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For a commercially viable recombinant intracellular protein production process, efficient
cell lysis and protein release is a major bottleneck. The recovery of recombinant protein,
cholesterol oxidase (COD) was studied in a continuous bead milling process. A full
factorial response surface methodology (RSM) design was employed and compared to
artificial neural networks coupled with genetic algorithm (ANN-GA). Significant process
variables, cell slurry feed rate (A), bead load (B), cell load (C), and run time (D), were
investigated and optimized for maximizing COD recovery. RSM predicted an optimum
of feed rate of 310.73 mL/h, bead loading of 79.9% (v/v), cell loading OD600 nm of 74,
and run time of 29.9 min with a recovery of ∼3.2 g/L. ANN-GA predicted a maximum
COD recovery of ∼3.5 g/L at an optimum feed rate (mL/h): 258.08, bead loading (%,
v/v): 80%, cell loading (OD600 nm): 73.99, and run time of 32 min. An overall 3.7-fold
increase in productivity is obtained when compared to a batch process. Optimization
and comparison of statistical vs. artificial intelligence techniques in continuous bead
milling process has been attempted for the very first time in our study. We were able
to successfully represent the complex non-linear multivariable dependence of enzyme
recovery on bead milling parameters. The quadratic second order response functions
are not flexible enough to represent such complex non-linear dependence. ANN being
a summation function of multiple layers are capable to represent complex non-linear
dependence of variables in this case; enzyme recovery as a function of bead milling
parameters. Since GA can even optimize discontinuous functions present study cites
a perfect example of using machine learning (ANN) in combination with evolutionary
optimization (GA) for representing undefined biological functions which is the case for
common industrial processes involving biological moieties.
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algorithm, cholesterol oxidase
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GRAPHICAL ABSTRACT | Schematic representation of modeling and optimization of bacterial cell lysis process by using statistical and artificial
intelligence technique for COD recovery.

INTRODUCTION

Intracellular production of recombinant proteins in Escherichia
coli has been firmly established a method of choice due to
its faster growth, well-characterized genetics, higher protein
expression and yield (Huang et al., 2000). Apart from the benefits,
production of the recombinant protein suffers a number of
bottlenecks, right from gene cloning to its expression and its
recovery in the pure and active state (Rosano and Ceccarelli,
2014). Out of all the unit operations, cell lysis and release of
intracellular product remains a major challenge toward achieving
higher productivity (Shokri et al., 2003). Therefore, modeling

and optimization of the cell lysis process becomes critical for
achieving higher product recoveries. At laboratory level, the
purity of the protein is a prime concern while at commercial
scale purity along with yield is critical. Cell disruption methods
are normally selected on the basis of the intentional use
and nature of the protein product to be recovered, e.g., its
thermal-/pH-stability, half-life, activity, etc. (Middleberg, 1995).
Unfortunately, the commonly used cell lysis methods including
chemical, physical, or enzymatic (Hughes et al., 1971; Fish
and Lilly, 1984; Morein et al., 1994; Byreddy et al., 2015)
prove inefficient when attempted at larger scale. Alternatively,
mechanical methods such as high-pressure homogenization,
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bead milling are milder, result in lower protein degradation,
non-selective, have comparable efficiency and scalable to pilot
and process scale (Middleberg, 1995). Bead milling is generally
preferred at larger scale owing to its easy control and operation
under batch or continuous mode and capability to process
volumes of highly concentrated cell slurry (Middleberg, 1995).
Scaled-down bead mills, e.g., Dynomill R© (WAG, Switzerland)
efficiently simulates large-scale bead mills, but it is not routinely
used in laboratories due to its relatively high cost. Bead-milling
process generates a lot of heat that is directly proportional to
the amount of beads present in the grinding chamber, agitation
speed, and grinding time. Therefore, cell lysis optimizations need
to focus on shortening the run time and minimize the amount
of beads loaded, without compromising or even increasing the
productivity of the process.

Process optimization often involve simple, conventional one-
factor-at-a-time (OFAT) approach. The process suffers major
drawbacks of being time consuming, inaccurate, with pseudo-
optimum predictions and fail to study the interactions of
different process variables affecting the final yield (Wahid and
Nadir, 2013). Whereas, statistical methods, i.e., response surface
methodology (RSM), and mathematical modeling via artificial
neural networks (ANNs) methods are accurate, require less
experimental number of runs, approach the correct optima;
these are more accurate and account for the interaction
of process variables involved (Dubey et al., 2011). RSM
has been successfully applied to various biotechnological
processes in the past (Alshammari et al., 2015) including
high throughput chemical lysis of E. coli (Listwan et al.,
2010) and high throughput development and optimization of
efficient cell disruption methods (Glauche et al., 2016). When
the number of variables increase and interactions become
too complex, RSM fails to describe the object functions
accurately. On the contrary, ANN successfully addresses and
overcomes the limitations of RSM. ANNs are effective in
handling data with noise, mimic biological neural networks,
perform better than statistical/regression based models and
accurately predict and model highly non-linear and complex
biological processes (Khan et al., 2011). The ANN training
function Levenberg–Marquardt (LM) is an established curve
fitting algorithm for multivariable non-linear least square
problems. During ANN training the LM iterator continuously
modifies the layer waits and biases (function constants) so
that the network output approaches minimum least square
difference between the training values and network predictions.
LM algorithm behaves somewhere between two learning
functions: Steepest Descent and Gauss–Newton. LM requires
an initial starting point provided as initial layer weights
and biases (for ANN learning). If the current solution is
far from correct then LM primarily behaves as steepest
descent where it may be slower but determined to reach
minima (Moré, 1978, Lourakis, 2005). The precision of the
optimized statistical/mathematical models can be increased
further by using complimenting tools, such as genetic algorithms
(GA), Nelder–Mead complex, etc. GA lays its foundation
on Darwin’s principle of genetic evolution (Haider et al.,
2008). It intrinsically employs genetic operators like mutation,

crossover, and selection to reach at the optimum conditions.
It also possesses a unique advantage, as it can be used in
the optimization processes where the model to be employed
is incomplete or suffers gaps in design execution (Tripathi
et al., 2012). In terms of its application, the variables are
represented as genomes or chromosomes and the factors to
be optimized, i.e., the levels of these variables are portrayed
to be genes. Chromosomes that offer higher productivity
are selected and replicated proportionally to the achieved
productivity. The individual process variables are selected
entirely in a random fashion from the population and used to
produce the next generation. The population thus evolves over
successive generations toward an optimal solution (Haider et al.,
2008).

In our previous study, we have reported modeling and
optimization of continuous bead milling process for efficient
bacterial cell lysis for the production of cholesterol oxidase
(COD) using RSM (Haque et al., 2016). In continuation to
the previous report, here in this study COD was considered
as a prototypical enzyme for the modeling and optimization
of bacterial cell lysis employing RSM vs. ANN methodology.
COD catalyzes the conversion of cholesterol into 4-cholesten-
3-one in the presence of O2 and isomerization of 4-cholesten-
3-one into 4-3-ketosteroid (Goswami et al., 2013). COD has
been receiving a lot of attention due to its broad application
in clinical laboratories for quantification of serum cholesterol
levels, as a biocatalyst for steroid production, its implication in
bacterial and viral manifestations, development of biosensors,
as larvicidal and insecticidal protein and as signaling protein
in the biosynthesis of polyene macrolide pimaricin in some
Streptomyces sp. (Mendes et al., 2007). An in-house economic
analysis was also performed for assessing the feasibility of the
process and quantify the efficiency and productivity of the
developed model, similar to our previous report (Haque et al.,
2016).

Overall, in this study, artificial intelligence techniques, ANN-
GA was applied and compared with statistical design of
experiments (DOE) for the modeling and optimization of
bacterial cell lysis using continuous bead milling process for
recovery of COD as model enzyme.

MATERIALS AND METHODS

Microbial Strain and Growth Conditions
All the biochemical, chemicals, and bacterial cultivation media
or their components were procured from RFCL (India), Hi-
Media Laboratories (India), and BDH (India). Microbial culture
conditions and COD expression studies were followed as
reported earlier (Haque et al., 2016). COD expression studies
were conducted using E. coli BL21 (DE3) pLysS cells (Invitrogen),
transformed pFT24b+ harboring COD gene, under IPTG
inducible lambda phage promoter (Invitrogen) following the
protocol of Volontè et al. (2010). A single colony was used to
initiate starter cultures in E. coli in Luria Bertani (LB) medium
containing 30 mg mL−1 of kanamycin. Baffled Erlenmeyer flasks
(500 ml) with 80 ml of the culture medium was inoculated and
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incubated at 37◦C in a rotary orbital shaker at 180 rpm till
the OD600 nm reached 0.6. The cells were primarily grown in
LB medium and then transferred to fermenter level in Terrific
Broth (TB) supplemented with 12 g L−1 bacto-tryptone, 24 g L−1

yeast extract, 8 ml L−1 glycerol, 16 mM KH2PO4, and 54 mM
K2HPO4. The cells were induced for protein expression after 6 h
of incubation and harvested after 6 h of induction.

Batch Culture
TB medium supplemented with 20 mL L−1 glycerol was used
as a production medium in a 5 L glass bioreactor (Biostat R©

C, Sartorius AG, Germany). The fermentation process was
conducted at 37◦C with 300–700 rpm agitation speed. The
aeration rate was maintained at 1 vvm (volume of air per volume
of medium per minute) and cascaded with pure oxygen. Hodag
antifoam was used to control foaming via an antifoam sensor.
An overnight culture of 0.6 (OD600 nm) grown in LB medium
was used as inoculum and added at 10% (v/v) to the fermenter.
The culture was induced with IPTG at a final concentration of
1.0 mM, at 6 h of incubation for the production of recombinant
COD. All the experiments were performed in triplicates in two
sets throughout this study.

Determination of Enzyme Activity
The activity of COD was determined by evaluating the amount of
H2O2 released by using 4 mg mL−1 horseradish peroxidase assay
(with 0.3 mg mL−1 o-dianisidine, 1ε440 = 13 mM−1 cm−1) at
25◦C as per previous reports published (Pollegioni et al., 1999;
Motteran et al., 2001). The reaction mixture contained 1 mM
cholesterol in 100 mM phosphate buffer (pH 7.5) in the presence
of 1% propanol and 1% Theist R© (v/v final concentration). One
unit of the enzyme was defined as the amount of enzyme that
produces 1 µmol of H2O2 min−1 at 25◦C. Recovered lysate was
centrifuged at 10,000 rpm and remaining supernatant was used
for calculating the enzyme activity.

Cell Lysis Using Ultra-Sonication
The obtained culture was subjected to centrifugation and the
obtained pellet was washed twice with Tris–HCl buffer (pH 7.5)
and resuspended in the same buffer. The cell lysis process was
performed as reported earlier (Haque et al., 2016).

Cell Lysis Using Bead-Mill
Bead mill known as Dynomill R© KDL type from W.A. Bachofen
AG, Switzerland was used to lyse the cells. The grinding chamber
(600 mL capacity) was filled with 0.50–0.75 mm glass beads
in different amounts (v/v) as determined by the design matrix
generated by RSM (Table 1). The chamber was cooled to 4◦C
for 10 min using chilled water from a circulating water bath.
The cell slurry was adjusted at various cell densities and loaded
in the grinding chamber to make up the remaining volume (as
depicted in Table 1). The mill was run at 4000 rpm for 30 min
or as directed by the design matrix. The cell slurry was fed
in the grinding chamber at various flow rates with the help of
pre-calibrated peristaltic pump. The bead mill was operated in
continuous mode with slurry fed and withdrawn at equal flow
rates.

Modeling and Optimization of Cell Lysis
for COD Recovery
Each row in central composite design (CCD), Table 1 represents
an experimental run. Feed rate (A), bead loading (B), cell loading
(C), and run time (D) were found to be significant process
variables (Haque et al., 2016) and therefore were varied as per
the values assigned by CCD. CCD, a subgroup of RSM was
used in full factorial mode to form the basis of ANN and GA
modeling. The process variables were varied at five levels (−2,
−1, 0, +1, and +2) with constrains as shown in Table 1. The
full factorial model resulted in a total of 30 runs. Each run was
performed in triplicates (30 runs × 3 = 90 runs) and the COD
recovery was quantified twice from each run. The COD recoveries
thus obtained were averaged and fed into the design matrix
against each individual run. F-test, analysis of variance (ANOVA)
were performed and statistical significance of the model was
estimated.

The results from the CCD experiment were used to
train a feed-forward back-propagation ANN on MATLAB R©

(MathWorks, Inc.) platform. Inputs and targets of the network
were normalized. The four determinants of COD recovery (A,
B, C, and D; Table 1) served as network inputs. The observed
relative area of the dimer peak and shelf life (Table 1) served as
training targets of the network. From the total 30 experiments
(Table 1), 20 were selected and used to train the network
while the rest were divided equally to test and validate it. The
network was trained with the following parameters (training
function, Levenberg–Marquardt Levenberg, 1944), Marquardt
(1963); learning function, gradient descent with momentum
weight and bias (Snyman, 2005); performance function, mean
squared error. After optimization, ANN was also used to draw
plots, illustrating the effect of individual components on COD
recovery. The GA input parameters have been given in Electronic
Supplementary Information (ESI), Annexure I. Since the GA
implementation of MATLAB R© is designed to minimize, the
output of the selection function (@beads) was made negative by
multiplying by−1. Kindly refer (ESI): Annexure I for detailed GA
option set.

RESULTS

Bacterial Culture and COD Recovery
Expression of COD was successfully achieved at the shake
flask and fermenter levels as reported earlier (Motteran et al.,
2001; Haque et al., 2016). The expression was checked in the
extracellular medium after centrifuging the cells at 10,000 rpm.
The supernatant showed no COD activity confirming its
expression to be completely intracellular. The amount of
COD expressed per unit cell mass (OD600 nm) mL−1 was
∼5.89 µg. The estimation was done by determining the activity
of crude COD in the cell lysate. Sodium dodecyl sulphate-
polyacrylamide gel electrophoresis (SDS-PAGE) was run to
confirm the expression of COD (data not shown). The molecular
weight of COD was estimated to be ∼46.5 kDa (Haque et al.,
2016).
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TABLE 1 | Design of experiments and recovered cholesterol oxidase (g L−1) in each run.

Run
order

A: Feed rate
(mL−1h)

B: Bead loading
(%)

C: Cell loading
(OD600 nm)

D: Run
time (min)

Experimentally
observed COD (g)

RSM predicted
COD (g)

ANN predicted
COD (g)

1 300.00 60.00 50.00 20.00 1.76 1.69 1.752

2 500.00 60.00 50.00 20.00 0.79 0.81 0.774

3 300.00 80.00 50.00 20.00 1.46 1.34 1.417

4 500.00 80.00 50.00 20.00 0.84 0.76 0.596

5 300.00 60.00 70.00 20.00 2.51 2.49 2.120

6 500.00 60.00 70.00 20.00 0.85 0.83 0.848

7 300.00 80.00 70.00 20.00 2.26 2.16 2.294

8 500.00 80.00 70.00 20.00 0.82 0.79 0.749

9 300.00 60.00 50.00 30.00 1.95 1.92 2.142

10 500.00 60.00 50.00 30.00 1.07 1.05 1.218

11 300.00 80.00 50.00 30.00 2.27 2.17 2.209

12 500.00 80.00 50.00 30.00 1.63 1.59 1.706

13 300.00 60.00 70.00 30.00 2.97 2.94 2.208

14 500.00 60.00 70.00 30.00 1.23 1.29 0.936

15 300.00 80.00 70.00 30.00 3.28 3.2 3.023

16 500.00 80.00 70.00 30.00 1.88 1.83 1.700

17 258.58 70.00 60.00 25.00 2.15 2.46 2.228

18 541.42 70.00 60.00 25.00 0.84 0.88 0.766

19 400.00 55.86 60.00 25.00 1.84 1.84 1.750

20 400.00 84.14 60.00 25.00 1.64 1.99 2.016

21 400.00 70.00 45.86 25.00 1.73 1.96 1.705

22 400.00 70.00 74.14 25.00 2.58 2.7 2.082

23 400.00 70.00 60.00 17.93 1.26 1.48 1.346

24 400.00 70.00 60.00 32.07 2.26 2.38 2.212

25 400.00 70.00 60.00 25.00 2.28 2.24 2.169

26 400.00 70.00 60.00 25.00 2.77 2.24 2.169

27 400.00 70.00 60.00 25.00 2.23 2.24 2.169

28 400.00 70.00 60.00 25.00 2.20 2.24 2.169

29 400.00 70.00 60.00 25.00 2.36 2.24 2.169

30 400.00 70.00 60.00 25.00 2.30 2.24 2.169

Evaluation of Cell Lysis
The E. coli cells were lysed to estimate the maximum possible
recovery of COD per unit cell mass. The cell slurry was diluted
to OD600 nm = 10, and sonicated for 25 min (15 s “ON”/30 s
“OFF” cycle) in an ice bath. The recovered amount was∼5.89 µg
COD mL−1 OD600 nm−1 , with the maximum COD activity of
∼91.42 units. The recovery (COD) results were consistent with
our previous study (Haque et al., 2016). The recovery of 5.89 µg
COD mL−1 OD600 nm−1 was considered as 100% and utilized for
further yield and recovery calculations.

Bead Size and Bead Milling Time
Bead size of 0.5–75 mm was selected for optimization process and
bead milling time of 30 min was utilized to build the ANN design.
The selection criteria have already been reported in our previous
report (Haque et al., 2016).

Design of Experiments Using RSM
CCD, as subset of RSM was utilized for statistical design and
modeling. Full factorial design matrix was utilized that resulted
in to a set of 30 runs, with simultaneous variation across all
the participating parameters at five different levels as depicted in

Table 1. Each run was executed in triplicate and repeated twice.
The recovered amount of COD was averaged and inserted to the
design matrix against individual runs. The minimum amount
of COD recovered was 0.794 gL−1 in run 2 and the maximum
amount of COD obtained was 3.282 gL−1 in run 15. Maximum
response was 4.133 times of the minimum. The model showed
a F-value of 16.8, indicating that this high F-value is relevant
and the chances that F-value this high can occur due to noise,
is very small. The model showed 9 degrees of freedom (df) for
“lack of fit” and 5 df for pure error. The individual terms in
the model as A, C, and D were significant terms and AC, BD,
A2, B2, and D2 were found to be significant interaction terms
with p-values < 0.05 for individual and <0.1 for interaction
terms. Individual terms B, and interaction terms AB, AD, BC, CD,
and C2 were not found to support the model hierarchy or show
significance (p-value >0.1), therefore, these terms were excluded
from the RSM model for better curve fitting and maintaining the
simplicity. ANOVA for bead loading was not found significant
(F-value = 0.3213) and therefore, it was excluded from the
response surface model. We know that that grinding of the cells
happens due to the presence of beads; and bead fraction present
in the grinding chamber is directly proportional to the fraction of
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TABLE 2 | ANOVA for cholesterol oxidase recovery (g L−1).

ANOVA for Response Surface Reduced Cubic Model

Analysis of variance table (partial sum of squares—Type III)

Source Sum of squares df Mean square F-value p-value Prob > F

Model 12.76 15 0.85 16.8 <0.0001 Significant

A: Feed rate 6.28 1 6.28 124 <0.0001

B: Bead loading 0.054 1 0.054 1.06 0.3213

C: Cell loading 1.37 1 1.37 27.13 0.0001

D: Run time 2.04 1 2.04 40.34 <0.0001

AB 0.084 1 0.084 1.65 0.2199

AC 0.62 1 0.62 12.21 0.0036

AD 4.23E-05 1 4.23E-05 8.34E-04 0.9774

BC 2.10E-04 1 2.10E-04 4.15E-03 0.9495

BD 0.35 1 0.35 6.88 0.0200

CD 0.048 1 0.048 0.95 0.3470

A2 0.76 1 0.76 14.99 0.0017

B2 0.25 1 0.25 4.94 0.0432

C2 0.018 1 0.018 0.35 0.5621

D2 0.23 1 0.23 4.47 0.0529

ABC 5.63E-05 1 5.63E-05 1.11E-03 0.9739

Residual 0.71 14 0.051

Lack of fit 0.48 9 0.054 1.2 0.4437 Not significant

Pure error 0.22 5 0.045

Cor total 13.47 29

Standard deviation 0.23 R2 0.9474

Mean 1.87 Adjusted R2 0.891

Coefficient of Variation% 12.05 Predicted R2 0.8137

PRESS 2.51 Adequate
precision

14.859

the lysed cells. The F-value for feed rate, run time, and cell loading
were found to be 124, 40.34, and 27.13, respectively, suggested
that these parameters have profound effect on the process of cell
lysis for COD recovery. Bead loading showed a lower F-value
of 1.06 indicating its lower significance in the complete process.
The degree of precision, as shown by CV at 12.05%, indicated
that the developed model was acceptable and sustainable for
generating the prediction functions for COD recovery at different
design points throughout the design space. Adequate precision
that confers signal-to-noise ratio was 14.859. The coefficient of
determination was found to be 0.9474 with predicted R2 in
reasonable agreement with adjusted R2 confirming the aptness
and reliability of the model (Table 2). As per the statistical
standards, the value of coefficient of determination should be
0.95 or higher for an accurate curve fit. Therefore, the prediction
accuracy of the RSM model reduced below the 95% confidence
levels. The formulated polynomial equation in coded terms, to
navigate the design space can be shown as:

Y = + 2.22 − 0.57× A + 0.077× B + 0.26× C

+ 0.32× D + 0.072× A× B − 0.20× A× C

+ 0.15× B× D+ 0.055× C ×D − 0.26× A2

− 0.094× B2
− 0.17×D2

Where, Y = COD recovered (g L−1), A = feed rate (mL/h),
B = bead loading (%, v/v), C = cell loading (OD600 nm),
and D = run time (min), and the interacting factors were
depicted as AB, AC, BD, and CD. The developed model
showed good correlation between the predicted and the
observed responses, ensuring a good fit between the two
(Figure 1A). The 3D graphs plotted using the two participating
factors at one time, on x- and y-axis, while the obtained
responses for COD recovery was plotted on the z-axis, with
different levels indicated by the color/height/contours of the
obtained curve. These curves provide an easy and quick
understanding of the responses predicted (Figures 2A–F).
Validation of the developed model was done by performing the
bead milling process at the predicted optimum condition in
triplicate.

Optimization Using ANN and GA
The DOE is represented in Table 1. Each row of Table 1 is
an individual combination of parameters affecting recovery of
COD. The recovery potential for each individual run is present in
column 6 of Table 1. The predictions for the tested and validated
ANN are shown in column 7 of Table 1 (Figure 1B).

The ANN achieved an acceptable degree of efficiency (mean
validation error 0.065) after six iterations in two epochs only
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FIGURE 1 | (A) Actual vs. RSM predicted COD yield. (B) Comparison of observed and ANN predicted COD recovery (g): experimentally observed COD yield vs.
ANN predicted COD yield against various runs.

(Figures 3A,B). Individual R-values for training and validation
are shown in Figures 3C,D. The regression coefficients for
training, validation, and testing were fairly close to 1 (Figure 3C).
This classifies the ANN to be fairly efficient to represent the
relationship between the bead milling parameters (i.e., feed rate,
bead loading, cell loading, and run time) and COD recovery.
The number of hidden layers required to achieve the said
efficiency of the ANN was optimized during multiple training
and testing attempts. Figure 3E represents the final network in
MATLAB R© Notation. Kindly refer ESI: Annexure I for network
layer weights and biases. GA was employed to perform an
exhaustive global search of the parameter combination to achieve
maximum 3-COD recovery. The results of GA optimization as
per the GA option-set (ESI: Annexure I) have been shown in
Figures 4A,B.

GA predicted the best fitness value or the in silico maximum
of COD recovery to be 3.454 g L−1 (Figure 4, negative sign

explained in Section “Materials and Methods”) at an optimum
feed rate (mL h−1): 258.08, bead loading (% v/v): 80%, cell
loading (OD600 nm): 73.99, and run time of 32 min. This optimum
combination of the solvent system components was tested
experimentally in triplicate; the COD recovery was found to be
within 1.5% of the GA predicted maximum.

The validated ANN was also used to predict the
individual effect of the milling parameters on the COD yield
(Figures 5A–D). This effect was determined individually for each
parameter separately by simulating the validated network for
four sets of inputs each comprised of a four milling parameters,
wherein only one is varied within its respective range, while
keeping the rest three at the central values of CCD experiment
(Table 1). Three of the four milling parameters, specifically, bead
load, run time, and cell loading were found to have a positive
hyperbolic effect on COD yield (Figures 5A–C). The feed rate
was found to be positively related to COD yield for values below
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FIGURE 2 | RSM-3D contour graphs plotted for two participating factors at one time, on x- and y-axis, against the obtained responses for COD
recovery plotted on the z-axis, with different levels indicated by the color/height/contours of the obtained curve; (A) predicted COD recovery by RSM
against feed rate (mL h−1) vs. bead loading (%, v/v); (B) predicted COD recovery by RSM against bead loading (%, v/v) vs. cell loading (OD600 nm); (C) predicted
COD recovery by RSM against cell loading (OD600 nm) vs. run time (min); (D) predicted COD recovery by RSM against feed rate (mL h−1) vs. cell loading (OD600 nm);
(E) predicted COD recovery by RSM against feed rate vs. run time (min); (F) predicted COD recovery by RSM against bead loading (%, v/v) vs. run time (min).

350 mL h−1, a further increase in the feed rate results in a sharp
decrease in COD yield (Figure 5D).

DISCUSSION

The production of intracellular recombinant proteins in E. coli
offers ease of cloning and expression of foreign proteins and it
can grow up to higher cell densities (Jawed, 2008) reaching close
to ∼100 OD600 nm; making the process highly productive for
potential commercial applications. Once successfully expressed,

the heterologous protein(s) needs to be extracted out of the cells
and purified. The recovery of intracellularly expressed protein
depends on many factors including the process of bacterial cell
lysis. Laboratory scale cell lysis processes, e.g., ultra-sonication
is easy and less cumbersome but loses its efficiency when the
cell slurry is concentrated or higher in volume. Slow speed, low
productivity, and thermal denaturation pose a big challenge.
Chemical cell lysis process is fairly simple to perform but tend to
be harsh, expensive, increases the burden of waste disposal and
effluent treatment and can interfere in downstream processing
of the expressed protein. In both the methods, the protein
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FIGURE 3 | (A) ANN parameters during training; (B) ANN performance during training, validation, and testing; (C) statistical quality of the ANN; (D) R-value of ANN
training, testing, and validation; (E) ANN structure (W, layer weights; b, layer bias).

FIGURE 4 | (A) GA predicted optimum (GA progress toward maximum COD recovery); (B) best/optimum combination of variables for maximum COD recovery.
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FIGURE 5 | Effect of various bead milling parameters on COD
recovery: (A) bead load (%) vs. COD yield (g); (B) run time vs. COD yield (g);
(C) cell loading vs. COD yield (g); (D) feed rate vs. COD yield (g).

expressed is prone to thermal or chemical denaturation. These
limitations discourage their use at commercial levels. Cell lysis
at industrial scale requires faster, efficient, and robust process
capable of handling large volumes of cell slurry at high densities
and viscosities. Bead milling process operates by the principle of
grinding the cells between two beads that transfer their kinetic

energy to break the cell continuum. Only scanty studies have
documented the effect of various bead milling parameters, and
hardly any study has accounted for their interaction-effects on
protein recovery and overall productivity. Cell lysis (e.g., yeast
cells) and protein recovery in a bead milling process follow a
first order kinetics, when single process parameter is taken into
consideration (Chisti and Moo-Young, 1986). This can be shown
by the equation:

In
(

Rm
Rm − R

)
= In

(
1

1− Rp

)
= kt

Where, Rm is the maximum weight of protein released per unit
weight of packed cells (yeast) and R is the weight of actual protein
recovered, Rp is the fractional protein released, k is the rate
constant, and t is the time. When more than one parameter and
their effect are studied simultaneously on the process, it becomes
more intricate and necessitates equations of higher order for
explaining the cell disruption kinetics. Increase in grinding time
increases the residence time of every cell inside the grinding
chamber, reducing the chances of any cell escaping impaction by
the beads. Slurry feed rate on the other hand pushes fresh cells
inside the grinding chamber, countering the process efficiency.
Therefore, a dynamic balance is necessary between the feed
rate and run time to achieve higher cell lysis. As the grinding
requires a lot of power to drive the battery of beads in the
grinding chamber via agitators; a slower feed rate would make
the process run unnecessarily longer, compromising process
economics; while a higher feed rate tends to reduce the residence
time, affecting the protein. Increase in the amount of cells per
unit volume also increase the yield of the process steadily as
higher amount of the cells also harbor more intracellular content
that is available for the release by cell disruption. As the amount
of the cells increases, the total protein content as well as the
viscosity of the cell slurry increases in the grinding chamber. The
increase in the protein content is beneficial for the process, while
the increase in the viscosity is generally detrimental. Moreover,
as the cell lysis proceeds, the intracellular contents, e.g., nucleic
acids such as DNA, RNA; enzymes, e.g., proteases, etc., are
also spilled out of the cells along with the protein of interest.
This worsens the situation as nucleic acids further increase the
viscosity of the lysate and proteases threaten the degradation
of the protein of interest. Increase in the viscosity requires the
agitator drive to draw more power, limits grinding by reducing
the bead velocity and the force of impaction. To overcome this
limitation, a higher percentage of the beads are required to be
loaded in the grinding chamber. Increase in the bead loading
percentage accelerates the cell lysis, but generates more heat
leaves less room for the cell slurry in the grinding chamber,
reducing the productivity per unit time. Increase in the amount
of the beads also generates more heat due to higher frequency
of collision. As the bead loading increases, its agitation requires
more power to drive the battery of beads against the gravity and
the viscosity of the slurry inside. This results in higher power
to be delivered to the agitator for maintaining the agitation
speed and overcoming the inertia and friction of the beads
continuously. Increasing the diameter of bead mill, limits the
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efficiency of cooling jacket that is along the circumference of the
bead mill, making cooling less effective and result in generation
of temperature gradient inside the bead mill. To overcome the
limitation, bead size (0.25–1.0 mm) was optimized (Volontè et al.,
2010). Smaller beads are effective at lower viscosities, but these
gets fluidized when run at higher cell loads, higher viscosities
or at high agitation speeds (Middleberg, 1995). Thus results in
lower momentum of impaction, incomplete cell lysis and affects
the process productivity. Larger bead sizes 0.5–0.75 mm prove
effective as these provide stronger impact, deliver higher kinetic
energy during impaction resulting in resilient shearing action
leading to effective cell lysis at higher cell loads and viscosities. To
further increase the effectiveness, the specific gravity of the beads
employed can be increased. Operation of the bead milling process
is fairly simple and straight-forward, its cell disruption kinetics
is not. Continuous bead milling processes with slurry feeding
are even more complex than the batch bead milling processes.
A number of factors affect the productivity and the yield in more
than one ways and therefore, simultaneous optimization of the
process variables is required for accurate optimization of the
continuous bead milling process.

RSM though capable of modeling an experimental study
with simple interactions, finds itself limited when the process
interactions grow complex. With a full factorial design (∼30
runs) the number of design points increase (w.r.t fractional
factorial design ∼21 runs) and hence the data generated is more
elaborate. The ANOVA for RSM demonstrated bead loading
and many important terms, e.g., B, AB, AD, BC, CD, C2, and
ABC to be a non-significant parameter; however, we know
that it is a very crucial parameter for effective cell lysis. Still
the RSM model was able to fit the observed responses into a
statistically significant model, with a not-significant “lack-of-
fit,” acceptable predictability, but with lower a confidence level
<95%. In the study undertaken, the feed rate and bead loading
have a very complex effect on the COD recovery. Increase in
the feed rate reduces the residence time of each cell in the
grinding chamber, making it less prone to lysis; increase in
the bead loading percentage increases the amount of grinding
elements in the chamber making the process more effective. On
the other hand, increase in bead loading reduces the available
volume for the cell slurry in the grinding chamber, boosting the
flow rate and progressively reducing the residence time of the
cells in the grinding chamber. This makes the interaction too
complex for RSM to accurately predict the response. Similarly,
the interaction of feed rate and cell loading compensates the
effect of each other. Higher flow rate reduces the efficiency
while higher cell loading increases the number of cells per
unit volume to be lysed. As the cell concentration increases,
the efficiency of cell lysis decreases due to increase in the
viscosity. This generates the need for more beads to be loaded
in the grinding chamber. Interaction of feed rate (A), bead
loading (B), and cell loading (C) affect the run time (D) in a
complex manner thereby affecting the recovery of COD. ANNs
are effective in handling the data with noise, mimic biological
neural networks, perform better than statistical/regression based
models and accurately predict and model highly non-linear and
complex biological processes. The present study highlights the

effectiveness of machine learning algorithms (viz. ANN) over
statistical approach, in explaining the complex dependence of the
desired product recovery on industrial downstream variables (in
this case, bead milling parameters). Results (as discussed before)
clearly identify the advantage of using ANN as compared to
regression based statistical methods such as RSM.

The bead mill has a lot of advantages over laboratory scale
cell lysis methods, but still it is not free of drawbacks. The
bead mill can be operated in batch or continuous mode. After
every batch run, the grinding chamber and used beads need
to be cleaned, sanitized, and dried, in order to be used in the
next run. This downtime and its cost gets added to volume
of the cell slurry processed every time, negatively affecting
process economics. With every cleaning cycle a fraction of
grinding beads is lost depending on the carefulness and the
skill of the operator. To increase the processing volume, larger
bead mills are needed that makes them bulky, cumbersome,
and inefficient. Therefore, smaller bead mills with provision of
continuous feeding of fresh cell slurry are employed. Fresh slurry
is continuously fed in the grinding chamber and an equivalent
amount is collected from the outlet valve. The gap setting of
the outlet valve retains the beads while allows the cell slurry
to flow-out due to the inlet pressure. Continuous bead milling
process reduces the downtime as it handles larger volumes than
the grinding chamber, needs cleaning and sanitization only after
the complete slurry is processed. Therefore, the downtime is
reduced and the volumetric productivity is increased per grinding
cycle. A small in-house economic analysis was conducted to
compare the process economics in the case of methods optimized
by statistical techniques and ANN-GA. The in-house economic
analysis revealed that optimization by ANN-GA resulted in 3.7-
folds increase in the amount of COD recovered per USD per
day as compared to only RSM optimization under batch mode
(Annexure II). In comparison with the bead milling under batch
mode (6.56 mg COD/USD/day), ANN-GA resulted into 24.33 mg
COD/USD/day).

CONCLUSION

In conclusion, the present study proves the significance of ANN-
GA in large-scale bacterial cell lysis and product recovery (COD
in this case) in optimization of bead milling process for the very
first time. It also refines and establishes the crucial parameters
and their interactions affecting the cell lysis and recovery of
intracellularly expressed proteins. The COD recovery reached up
to 3.454 g L−1 as compared to the batch or the continuous cell
lysis process optimized by RSM. Our findings provide a concrete
platform for the large-scale cell lysis process and enhanced
recovery of intracellular protein(s) in a continuous bead milling
process with expressions depicting similar patterns.
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