structures. Ascertaining the specific interaction between plants
and observed microbial phylotypes could generate critical
information for the selection of optimized microbiomes with
desirable host performance traits such as survival, growth,
and fitness (Mueller and Sachs, 2015; Yergeau et al., 2015).
Analysis of the microbiomes of two willow cultivars (Salix
purpurea cv. Fish Creek, and Salix miyabeana cv. SX67)
growing at different PHC concentrations demonstrated that
increased concentrations of PHCs favored the abundance of
root endophytes belonging to the Proteobacteria, particularly the
classes Gammaproteobacteria and Alphaproteobacteria, while
the Betaproteobacteria were predominant in the stems (Tardif
et al., 2016). The Protoebacteria are a diverse group of organisms
that include hydrocarbonoclasts and plant-growth promoting
bacterial (PGPB) species (Bruto et al., 2014). It is not unlikely that
some intrinsice host plant genotype-microbe signaling can favor
the prevalence of these groups (Bulgarelli et al., 2012; Sessitsch
et al., 2012).

Another contribution of endophytic bacteria to the overall
PHC dissipation refers to their plant growth promoting traits,
which facilitate the host’s performance by alleviating the stress

encountered upon exposure to PHCs (Afzal et al., 2014). Genome
sequence analysis of 56 endophytic/symbiotic Proteobacteria has
provided useful insights about the molecular mechanisms that
plant growth promoting endophytes exert on their hosts (Bruto
et al., 2014). For example among the various direct and indirect
mechanisms used by endophytic bacteria to aid their hosts in
overcoming the toxic nature of PHCs, ACC – deaminase activity
holds a pivotal role (Arshad et al., 2007; Afzal et al., 2013; Khan
et al., 2013; Fatima et al., 2015).

With respect to the application of plant growth-promoting
and PHC - degrading endophytes, a number of recent studies
has identified bacterial isolates that may be useful inoculants to
stimulate phytoremediation of PHC contaminated sites (Kukla
et al., 2014; Tara et al., 2014; Zhang et al., 2014; Pawlik and
Piotrowska-Seget, 2015; Balseiro-Romero et al., 2016).

CONCLUSION AND FUTURE
PERSPECTIVES

The use of PHCs has allowed for the development of privileged
modern societies, with the associated cost of contaminated soil,
seawater, freshwater and groundwater ecosystems. Given this, it
is important to continue developing bio- and phyto-remediation
approaches to deal with PHCs that are recalcitrant to metabolism
because of their physico-chemical characteristics. Understanding
plant-associated bacteria (endophytic, phyllospheric, and
rhizospheric) and their varied interactions with plants (ranging
from parasitism to mutualism) allows for an appreciation of
the associations that have evolved between plants and bacteria
to overcome constraints commonly found at contaminated
sites.

The ability of bacteria to degrade PHCs is attributed to the
presence of catabolic genes and enzymes, which allow them
to utilize the complex chemicals found in petroleum mixtures
for carbon and energy, an ability that can be enhanced by the
presence of plants. Similarly, plants can be positively affected,

TABLE 3 | Selected paradigms of successful rhizodegradation of PHCs listed in this review.

Plant species Microorganisms PHC-component Reference

Zea mays Pseudomonas sp. strain UG14Lr, Pseudomonas putida strain MUB1 Phenanthrene/pyrene Chouychai et al., 2009, 2012

Lolium perenne Pantoea sp. strain BTRH79 Diesel oil Afzal et al., 2012

Lotus corniculatus Pantoea sp. strain BTRH79 Diesel oil Yousaf et al., 2010

Medicago sativa Rhizobium meliloti strain ACCC 17519 Various PAHs Teng et al., 2011

Zea mays Gordonia sp. strain S2RP-17 Diesel oil Hong et al., 2011

Lolium multiflorum Acinetobacter sp. Various PAHs Yu et al., 2011

Secale cereale, Medicago sativa Azospirillum brasilense strain SR80 Crude oil Muratova et al., 2010

Lolium multiflorum Rhodococcus sp. strain ITRH43 Diesel oil Andria et al., 2009

Sorghum bicolor Sinorhizobium meliloti strain P221 Phenanthrene Muratova et al., 2009

Hordeum vulgare Mycobacterium sp. strain KMS Pyrene Child et al., 2007a,b

Triticum aestivum Pseudomonas sp. strain GF3 Phenanthrene Sheng and Gong, 2006

Trifolium repens Rhizobium leguminosarum Chrysene Johnson et al., 2004

Hordeum vulgare Pseudomonas fluorescens, Pseudomonas aureofaciens Phenanthrene Anokhina et al., 2004

Lolium multiflorum Pseudmonas putida strain PCL1444 Various PAHs Kuiper et al., 2001

Hordeum vulgare Pseudomonas putida strain KT2440 Various PAHs Child et al., 2007a,b
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directly or indirectly, by the presence of bacteria able to
elicit drastic modifications in the health status of the plant
via the synthesis of plant hormones, suppression of ethylene
production, and the mobilization of otherwise unavailable
nutrients.

While laboratory and field studies have indicated that bio-
and phyto-remediation can be good treatment strategies for
PHC polluted environments, more information is required
to build accurate models for predicting treatment outcomes.
Metagenomic, metatranscriptomic, metaproteomic, and
metabolomic analyses of complex communities are allowing
for a deeper understanding of how microbial communities
interact with each other, the environment and the organisms
around them (Villas-Boas and Bruheim, 2007; Bell et al.,
2014; Kaul et al., 2016). It is easy to envision implementing
metagenomic tools in the field of PHC remediation in order
to: pre-assess the biodegradative capacity of an environment,
monitor in situ biodegradation performance, assist with the
selection of inoculants, identify new biodegradative pathways,
and eventually to guide efforts in synthetic biology to develop
new enzymatic activities (Baek et al., 2007; Yergeau et al.,
2012; Uhlik et al., 2013; Dellagnezze et al., 2014; Sierra-
Garcia et al., 2014). Having said this, there are still that
need to be faced as the technologies mature and, for more
information, the reader is referred to the following reviews

(Desai et al., 2010; Hazen et al., 2013; Techtmann and Hazen,
2016).

The modern tools of microbial ecology promise to improve
our understanding of plant–bacteria synergies and will hopefully
lead to better models for designing and deploying effective
biological remediation schemes across diverse environmental
landscapes.
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